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Given a model P of probability measures on some sample space, let some one
dimensional aspect be defined by some statistical functional 7:P — R. We con-

One-Sided Confidence About
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Helmut Rieder
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2 April 2000

Abstract

In the setup of i.i.d. observations and a real valued differentiable func-
tional T, locally asymptotic upper bounds are derived for the power of
one-sided tests (simple, versus large values of T') and for the confidence
probability of lower confidence limits (for the value of T'), in the case
that the tangent set is only a convex cone. The bounds, and the tests and
estimators which achieve the bounds, are based on the projection of the
influence curve of the functional on the closed convex cone, as opposed
to its closed linear span. The higher efficiency comes along with some
weaker, only one-sided, regularity and stability.

Key Words and Phrases: semiparametric models; linear tangent spaces;
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bounds; concentration bound; asymptotic median unbiasedness.

AMS/MSC-2000 classification: 62F35.

Introduction

sider the simplest case of n stochastically independent observations 1, ...

with identical distribution any P € P, and the task is to make confidence

statements on the unknown value T'(P) by means of tests and estimators.

tests cannot exceed certain asymptotic upper bounds. Likewise, the accuracy
of estimators of T'(P) is limited by some asymptotic upper bounds for one-
and two-sided confidence probabilities. These bounds form a classical subject
of non- and semiparametric theory; confer, for example, Bickel et al. (1993),

In the usual testing problems concerning the value of 7', the power of level «

Pfanzagl and Wefelmeyer (1982), Rieder (1994), and van der Vaart (1998).
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Having fixed any P € P, either for the purpose of testing local alternatives
or, in estimation, to be able to exclude artificial phenomena of superefficiency,
local variations of P within 7 must be taken into account!. These variations
are formulated as differentiable paths (P, )50 in P, in direction of certain
tangents g € L2(P) at P, such that, in the Hilbert space of square root densi-

ties,
VdPy s = (1+ 1sg)VdP +o(s) as s ] 0 (1.1)

The functions g necessarily have expectation Eg = (g|1) = 0 under P; that
is, g L constants in Ly(P). Given any g € L2(P), Eg = 0, a corresponding
path (in the set of all probabilities) is

2
dPy, = (Lsg+1/1-Ls2|gll? ) dP (12)

dP; s =(1+sg)dP  if g€ Loo(P) (1.3)

or

The set G of all tangents at P on one hand reflects the richness of the model P.
On the other hand, G is restricted by the differentiability requirement on the

functional: There exist some function k € Ly(P), such that for every g € G
and any path (1.1) in P,

T(P,s) =T(P)+ s(k|g) + o(s) as s | 0 (1.4)

The function «, a so-called influence curve of T' at P, may not be unique.
But the orthogonal projection k of & on the closed linear span c¢flinG of G
in Ly(P) is unique—the canonical gradient, or efficient influence curve.

By definition, the tangent set G of P at P is a cone in Ly(P) N {const}+
with vertex at 0, such that yg € G for ¢ € G and v € [0,00). Most frequently,
the tangent set is assumed a linear space G = G, such that cflinG is just
the closure ¢£G of G. Then the said bounds are determined by the canonical
gradient &, acting as a least favorable (limiting) tangent, and its norm ||%||.

In the case of tangent cones the situation is not quite clear even if the cone d
is convex?  such that v;g1+7292 € G for g; € G and ¥; € [0,00). On one hand,
Theorem 25.20 (convolution representation) by van der Vaart (1998) is still
based on the canonical gradient & (the orthogonal projection of x on c¢¢ liné).
On the other hand, Pfanzagl and Wefelmeyer (1982; Theorem 9.2.2) state a
two-sided concentration bound in terms of the (smaller) projection & of & on a
closed convex tangent cone QN = Cng. However, as —QN C QN is used in the proof,
their cone must in general be a (closed) linear space, and thus £ = k. In the
context of testing, Janssen (1999) considers convex tangent cones G and also
employs the projection K of k¥ on clG . After tacitly assuming orthogonality of
the residual Kk — &k on QN, he submits the condition that the canonical gradient &
already lie in ¢fG . Hence, by assumption, i = & again.

1 implicitly, already, in the scores function of the MLE—a derivative.
2 As for nonconvex cones, confer the footnote summary in van der Vaart (1998; p 367).
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Thus, the asymptotic power, and concentration bounds obtained so far are
the same for convex tangent cones and their linear spans.

The present investigation, in the case of convex tangent cones G, derives
locally asymptotic upper bounds for the power of one-sided tests (of a simple
hypothesis against large values of T'), as well as for the confidence probabilities
of lower confidence limits for T(P). The asymptotic bounds are given in terms
of the projection £ of the influence curve « of the functional 7" on the closed
convex cone cfg Since generally & € cﬁhng\ cﬁg that is, & # K and,
equivalently, ||g|| < ||k||, the upper bounds are larger than those based on .

The higher efficiency, however, is paid for by some weaker, only one-sided,
regularity and stability: In the case of testing, the asymptotic size rises to 100%
over an only slightly enlarged, and over the larger one-sided, null hypothesis.
In the case of estimation, the asymptotic bias may become infinite under local
alternatives. In particular, the bound stated by Pfanzagl and Wefelmeyer (1982;
Theorem 9.2.2)—contrary to their belief (Section 9.1, p 154)—cannot possibly
be attained under their regularity condition of asymptotic median unbiasedness.

The investigation originated from the attempt by Rieder (2000) to subject
robust statistics to the semiparametric approach by treating neighborhoods as
nuisance parameters, which lead us to nonlinear projections on tangent balls.

Throughout this paper, for reasons of comparability, the cases of a linear
tangent space G and a convex tangent cone G, respectively, are stated together.
The Ly(P)-closure cl G of a linear tangent space G is again a linear space, the
Lo (P)-closure cfg of a convex cone G again a convex cone. The canonical
gradient, which is the projection of x on c¢fG and cf hng, respectively, is
denoted by k, the projection of s on clG by .

Convenient characterizations of the projections are supplied in the appendix;
the criteria (4.1) and (4.2) for & and & will be used without explicit reference.
Throughout the paper, the influence curve &, the tangent space G and convex
tangent cone G at P are of such a kind that

R0, R#£0 (1.5)

The interesting case, as noted, is K # K.

One-sided inference about non-smooth functionals of a density has been
studied by Donoho (1988), by entirely different techniques and in an even more
nonparametric setting. Nevertheless, we encounter a somehow similar impos-
sibility of sensible upper confidence limits: The estimators that provide the
best lower confidence limits, subject to some local asymptotic median nonnega-
tivity, necessarily achieve overshoot probability 100% under local alternatives.
This distinguishes convex tangent cones from linear tangent spaces, where the
efficient estimator is unique and asymptotically (median) unbiased.

Notation The limits liminf,, , limsup,, , and lim, are taken for n — oco. The
1 n 7 7
mean of n numbers z; is denoted by avel ; z;, and \/n avel_; z; by ravel ; z; .
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2 One-Sided Tests

2.1 Definition of Hypotheses

For the fixed probability P € P and tangent set G, simple and one-sided
composite asymptotic hypotheses about the sequence (@) of laws @, of the
1.1.d. observations at sample size n = 1,2, ... are defined by

J°: Q. =P eventually

J: hmn\f( P)) 0
H: hmsupn\f( T(P))
K : liminf, f( (P))

where ¢ € (0, 00) is some fixed constant. The measures @, in (2.2)~(2.4) may
not be arbitrary elements of model P but are assumed to approach P along
any path (P, ;)s>0 in P such that, for some ¢ € G and t € (0,00), eventually,

@n = Prtg=Pyipm (2.5)

In particular, every such sequence (Q7) is contiguous to (P™). Also, the expan-
sion (1.4) of the functional is in force such that, for every g € G and ¢ € (0, 00),

Vn (T(Pag) = T(P)) = t(klg) + o(n’) (2.6)

Therefore, the asymptotic hypotheses J, H and K concern (g,¢) € G x (0, 00)
and may be expressed by

J%:9=0, J:(klg) =0, H:(k|g) <0, K :t(klg) > ¢ (2.7)

Depending on whether the tangent set G is a convex Cong Q or a linear space G,

the hypotheses J, H,and K will be denoted by J, H, and K, respectively
by J, H, and K ; obv1ously Jo=J0=J°.

2.2 Asymptotic Power Bounds for Cones and Spaces

Let us fix some level a € (0,1), and denote by u, the upper a-point of the
standard normal distribution function @, such that ®(—u,) = a. We shall
employ test sequences (7,), that is, sequences of tests 7, at sample size n.
Power and size of tests 7, are going to be evaluated under the n-fold product

" asymptotically, as n tends to infinity.

measures n

Theorem 2.1 Consider test sequences (7,) that maintain asymptotic level «
under J°,

lim sup,, /Tn dP" < «a (2.8)
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(a) Then, in the case of a convex tangent cone G,
infz limsup,, /Tn d@r <@ (—ua + ﬁ ) (2.9)
R

The upper bound (2.9), with limsup,, replaced by liminf, , is achieved by the
sequence of tests
Tn = I(rauve?:1 R(z;) > ||i7;||ua) (2.10)

(b) In the case of a linear tangent space G,
infz lim sup,, /Tn d@r < <I>(—ua + ﬁ ) (2.11)
R

The upper bound (2.11), with limsup,, replaced by liminf,, , is achieved by the
sequence of tests

Tp = I(rave?:1 R(z;) > ||F£||ua) (2.12)
Moreover,

sup g limsup,, / T d@, < « (2.13)

Proor

(a) Given any ¢ € G such that (klg) > 0, put t, = c/(fc|g) and test JO
vs. the simple subhypothesis (P,l}%ﬂ) of K. Path differentiabilty (1.1) ensures
the following well-known expansion of loglikelihoods under P”

n
Pn,tg,g

Tt =t rave] g(xi) — 142]|g]]” + opn(n®) (2.14)

log
Thus Corollary 3.4.2 of Rieder3(1994) is in force and bounds asymptotic power
under P, . subject to level condition (2.8) from above by ®(—uas +1t,]9])-
Now let ¢ € G approach & in Ly(P). Then t4]|g|| tends to C||.‘~€||/<I€|I~€> = c/||/7;||
where we have used that (k|&) = ||%||?, and bound (2.9) is obtained as the limit

. C
lim O(—ua +t]lg]) = ®(—ua+ W) (2.15)

Towards achieving bound (2.9) by the tests 7,, the sums rave} k(z;) are,

for every (g,t) € G x (0,00) asymptotically normal under P, ,,

(ravel &(z0)) (BE.,) —w A (t(710), I17]7) (2.16)
by (2.14) and a LeCam lemma, confer HR (1994; Corollary 2.2.6), and so

. R (i
lim, /Tn Py, , = <I>(—ua + TITJI‘? ) (2.17)

3 HR, subsequently
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Under J°:g =0, this limit equals o. If (Pri,) € K then, by (2.7),as t >0,
and since (k|g) > (k|g) Vg € G, also t(klg) > t(k|g) > c¢. Hence

inf  lim,, / FdPp, > <I>(—ua + ﬁ) (2.18)
Y K

(b) With & and K in the place of # and K , the proof of bound (2.11) is
the same as in case (a). The limit corresponding to (2.17) for the tests 7, is

. _ n t(K|g t(K|g
im, [ 5 dP5, = 0o+ (R0 ) =0+ () @

since k—k L G. If (Prig) € H | then t(k|g) < 0 by (2.7) and ¢t > 0. Therefore

4
lim, /i’n dry, , = <I>(—ua ¥ TC{'? ) < B(—uy +0)=a (2.20)
is obtained from (2.19), and proves (2.13). /i

Remark 2.2 Although Theorem 2.1 (a), for convex tangent cones, is straight-
forward to prove, it seems to have been omitted in literature so far. In its
proof, K acts as a limiting least favorable tangent, as does k in the proof
of Theorem 2.1(b). The latter result, for linear tangent spaces, compares
with Pfanzagl and Wefelmeyer (1982; chapter 8), van der Vaart (1998; The-
orem 25.44, Lemma 25.45), as well as Beran (1983; Theorem 1) and HR (1994;

Theorem 4.3.8) who, in robust statistics, encounter linear tangent spaces G with
maximal closure c¢£G = Ly(P) N {const}t (so that k = k — Ex there). /i

2.3 Comparison of Cones and Their Linear Spans

Let us consider P a member of two models PCP ‘whose tangent sets at P
are a convex cone G, respectively the linear span of G,

G =1inG (2.21)

Power Comparison In this situation, we have JC J, HcC H, K cC K,
and JO should be easier to test vs. K than vs. K. In fact,

®(—ua + ”;“ ) > 0(—ua+ ”Tc”) (2.22)

&I < Il (2.23)

because

unless & € c£G, in which case & = & and the power bounds coincide.

This is a consequence of ||&||> = (x|&) = (k|k) and the Cauchy-Schwarz
inequality: (k|k) < ||&||||%||, where equality holds iff & is some positive multiple
of k,in which case k € ¢£G and k = k.
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Sample Size Comparison Allowing for different sample sizes n and n,
respectively, such that 7a/n — ¥ and n/n — ¥ for some ¥,% € (0,00), the
asymptotic power bounds (2.9) and (2.11) are the same iff

. SN2y
vy = [l & (2.24)
Thus, observations at the higher rate ||7f||2/||i7;||2 are needed by (75) to achieve,

subject to level o on J°, the same power vs. K as (7;) vs. K.

Example 2.3 Consider the standard normal P = A(0,1) and x(z) = = the
identity on the real line; x is the influence curve at P of the expectation
functional as well as of the one-sample normal scores rank functional,

5@ = [ 2 (2.25)
rQ) =2 T (14 Q) - Q(—2))) Qdz) — 20(0)  (2.26)

where ¢ = @ denotes the standard normal density, and Q(z) = Q((—oo, a:]) )

As tangents at P, consider the sign-function g;(z) = sign(z) and the func-
tion go(z) = psign(z)I(|z] < a) with p,a € (0,00). Then ||g1]] = 1 = ||x]|,
and p = p, may be determined by p;? = 2®(a) — 1 such that also ||g2]| = 1.
Then the coefficients b; = (k|g;) and ¢ = (g1|g2) are given by

bi=2¢(0), b2=2u[p(0) = p(a)], c=2u[®(a)~ ;] (2.27)

As tangent sets at P, employ the (closed) convex cone G = clG and (closed)

linear space G = ¢£G =linG spanned by the tangents g; and g5,
62{7191+’Y2g2|%20}, G={mg+7209: |7 €R} (2.28)

Via (1.3), the cone G defines a set of positively asymmetric alternatives to P.

Unconstrained minimization of ||k — v191 — 7292|| being equivalent to the
orthogonality relations 47 4+ 3¢ = b; and vic+ vy = by, the canonical gradient
is

bl—bQC _ _bg—blc
-2 71 e

K =191 + 7292 where 4, = (2.29)
In the appendix we show that 5; > 0 > 5 ; hence & € G\ G.

The constrained minimization of ||k — y191 — Yy292|| subject to v; > 0 is a
convex and well-posed problem; HR (1994; Theorem B.2.3, Definition B.2.9).
Thus there exist multipliers 3; > 0 such that the solutions 4; > 0 minimize
the following Lagrangian over 7; € R,

|k — 7191 — "/292”2 — 28191 — 28372 — const

! \ 2.30
= [71 — (b1 + ﬁ1)] + [72 — (b2 + 52)] +2cy172 ( )
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Moreover, 3;%; = 0. Since & # &, not both 3y and (; can vanish.

In case B; > 0 we obtain that ;3 = 0 and 3 = by + 35, where 33 = 0
because 327, = 0 and by > 0. Hence 72 = by and ||k — baga|]* = 1 — b3.
Likewise, if #3 > 0 we obtain that 93 = 0 and ¥; = b; 4+ 1, where 8; = 0
because (191 = 0, hence 1 = b; and ||x — b1g1||? = 1 — b3. Since by < by, it
has been proved that kK = b;g; always.

Numerical values for a = 1 are

p=1210, by = 0.798, by = 0.380, c = 0.826
71 =1.525, 7, = —0.880, ||&|* =0.882, ||&||* =0.637 (2.31)
1R : |I&[1* = 1.386, [|&]|*: |&]]* = .721

The value .721, to the third digit, turns out to be the minimum of ||/7;||2/||7i||2
with respect to a € (0,00). m

2.4 Level Breakdown of (7,)

In the setup (2.21): G = linG, the tests 7, in view of (2.13), automatically
maintain asymptotic level o on the left-sided extension H of J and J°, and H
also includes H . The analogue to (2.13), on the contrary, for the tests 7, and
the extensions H O J of J°, can in general not be achieved.

Note that

k£ Rk < g€ (klg) < (R|g) (2.32)
Proposition 2.4 Assume the convex cone G contains a tangent go such that
(klgo) < 0 < (%|go) (2.33)

Then
sup j limsup, / T d@y =1 (2.34)

Proor If (k|go) = 0, then (P7,, ) € J Vit € (0,00). In view of (2.17),

therefore, the tests 7,, have asymptotic size at least

.
supt>olimn/?n dP;, ,, =sup @(—ua + <K~|g0> ) =1 (2.35)
BN I
because limy— o ¢{R|g0) = co due to (&|go) > 0.
In case (k|go) < 0 < (R|go), a suitable convex combination gg; of go and &,
since 0 < (k|&) = ||&||?, will satisfy (k|go1) = 0 < (%|go1) - W

Example 2.5 In Example 2.3, although & # &, condition (2.33) is not fulfilled,
because b1,b3 > 0, and so (k|g) <0 can hold for ¢ € G only if ¢ =0.
But, in the setup of Example 2.3, replace tangent g, by the function

6 f0<z<a

—n ifa<ez (2:36)

(o) = ~aa(—) = {
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with a,6,n € (0,00). In the appendix we show that, given any a € (0,00), the
constants n =7, and § = §, may be determined by §, = 0,71, and

1—®(a)

-2 2 1
n, =2(0,|®(a)— 5|+ |1 —-P(a)|), Og=a————/— 2.37
(72 [®(a) — 3] + [1 - @(a)]) @
Then ||gs]| =1 and

(klgs) <0 < (g11ga) (2.38)

By the method of Lagrange multipliers, in the appendix, we prove that
k= (klg1) g1 (2.39)
where (k|g1) = 2¢(0) > 0, and so (k|gs) < 0 < (k|g91){(91l93) = (K|gs), which
implies (2.33) for go = g3. m

Making use of the following uniqueness result, confer Proposition 2.7 below, we
conclude that—contrary to the free extension of J® to J and H, vs. K, in
Theorem 2.1(b)—testing the slightly bigger null hypothesis J D J°, or the even
larger one-sided extension H of J,vs. K, is inevitably bound to larger error

probabilities than those given in Theorem 2.1(a) for J° vs. K .

) achieved by

the test sequence (7,) under K stays the same under K C K, that is, does
not increase,

Remark 2.6 The minimum asymptotic power <I>(—ua + c/||f7c|

inf ¢ lim,, / 7o dQP = <I>(—ua + ﬁ ) (2.40)

Indeed, pick any g € G such that (k|g) > 0; for example, g = K itself. Then
choose t € (0,00) such that ¢(x|g) = ¢, and apply (2.7) and (2.19).

Whether ‘b(—ua + c/||7£||) is the largest minimum asymptotic power that
can be achieved vs. ]N(, subject to asymptotic level a under H, respectively

only under J, is unknown. In particular, we do not know if there exists some
function n € La(P) of smaller norm ||n]| < ||k|| and such that, for each ¢ € G,

}IZEZBES} = (nlg) <0, (klg) >0 = (nlg) = (klg)  (2.41)

In connection with asymptotically median unbiased, two-sided confidence limits
for cones, the corresponding function 7 cannot exist; confer Subsection 3.4. sy

2.5 Uniqueness of Most Powerful Tests

In the setup of Theorem 2.1, the optimal tests 7, and 7, defined by (2.10)
and (2.12), respectively, are unique up to terms op»(n°) tending stochastically
to zero under (P").
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Proposition 2.7 Suppose that a sequence (1,,) of tests 1, satisfies (2.8), and
achieves the asymptotic power bound (2.9) in case (a), respectively bound (2.11)
in case (b). Then necessarily

- 0y [
Th = 7:” + Oopn (no) I,H case (a)’ respecmvely (242)
Tn+opr(n”) in case (b).

Conversely, form (2.41) implies that the test sequence (7,) satisfies (2.8), and
achieves bound (2.9), respectively achieves bound (2.11) and satisfies (2.13).

PrOOF Given any ¢t € (0,00) and h € Ly(P), h # 0, Eh = 0, we show
that (2.8) and

liminf liminf, [ 7, dP}, , > ®(—uqs + t||h 2.43
Jimint timint, [ 7 dPL,, 2 S(-u+tlb) (249
imply that

Tn = I(ranve?:1 h(z;) > ||h||ua) + opn(n?) (2.44)

In the proof, it is no restriction to set s =¢ = 1, and then delete s and ¢ from
notation; thus, in particular, we write P, ; ; = Py 4.
Given any § € (0,1), é < ||h||, choose g so close to h that

lg = BIP < 8%, [lg” = IAI%] <26 and |8, — Bl <8, |6, —ta] <5 (2.45)

for the norm based quantities §;, = <I>(—ua + ||g||) and ¢, = ||g||ua — %||g||2,
and such that, making use of (2.42), moreover

lim inf,, /Tn dP; , > Bn—6 (2.46)
The proof employs the following Neyman—Pearson tests 7; , for P" vs. P |
Tng =WLng >4,), Ly 4 =logdP, ,/dP" (2.47)

As the loglikelihoods L, , are asymptotically A'(—1llg||% ||g|*) under P",

)

an = /T:;g dP" — a, Bn = /T;g dP; , — By (2.48)
By (2.8), (2.44), and (2.45), some ng = ng(8) exists such that for all n > ng,
/TndP” < an, + 36, /TndP;g > Bn— 36 (2.49)
Then Lemma 4.1 tells us that, for all such n > ny and for every € € (0, 1),

. 5
|Vn,g|{|7'n_7'n,g| >6} S3(1+C§)E (2.50)

where
Vng=Pr,—cgP*,  cg=eb (2.51)
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Fix ¢ € (0,1) and set A, = {|r, — 7} ,| > ¢} . Fix any p € (0,1). Then the
probability P" (Anyg N{Lng >4, + p}) is bounded above by

1 L ¢ |¥n,91(An,g)
- - ng _ ola) gpn <« RINTTRGT 2592
eltatr) — ets /An,gn{Ln,g>£g+p} (¢ ) T ogyler—1) (252)
Likewise, P" (Anyg N{Lng <4y — p}) is bounded above by
1 / (eﬁg _ €Ln’g) dPn S |I/”yg|(A”y!]) (253)
ets —ela=p) J4  ofLna<ty—p} cg(l—e?)

Put 7, = (e"—{—l)/(e”—l) and use |£,—{3| < &, hence ¢, > e~%¢cy, to conclude
that 5

Pn(An,g) < 377/3(1 +Cg_1)7 +Pn{|Ln,g _£g| < P}

e 2.54)

) (2.

<3n,(1 +eéc}71)g + Pn{|Ln,g — 4] < P}

Asymptotic normality of L, , under P", and (2.44) ensuring ||g|| > ||A|| — ¢,
imply

. 0 0
limn P {[Lng — 6] < p} < 2920 < 9, #L0) (2.55)
9]l 1Al - ¢
It follows that, for all § € (0,1), 6 < ||h]|, and for all p € (0,1),
6
lim sup limsup,, P"(An4) < 3n,(1 + eéc,:l)f +2p #(0) (2.56)
e - 2 =5
Hence
lim limsup,, P*{|r, — 71 ,| > e} =0 (2.57)

g—»h

if we first let § and then p approach 0 in (2.55).

Furthermore, comparing the Neyman—Pearson tests 7, ; and T:yh, we get

g
Py —manl >e} S P YLy >4y, Lyp <Ly —46}
+ P{L,, <4ty Lyy > b, +46} (2.58)
+ P {|Lnn — 4] < 46}

The 3rd summand on the RHS, by the asymptotic normality of L, » under P",
satisfies

: 0
lim, P*{|L,p — £n] <46} < 85*‘;'51") (2.59)

The first two summands on the RHS in (2.57), since |£, —£3| < é, are bounded
by P”{|Ln7g —Lpp| > 36} . Invoke the loglikelihood expansion (2.14) and make
use of |||g||2 — ||h||2| < 26 in order to bound P”{|Ln7g —Lypa| > 36} by

P”{|rave’f (9 — h)(a:l)| > 26 — oPn(nO)} (2.60)
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which, in turn, is bounded by some o(n°) plus

P w (g — h)(a)| > o) < IO RIE 0 2.61
{|rave1(g— )(xl)|> }_T_(ﬁ_ (2.61)
This implies
: nfir ¢(0)
limsup, P"{|7: , — 7% 4| > ¢} §86w+6 (2.62)
hence
lin}L limsup,, P*{|7; , — 7% 4| >¢e} =0 (2.63)
9= ' '

Observe that limsup,, P”{|Tn — :7h| > 26} does not depend on g, therefore,
may be bounded by

lin}b limsup,, P*{|r, — ool > e} + Pn{h’:,g = Tonl > e}
g—?
< lim lim sup,, P”{|Tn —Thgl> 6} (2.64)
g—h ’ '
+ lin}blimsupn pn{|7-: g~ Tonl> 5}
s : :

The upper bound equals zero by (2.56) and (2.62); thus,
limsup,, P*{|r, — 7 4| > 2e} =0 (2.65)

It remains to prove that

Toh = ¥ +opa(n®) for 7F= I(rave’f h(z;) > ||h||ua) (2.66)

n

But rave h(z;) is asymptotically normal A (0,||A|?) and A(||R]|?,||R]|*) un-
der P", respectively P, so that

lim,, /T:: dP" = «a, lim,, /T:: dP,, = @ (—uq + [|A]]) (2.67)

Thus, the uniqueness result of HR (1994; Corollary 3.4.2%) applies to (1), such

that 7y =7, , + opn (n%). Altogether, (2.64) and (2.65) imply (2.43).
The converse, that (2.41) entails optimality, is obvious, as all sequences (Q7)
in HUK are contiguous to (P"). W

2.6 Invariant Tangent Cones and Spaces

Rank Functionals For the symmetry problem on the real line, one-sample
rank functionals R, are given by

R,(Q) =2 /000 Q(Q(ac) — Q(—x)) Q(dz) — /0 odXg (2.68)

% Note that o > 0 must be assumed in part (b).




ONE-SIDED CONFIDENCE ON TANGENT CONES 13

where Q(z) = Q((—oo,x]), Ap denotes Lebesgue measure on (0,1), and g is
some (scores) function in L;(Ag). Then R,(Q) is defined for every @ € M., the
set of all probabilities with continuous distribution functions. Let M,.s; denote
the subset of all symmetric P € M, (thatis, P(—z) = 1—P(z) V& > 0). Then
Ry(P) =0 for all P € M.,. A certain kind of asymmetry is defined through
nonzero values of the functional. If ¢ is nonnegative increasing, then R,(Q)) > 0
for all positively asymmetric @ € M, (that is, Q(—z) < 1—Q(z) Yz > 0);
more generally, R,(Q") > R,(Q") if Q',Q" e M., Q"(z) < Q'(z) Vz e R.

Signed Linear Rank Statistics Linear rank statistics R, are of the form
Ro = avel, sign(z:) en(r},) (2.69)

where r} . denote the absolute ranks (rank |z;| among |z1],...,|2,|), and g, (3)
are some numbers (scores). The weak condition used by Héjek and Siddk (1967,
V.1.7) to prove asymptotic normality of R, under P" (in fact, asymptotic
linearity at P) is

on([1 + ns]) — o(s) in La(Ao) (2.70

)
Given any ¢ € La(Ao), this condition is satisfied by the array 0,(7) = E o(un(;))
(based on the order statistics u,(;) of an i.i.d. sample uy,...,u, ~ Ag), by the
array 0,(i) = n [; odXg with I, = (=1, %), and the array g, (i) = g(nil)
(under a mild extra condition on g). Then, for every P € M., , the sequence
of rank statistics (R,) is asymptotically linear at P with influence curve kp,

R, = avel_; kp(z;) + op= (1 \/0) (2.71)

where

kp(z) = sign(z) (2 P(la]) — 1) (2.72)
An alternative approach imposes bounds on the growth of the derivative(s) of
the scores function g; confer Hijek and Sidak (1967; VI.5.1). These Chernoff—
Savage conditions have successively been weakened and ensure the asymptotic
normality of /n (Rn — RQ(Q,L)) , even under noncontiguous alternatives (Q7),
with R, as centering functional. Combining both sets of conditions, differen-
tiablity of R, at P € M., may be proved as in HR (1981 a; Proposition 4.1).
Thus, at every P € M., , the functional R, is differentiable in the sense of (1.4)
with influence curve the same kp given by (2.71).

Invariant Tangent Sets and Hypotheses Rank statistics R,, are not only
distribution free under the null hypothesis M, but also under suitably defined
alternatives. Let a family of sets Gp, one for each P € M., be generated by
some set Gy C La(Ag) such that

Gp={gpqs[0€G0},  gpy(x)=sign(z)q(2P(z|) - 1) (2.73)
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These sets Gp, which obviously consist of odd functions, are invariant in the
sense that the composition Gp o P™! = {go P71 | g € Gp} with the pseudo-
inverse P~!(s) = inf{z € R| P(z) > s} is the same for all P € M.,

gpoP_lz{go’q |q€go}, go’q(s):sign(s—%)q(|25—1|) (2.74)

As [gpydP = 0 and fg;q dP = fq2 dXg, the sets Gp may actually serve
as tangent sets at P € M,s. Moreover, the properties of Gy to be closed,
convex, a cone, a linear subspace of La(Ag), respectively, are each inherited to
the sets Gp in Ly(P) for every P € M,;.

Remark 2.8 Conversely, given any set Gp, of odd tangents at some Py € M.,
define

Go=1{a,|9€Gr},  a5(5)=g(F (') (2.75)

Then this set Go, via (2.72), reproduces the given tangent set Gp, at Py and
generates the following tangent sets Gp at other measures P € M.,

Gp={goP;'oP|geGn} (2.76)

where go Py ! (P(z)) = sign(z) goPy ' (P(|z])) a.e.P(dz). Note that Py 'oP is
odd and strictly increasing a.e. P. For such tranformations applied to each z;,
the vector of signs and absolute ranks is (maximal) invariant.

Positive shifts, for example, of some Py € M., which has finite Fisher infor-
mation of location and a Lebesgue density pg, lead to the tangent cone generated
by the function —(po/po) = 9gp,,q,, Where qo(s) = —(po/po) © Po_l(l‘gs), and
then gp, 4, 0 P0_1<P(£L’)) = —sign(z) (po/po) © Po_l(P(|CL’|)) a.e. P(dz). /i

Now suppose that Gy is (a) a convex cone, or (b) a linear space, in La(Xg).
For each P € M., let the hypotheses J3, Jp, Hp, and Kp about the
rank functional R, over the tangent set Gp be defined by (2.1)-(2.4). These
hypotheses are invariant as they read

Jp:1g=0, Jp:{ela)y=0, Hp:{elg)y <0, Kp:t(elg)y>c (2.77)

with reference to the tangent set Gp given by (2.72) at P € M,;. In view
of (2.7), representation (2.76) is a consequence of the following equality of scalar
products and norms in Lo(P) and L,(Ag), respectively, for the tangents of
form (2.72),

(kplo)p = (elady,  llwp —gllp = lle —dllg (2.78)

Invariant Optimality of Rank Tests As another consequence of (2.77) we
observe that the approximation of kp by ¢ € Gp is equivalent to the approxi-
mation of ¢ by ¢ € Gy. Therefore, the projection £p of kp on c{Gp in La(P)
is given in terms of the projection ¢ of g on ¢fGy in La(Xg),

kp(z) = sign(z) ¢(2 P(Je) — 1) (2.79)
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Then Theorem 2.1 is in force and yields the optimal asymptotic level « test
sequence (7, p) for J3 vs. Kp,

7o, p = I(ravel_; &p(z;) > ||ip||p ua) (2.80)

Now invoke any array of scores g,(i) that, via (2.69), are connected to §.
Employ the corresponding rank statistics R, to define the rank tests

7o = I(v/n Ry > ||6]|g ) (2.81)

independently of P € M., . Then, by (2.70), (2.71) for R, and ip, §, and by
asymptotic normality,
7A-n = 7A-n,P + opn (n0) (282)

for every P € M,,. Thus, the sequence (7,) of rank tests (2.80) is optimal
for JJ% —if Gy = linGy even for Hp —against Kp, according to Theorem 2.1.

This optimality, in the two cases (a) Gy a convex cone, (b) Gy a linear space,
holds true for every P € M, .

3 Confidence Limits

Let P be any element of P, with tangent set G C Ly(P)N {const}! | and some
constant ¢ € (0,00). Similarly to the testing whether 7(Q) > T'(P)+c/y/n , we
now consider lower confidence limits S,, — ¢/A/n for the value T'(P). Here and
subsequently, the estimator sequence (S, ) may be any sequence of estimates S,
at sample size n.

It is desirable that T(P) exceed S, —c/\/n with highest possible probability,
under the i.i.d. observations zi,...,2, ~ P. This aim, however, is not well-
defined, as shown by arbitrary estimates S, < T'(P). Therefore, some variation
of P must be taken into account, for example, by imposing a local regularity
condition on (S,) about P.

3.1 Confidence Bounds For Lower and Upper Limits

The following result, similar to Pfanzagl and Wefelmeyer (1982; Theorem 9.2.2),
requires some one-sided, respectively two-sided, asymptotic median unbiased-
ness under the local perturbations P, , of P of kind (2.5).

Qualitatively speaking, Theorem 3.1(a) bounds any ‘limit distribution func-
tion’ of \/n (Sn — T(Q)) under @ = P, subject to the upper bound 1/2 at the
origin under all @ = P,z , on the positve half-line by that of V' (0,]|%||?) from
above, and Theorem 3.1(b), subject to the lower bound 1/2 at the origin under
all Q = P, _&, in addition on the negative half-linie by that of N(O, ||f£||2)
from below; where kK = &, &, respectively. But in general, such ‘limit distribu-
tion functions’ need not exist.
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Theorem 3.1 Let (S,) be any estimator sequence.

(a) Suppose G = é, a convex cone. Assume there exists some sequence
of tangents g, € G such that gm — K In Ly(P) and, for every convergent
sequence t, — 1t in (0,00),

liminf,, liminf, P}, o {Sp > T(Pait, 4.)} > 5 (3.1)

n

Then, for every t € (0,00) and every convergent sequence t, —t in (0, 00),

limsup, P*{v/n (S, — T(P)) <t,} < ®( ) (3.2)

1]
The upper bound (3.2) is attained by the asymptotic linear estimator (S'n),
Vn (S, — T(P)) = ravel, &(z;) + opn(n°) (3.3)

which achieves (3.2) with t,, = t, uniformly in —oo < ¢ < oo, and with limsup,,
replaced by liminf, .

(b) Suppose G = G, a linear space. Assume there exist two sequences of
tangents g, g/ € G such that g/, — k, g/ — —k in Lo(P) and, for every
convergent sequence t, — t in (0,00),

liminfy, iminf, P7, . {Sn > T(Pn,tn,g;n)} >
liminfy, iminf, P}, .. {Sn < T(Pn’tn’g%)} >

(3.4)
(3.5)

D= N[

Then, for every t',t" € (0,00) and all sequences t,, —t', tI! —t" in (0,00),

limsup, P*{—t/, < /n (S, — T(P)) <t!} < cb("t;/”) - @(—“t;“) (3.6)

The upper bound (3.6) is attained by the asymptotic linear estimator (Sy),
Nz (Sn - T(P)) = ravej, kK(z;) + opn (no) (3.7)

which achieves (3.6) with t/, =¢', t]! =t", uniformly in —oco < —t' <" < o0,
and with limsup,, replaced by liminf, .

Remark 3.2 [asymptotic median nonnegative, nonpositive |

Conditions (3.1), (3.4), and (3.5), respectively, mean that—in the iterated
limit—the median of /n (Sp — T(Pn, 4)) under Py, o for n large, g ~ &,
and g & Kk, respectively, becomes > 0, and < 0 for g & —k.

Of course, if & € G, respectively & € G, conditions (3.1) and (3.4), (3.5) are
needed only for ¢, = &, respectively for g/, = ¥ and g/, = —k.

Conditions (3.1), (3.4) and (3.5), respectively, are ensured by asymptotic
median nonnegativity and nonpositivity, respectively, for every fixed tangent in
the corresponding tangent set G, in the sense of (3.46) and (3.47) below.
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ProoOF We start the derivation of the bounds simultaneously in both cases:
Fix any g € G such that (x|g) # 0, any sequence ¢, — ¢ in (0,00), and
put P, = P,,, ,. Expansion (2.6), by (1.4), holds uniformly on ¢-compacts, so

Vi (T(P,) = T(P)) = t(klg) + o(n’) = sn(klg) (3.8)
for some suitable other sequence s, = s, s, 4 — t. Thus, we obtain
Vn (Sp = T(Pn)) = Ry — sn(klg) for  R,=+vn(S,—T(P)) (3.9)

Also the loglikelihood expansion (2.14) for fixed g, due to (1.1), holds uniformly
on t-compacts. Therefore, and by mutual contiguity of (P?) and (P"),

dpm arp i o
log P = —log 0 + 0, = —travei_; g(z:) + 32 |lg|” + on (3.10)

1

where of,, o/ each are some opx(n’). By HR (1994; Proposition 2.2.12 and

Corollary 3.4.2a), the asymptotic power of any test sequence (7,) under (P"),

subject to asymptotic level a under (P7), is bounded by ®(—uq +t||g||) -
Applying this bound to the sequence of tests

Tn = IRy < sp(Klg)) = Tnt, g (3.11)
and their asymptotic level
ay = limsup, P} { R, < sn(k|g)} (3.12)
we obtain
®(—uq, + t||g|) > limsup, P"{R, < sn(xlg)} (3.13)

(a) Observe that, by condition (3.1), as g = g € G tends to & in Ly(P),
limsup oy < %, hence liminfu,, >0 (3.14)
Therefore, given é € (0,1), one can choose ¢ = g,, € G so close to & that
ey + el IR+ and  sa(ele) > (ta— OIF (3.15)
eventually. Then (3.13) implies that

limsup, P*{R, < (t, — &)||&]|*} < ®(¢||k|| + 6) (3.16)
hence

limsup, P*{R, < t,||&||*} < ®(¢||&|| + 8||&] + &) (3.17)

where assumption (3.1) has been used for the shifted sequence ¢,+8. Once more
using (3.1) for the rescaled sequence tn/||/7;||2, bound (3.2) follows from (3.17),
ifwelet 6 —0.
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(b) Starting from assumption (3.4), the proof (a) establishes the bound
limsup P*{R, < t;||&||*} < @(¢"||&||) (3.18)
for every ¢ € (0,00) and every convergent sequence t;; — " in (0,00).
In addition, given g € G and another sequence t/, — ¢’ in (0, 00), abbrevi-

ate Py 4 by Qn and choose ry =154 , — 1 to satisfy (3.8) for ().
Then, like (3.13) has been obtained for the tests (3.11), we conclude that

®(—ug, +t'||g]|) > limsup, P*"{R, > ra(klg)} (3.19)
using the tests
v = I(Ry, > rn(klg)) (3.20)

and their asymptotic level

By = limsup, Q;{Rn > rn(rlg) | (3.21)
By condition (3.5), as g = ¢/, € G tends to —& in Ly(P),
limsup g, < %, hence liminfug, >0 (3.22)
Therefore, given & € (0,1), we may choose g = ¢!/ € G so close to —& that
s+l <RI+ S and  raisle) <~ — OIEE (323
eventually. Then (3.19) implies that, for each § € (0,1),

limsup, P*{R, > —(t, — 8)||k||*} < ®(¢'||&|| + &) (3.24)
hence
limsup, P*{R, > —t,||k||*} < ®(¢'||%||) (3.25)
that is,
liminf, P*{R, < —t,||&|*} > ®(-t'||7||) (3.26)
As

limsup,, P”{—t; ||Fc||2 <R, <t ||R||2} <
limsup, P*{R, < t||&||*} - liminf, P"{R, < —t, ||&]*}
bound (3.6) follows from (3.18) and (3.26).

We shall check attainment of the bounds simultaneously in both cases:
The asymptotic linearity (3.3) and (3.7) entail asymptotic normality under P™,

(VA (80 =T(P)) ) (P") —— N (0, l1%1?) (3.27)

for S’n = Sn with & = K, respectively for Sn =S, with ¥ = k. It follows that

limy, P"{~t' < v/n (S, = T(P)) <"} = ®( " = @(—i) (3.28)

Il Il
uniformly in —oo < —#' < ¢’ < 0o, in both cases.
Verification of the regularity condition (3.1) for (Sy,), and of conditions (3.4)

and (3.5) for (Sy), is postponed to Subsection 3.3.2. /i
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Remark 3.3 In Theorem 3.1(a), the upper bound <I>(t/||7f||) on (0,00) given
by (3.2), contrary to bound <I>(t/||7i||) in Theorem 3.1(b), does not extend to a
lower bound on (—o0,0). 5
For example, given a € (0,00), consider the following modification (S,)
of (Sp),
Sp =8, V(T(P) —aj/n) (3.29)
Then, if g € G is such that (klg) > 0, and ¢, — ¢t in (0,00), it holds that,
eventually, T'(P,, 4) > T(P) — a///n . Using the asymptotic median nonnega-
tivity (3.46) of (5’”) to be proved in Subsection 3.3.2, we obtain that, eventually,

Py 480 2 T(Patag)} = PR, 480 > T(Paiag)} > 5 +0(n)  (3.30)
Under P, however, since \/n (,é’n —T(P)) = (-a) V/n (S’n - T(P)),
P {\/n (S, —T(P)) <t} =0 if t < —a

—@(II;II) if t>—a

(3.31)

The choice a = 0 is possible if the asymptotic median > 0 condition (3.46) is
required only for (x|g) > 0, instead of (k|g) > 0, which suffices for (3.1).

3.2 Uniqueness of Efficient Estimators

In the setup of Theorem 3.1(b), the optimal estimates S, , given by (3.7), are
unique, up to terms tending stochastically to zero under (PT) . On the contrary,
in the setup of Theorem 3.1(a), only the positive part (Sn — T(P))+ of the

optimal estimates (3.3) centered at T'(P), will be asymptotically unique.

Proposition 3.4 Let (S,) and (S,) be two estimator sequences.

(a) In the case of a convex tangent cone G, suppose (S’n) satisfies con-
dition (3.1) and achieves the confidence bound (3.2), with limsup, replaced
by liminf, . Then necessarily

VA (Sy = T(P)), +8pn(n°) = (ravel, (z:)),
=Vn (S, —T(P)), + 5pn(n?)
Conversely, form (3.32) of (S,,) implies (3.46) and achievement of bound (3.2).
(b) In the case of a linear tangent space G, assume (S,) satisfies condi-

tions (3.4) and (3.5), and achieves the confidence bound (3.6), with limsup,
replaced by liminf,, . Then necessarily

Vn (§n — T(P)) + 6pn(n?) = ravel, &(z;)
= Vi (S0 = T(P)) +6pa(n?)

Conversely, if (Sn) is of form (3.33), then it satisfies (3.46), (3.47), and achieves
bound (3.6).

(3.32)

(3.33)
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ProoF The proof dragws on the proofs to Proposition 2.7 and Theorem 3.1.
In case (a), let (Sp) satisfy (3.1) and achieve bound (3.2) such that, for
every constant sequence t, =t € (0,00),
limsup,, limsup,, P?, , {S‘n <T(Ppitygn)} <3 (3.1)
and 5
liminf, P*{R, < t||&]|*} > ®(t||%]|) (3.34)
where R, = /n (gn —T(P)). Fix some t, =t € (0,00) and any &, € (0,1).
Choose § € (0,t) small enough and then ¢ = g, € G so close to & that
ag<g+ba, (= )E|) + 6. > @(tllgll) > P(L||R]) — 8« (3.35)
and such that (3.15) is fulfilled, too. Recall (3.8), (3.9), and (3.12). Then
liminf, P*{ R, < s,(x|g)} > liminf, P*{R, < (t — 8)||&|]*}
} (3.36)
> ®((t = O)IFl) > @(tllgll) — ba

while 5
limsup, P}, {Rn < sn(klg)} = oy < 1 + 64 (3.37)

Therefore, the tests 7, , =1—17,,,= I(R, > s,(k|g)) given by (3.11) satisfy
limsupn/rrlw dP" < ay+ 6, < o' 428, (3.38)
liminf, / Thg AP, > 5 =6, (3.39)

where o' = ®(—t||%]|), a; = ®(—t]lg]|), and so uy = t[F|], Ug = t||g]l-
Replacing a and 3, in (2.47) by o and 3, = <I>(—ua/g +t||g||) =1/2=p,
respectively, (2.48) is satisfied by the tests 7, , and leeway 6,, in the place
of 7, and é there. Via (2.56) and (2.62), we reach (2.64). Taking already the
asymptotic equivalence (2.65) into account, where ||&||uas = t||%||?, and the
fact that the present tests are all nonrandomized, we thus obtain

lim limsup,, P"(7, , # ) =0, mr = I(ravel &(z;) > t||&||*)  (3.40)
g—R ’
The tests 7, , = I(Rn > sp(k|g)) may be compared with 7, = I(Rn > t]|&])?).
In (3.34), P" (Rn < t||17;||2) must actually converge to ®(¢||k||), and s, — ¢.
Therefore, employing the modulus wg of uniform continuity of ®, we obtain

. " Klg _
limsup, P, # ) Swathl), A= (IR ()

As limg_z Ay =0, it follows that
lim limsup,, P"(7, , # 7,) =0 (3.42)

g#l’%
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Using the triangle inequality, we deduce from (3.40) and (3.42) that
lim, P"{I(R, >1) # I(rave} &(z;) > 1)} =0 (3.43)

for every t € (0,00). Because rave} &(z;) is tight under (P7"), the difference
between the positive parts of R, and ravel K(z;) must converge to zero in
P™ -probability; confer HR (1981b), fact (3.12)—(3.13). Thus (3.32) is proved.

In case (b), we may now continue the same way as part (b) of the proof
to Theorem 3.1 proceeds after part (a). From (2.47) and (2.48) onwards, plug
the tests vy, , =1 — vy g = I(Rn < rp(klg)) given by (3.20) in the proof of
Proposition 2.7. Letting g tend to —k, one similarly obtains that

lim, P"{I(R, < —t) # I(rave] &(z;) < —t)} =0 (3.44)

for every ¢ € (0,00). This implies that also the difference between the negative
parts of R, and ravel K(z;) must go to zero in P"-probability, hence (3.33).

As for the converse, which is obvious in case (b), observe in case (a) that,
for some stochastic term o, = opx(n?), and for every ¢ € (0,0),

P (R, <t)= P (R} <t)= P (Rf <t+o,)

= P"(R} <t)+o0(n’) = P"(R, <t)+o0(n) (3.45)

where the third equality is true because the limit ®(#/||%||) is continuous in ¢ .
Thus, (Sy,) inherits the optimality from (S,).
Verification of the regularity conditions is postponed to Subsection 3.3.2.

3.3 Regularity of Efficient Estimators

The asymptotic upper bounds (3.2) and (3.6) for the confidence probabilities
derived in Theorem 3.1 seem to involve only P. The model P and its tangent
set G at P, however, enter through the regularity condition. As indicated
above, the bounds are not meaningful without such regularity conditions.

3.3.1 Modified Regularity, Asymptotic Linearity and Normality

Asymptotic Median Bias In Theorem 3.1, the regularity conditions (3.1),
(3.4) and (3.5), respectively, are certainly fulfilled if asymptotic median nonneg-
ativity, respectively nonpositivity, holds for every fixed tangent in the respective
tangent set G, in the sense that

liminf, P}, Sy >T(Past,4)} >3 (3.46)
liminf, P}, {Sy <T(Pnyt, )} >3 (3.47)

respectively, for every g € G and every convergent sequence ¢, — ¢t € (0,00).
The notion implicitly depends on P, the model P, and its tangent set G at P.

Asymptotic median unbiasedness, that is, (3.46) and (3.47), for every g € G,
is the regularity assumption by Pfanzagl and Wefelmeyer (1982; Theorem 9.2.2).
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Asymptotic Linear Estimators An estimator sequence (S,) is asymptot-
ically linear at P if there exists some function 1 € La(P) N {const}L, the
(unique) influence curve of (S,) at P, such that

N (Sn — T(P)) = ravel_, n(z;) + opn(n°) (3.48)

For example, the estimator sequences (S,) and (Sn) , in view of (3.7) and (3.3),
are asymptotically linear at P with influence curves k and K, respectively.

Asymptotic Normality The expansions (3.48), (3.8), and (3.10), of the
estimator, the functional, and loglikelihoods, respectively, imply the following
asymptotic normality extending (3.27),

(VA (S = T(Paiaa) ) (Pie,g) —— N (bt = slo) IInl?)  (3.49)

for all convergent ¢, — ¢ € (0,00), every g € G, and so, for each ¢ € [0,00),

lim, P}, AV (Sp = T(Pay,,,) <c} = <1>( W) (3.50)

limg Py, o/ (Sn = T(Paag) > =} = W) (3.51)

where of course < ¢ may also be replaced by < ¢. These convergences in

particular apply to (S,) and (Sy), with 7 = K, respectively n = &.

Asymptotic Confidence Probabilities Based on (§n) Besides (gn),
we consider any optimal estimator sequences (S,) as described by (3.32). Then,

by the asymptotic normality (3.49) of (S,), and contiguity, we conclude that,
for all convergent ¢, — ¢ in (0,00), every tangent g € G, and each ¢ € R,

P oAV (Sn = T(Pay, ) < c} (3.52)

=P, AVn (S, = T(P)) < c+t(xlg) +o(n")}
= P, V1 (Sn = T(P)), < c+t(xlg) +0(n")}
=Py, {vn (Sp — T(P))+ <c+t(klg) +opa(n®)}
=P}, {vn (Sn — T(P))+ <c+t(klg)} +o(n°)
= P11V (S = T(P)) < c+t{klg)} +o(n’)
=P, AV (Sn = T(Put,g) <c}+o(n?) (3.53)
provided that
t(klg) > —c (3.54)

In (3.52)-(3.53), we may replace < by <, hence by any inequality sign. _
Thus (3.50) and (3.51), using —c instead of ¢, extend from (S,) to (Sy).
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3.3.2 One-Sided Regularity of (S,), (§n)
Let ¢ =0, as in the regularity assumptions of Theorem 3.1.

Regularity of (S,): For 7=k, since (k— k[g) =0 Vg € G, the two limits
in (3.50) and (3.51) are always 1/2. Hence (S,) is asymptotically median
unbiased, for each ¢ € G. In particular, (S,) satisfies conditions (3.4) and (3.5).

Regularity of (S,), (S’n) For n = &k, since t > 0 and (k—«|g) > 0 Vg € g,
the limit in (3.50) is always < 1/2 (it is = 1/2, e.g. for® ¢ =0,%).

Thus, (gn) satisfies the asymptotic median nonnegativity condition (3.46),
for every g € G, hence, in particular, (gn) fulfills condition (3.1).

If (§n) satisfying (3.32) is another optimal estimator sequence, (3.52)—(3.54)
apply with ¢ = 0, hence asymptotic median nonnegativity (3.46) of (S’n) is
inherited to (§n), for every g € G such that (k|g) > 0. This suffices to fulfill
condition (3.1), because (k|&) = ||&||* > 0, and so eventually (k|g,) > 0 for

any tangents g, € G approaching .

3.3.3 Positive Median Bias of (S'n) R (§n)

For ¢ = 0 and n = &, the limit in (3.51) (= 1/2 for ¢ = 0,k) in general
falls below 1/2. We shall prove this for any estimator sequence (§n) which is
optimal in the sense of Theorem 3.1(a). Consequentially, all these estimators
violate asymptotic median nonpositivity (3.47). The result corresponds to the
level breakdown encountered in Subsection 2.4.

Proposition 3.5 Let é be a convex tangent cone such that
R#K (3.55)
Then there is some tangent go € G such that (k|go) > 0 and
infysolimp P2, o {Sn < T(Pat,.90)} =0 (3.56)
for all estimator sequences (S’n) of kind (3.32).

ProoOF If K # K there is some tangent g € é such that

(klgo) < (|g0) (3.57)

Then, for ¢ =0 and = &, (3.51) implies

infysolimn P2, o {Sn < T(Pas

,t,90 n,J0

)} = in @(—W) =0 (358

5 In Subsections 3.3 and 3.5, the choice g = & stands under the provision that % € G.
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But gy may always be chosen such that, in addition to (3.57),
0 < (klgo) < (|g0) (3.59)

If necessary, pass to a suitable convex combination gg2 of go satisfying (3.57)
and &, in order to achieve (3.59).

Then the arguments (3.52)—(3.54) go through, with ¢ =0, and with < in
the place of < . Thus the positive asymptotic median bias (3.56) carries over
from (§n) to all estimator sequences (gn) satisfying (3.32). /i

Remark 3.6 The result implies that bound (3.2) cannot possibly be achieved
if, in addition to (3.1), asymptotic median nonpositivity (3.47) is imposed (for
all g € G, or only all ¢ € G such that (k|lg) > 0). In particular, asymptotic
median unbiasedness cannot be afforded if bound (3.2) is to be attained.
Consequentially, Theorem 9.2.2 of Pfanzagl, Wefelmeyer (1982) for (closed)
convex tangent cones G is ailing in two respects: First, since —g ¢ G in
general and —% ¢ G in particular, their bound of form (3.6) for two-sided
confidence limits, with & in the place of &, is not available over cones, but
only bound (3.2) for lower confidence limits. Second, the regularity condition
is too strict: Even the one-sided bound (3.2), let alone the asserted two-sided
extension, may not possibly be achieved by any asymptotically median unbiased
estimator sequence. /i

3.4 Comparison of Cones and Spaces

Variance and Sample Size Recall the setup of Subsection 2.3: P € P C P,
with tangent set a convex cone G, respectively the linear span (2.21): G = linG .

Then, in view of the asymptotic normality (3.27), the previous compari-
son of ||%]|? and ||%||* now concerns the variances ||%||*/n and ||&||*/n of the
approximating normal distributions of S, — T(P) and S,, — T(P), respectively.

Thus, the value T'(P), in terms of variance or width of confidence intervals,
can be estimated under P" more accurately in model P with tangent set G
than it is possible in the larger model P with tangent set G. Observations at
the higher rate n/f — ||k||%/||%||> are needed under P to estimate T'(P) with

the same asymptotic accuracy by Sz as by S . Again Example 2.3 applies.

Lower Confidence Limits for Spaces The preceding comparison does not
explicitly take the different sets of regularity assumptions into account: in the

case of (S,), it is condition (3.1), and conditions (3.4), (3.5) in the case of (S,).

However, in the case of a linear tangent space G, suppose we dispense of
condition (3.5) and, keeping (3.4), wish to maximize the asymptotic confidence
probability merely of the sequence of lower confidence limits S, —c//n of T(P),

under (P™). In particular, the statistical task seems to be made easier.
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Nevertheless, the previous upper bound <I>(c/||i7;||) established under Theo-
rem 3.1(b), with t/, = ¢ = oo, does not increase, and (S,) remains an optimal
estimator sequence. This is true, simply because G is a convex tangent cone,
to which Theorem 3.1(a) may be applied.

Thus, under condition (3.4), asymptotic median nonpositivity (3.47) for G,
as well as the maximization, subject to (3.5), of the asymptotic confidence
probability under (P") of the sequence of upper confidence limits S, + ¢/\/n

for T'(P), come free with (S, ), which achieves the corresponding upper bound,
which is ®(c/||%||) again.

Two-Sided Confidence Limits for Cones In the case of a convex tangent
cone G, suppose we want to maximize the asymptotic confidence probability
under (P™) of the sequence of lower confidence limits S, —c/A/n of T(P), as in
Theorem 3.1(a), but insist on asymptotic median unbiasedness, that is, (3.46)
and (3.47) for every g € G. As (3.46) and (3.47) imply (3.1), the statistical task
is made more difficult, and one expects the upper bound ‘1>(c/||f7;|| ) to decrease.
According to Proposition 3.5, it must strictly decrease if & # K.

We clarify the amount of decrease, at least in the class of estimator se-
quences (Sp) which are asymptotically linear at P. For such an estimator with
influence curve 1 at P, the lower/upper confidence limits S, F cA/n satisfy

lim,, Pn{\/ﬁ (Sn - T(P)) < c} = cI>(||Tcy||) (3.60)

= lim, P*{\/n (S, —T(P)) > —c}

Under local alternatives, in view of the limits (3.50) and (3.51) for each g € G,
(Sp) is asymptotically median unbiased iff (n|g) = (k|g) Vg € G, which holds
if and only if

(nlg) = (xlg) ~ Vg € ctlinG (3.61)

Introducing the projections & of k, and 7 of 5, on cfliné, 7 must equal K.
But, subject to 7 = kK, the asymptotic confidence probability <I>(c/||77||) is
maximized iff ||n|| is minimized, which is the case iff n = k.

Therefore, in the class of estimator sequences which are asymptotically linear
at P, the unique solution is the estimator sequence (S, ) with influence curve .
And the achievable upper bound decreases from ®(c/||%||) to ®(c/|k||)-

So the answer to the corresponding (open) question raised for testing in
Remark 2.6 turns out negative in the estimation context.

In addition, in view of (3.60), the upper confidence limits S, +c/\/n of T(P)
supplied by (S,) have the same asymptotic confidence probability <I>(c/||7i||)
under P" as the lower confidence limits S, — c¢/A/n. And the two-sided
bounds S, F c¢//n, in view of (3.62) below, maintain their asymptotic con-

fidence probability for T' even under local perturbations P, ;4 of P, g €G.
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3.5 Local Behaviour of Efficient Confidence Limits
3.5.1 Confidence Probabilities Under Perturbations

Given ¢ € (0,00), we study the two sequences of lower/upper limits SnFeh/n
and S, F ¢/y/n under local perturbations Phyt g of P.

Stability of Confidence Limits Based on (Sn) For n = k, the two limits
in (3.50) and (3.51), since (kK — k|g) =0 Vg € G, are always the same,

limp Py, o {v/n (Sn = T(Pnt,g) <c} = Cb(ﬁ) (3.62)

= lim, P2y {v/n (Sn = T(Pay, ) > —c}

for every convergent sequence ¢, — ¢ in (0,00), every g € G, which reveals
some stability of the lower/upper limits based on (S,).

]

Instability of Confidence Limits Based on (S,), (S,): For 5 =&, the
limits in (3.50) and (3.51) are, respectively,

lim, P2, AVA (Se = T(Pas, ) <c}= c1>( W) (3.63)

¢+ t(k — rlg)
1] )

Under-Coverage by Lower Confidence Limits The limit (3.63) is al-
ways < <I>(c/||7i||) , since t >0 and (K —k|g) >0 Vg € G ; the upper bound is
achieved, e.g. for ¢ = 0,%. In general, e.g. for go taken from (3.59), the limit
in (3.63), with < ¢ in the place of < ¢, may become arbitrarily close to 0 as

infisolimn PPy, {V/n (Sn — T(Patg)) <c} =0 (3.65)

In view of (3.52)(3.54), (3.63) for ¢(k|g) > —c extends to (S,), hence (3.65).
Obviously, (3.65) generalizes (3.56).

limg Py, v/ (Sn = T(Paag) > —c} = (3.64)

Over-Coverage by Upper Confidence Limits The limit in (3.64) is
always > ‘1>(c/||f£||) ;and = <I>(c/||f£||) e.g. for ¢ = 0,k. In general, e.g. for g
taken from (3.59), the limit in (3.64) may become arbitrarily close to 1,

Sup, 5 o limn By 5, { v/ (Sn = T(Page) > —c} =1 (3.66)

In view of (3.52)—(3.54), with —c in the place of ¢, (3.64) extends from (§n)
to (§n) of form (3.32), provided that t(k|go) > ¢, and hence also (3.66).

The degenerate limits (3.65) and (3.66) indicate an instability of the lower
and upper confidence limits based on (§n), which is not accounted for by the
criterion maximized in Theorem 3.1(a) merely under (P"), nor by the (only
one-sided) asymptotic median nonnegativity conditions (3.1) or (3.46).
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3.5.2 (§n), (gn), (gn) in the Light of the Convolution Theorem

Superefficiency The convolution theorem by van der Vaart (1998; Theo-
rem 25.20) states the lower bound ||&|[* for the asymptotic variance, which is

attained by (S,) in (3.27), but which seems to contradict the smaller asymptotic

variance ||&||? of (Sn) in (3.27), in case (3.55): kK # &.

H&jek—Regularity This convolution result concerns the asymptotic variance
of estimator sequences (S,) which are Héajek-regular. (S,) is called Hajek—
regular at P, for the functional 7', along the tangent set G, if there is some
(limit) distribution M such that, for every g € G and t, — ¢ in (0,00),

(VA (S0 = T(Pain) ) (P, ) —— M (3.67)

If (S,) is Hajek-regular with limit M, then M(0,00) > 1/2 implies asymp-
totic median nonnegativity (3.46), M (—o0,0) > 1/2 implies asymptotic median
nonpositivity (3.47), and M (0,00) = 1/2, M({0}) = 0, implies that (S,) is
asymptotically median unbiased.

Héijek—Nonregularity Contrary to (Sy), whose limit distribution in (3.49)

is always N(0,||[|?), hence is Héjek-regular, the limit distribution of (.S,)
in (3.49) clearly does depend on the particular (¢, g) € (0, 0) XG . Therefore, the
estimator sequence (S’n) is not Hajek-regular. As (3.63), (3.65) with ¢ € (0, 00)
also hold for (gn) and g = 0, respectively for the tangent go taken from (3.59),
neither estimator sequence (§n) which is optimal in the sense of Theorem 3.1(a)
can be Hajek-regular, unless k = k.

4 Appendix

4.1 Projection—Generalities

Let ‘H be a Hilbert space—for example, H = Ly(P)—and fix some « € H.
If G is a closed linear subspace of H, the orthogonal projection k € G of &
on G, and unique element of G closest to x in norm ||.||, is characterized by

(k—Klg)=0 Vgeg (4.1)

If G is a closed convex cone in H, the projection & € G of k on G, that is, the
unique element of G closest to & in norm ||.||, is characterized by

(k%) = |IRII*,  (klg) < (Rlg) Vg€ (4.2)

If G is an arbitrary nonempty closed convex subset of H, the unique minimum
norm element ¢ of G is characterized by

lgII” < (glg) Vg €G (4.3)
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These facts are well-known; see, for example, Proposition 4.2.1 in Pfanzagl and
Wefelmeyer (1982). (4.3) may be proved by differentiation at s = 0 of the func-
tion ||((1—s)g + 5g)||2, which is convex in 0 < s < 1, for any g € G. Passing
to k — G and using the structure of cones, (4.2) may be derived from (4.3).
Using —G = G for the linear space G, (4.1) follows from (4.2).

4.2 Projection—Examples
ad Example 2.3: Recall (2.27) and (2.29). Then
71 >0 < b1 >bic <= ©(0) — p(a) < ¢(0) (4.4)
Introduce the function r(a) = [¢(0) — ¢(a)] /[2®(a) — 1] . Then
Yo <0 <= by < bic <= r(a) < ¢(0) (4.5)
However, ¢(0) = lim,_. r(a) and lim,)or(a) = 0 (de 'Hospital). Moreover,

ia) > 0 <= ¢(0) - (a) < a[@(a) - 3] (46)
But

0 -p@= [ s <a| ple)dr=ale@-}]  @7)
0 0
Also by < by, since by < byc and ¢ < 1 (Cauchy-Schwarz).

ad Example 2.5: Recall b5 = (k|g1) = 2¢(0) from (2.27), g3 from (2.36),
and put b3 = (k|g3), ¢ = (g1]93) . Set o = 8/n. Then

1= lgall” = 20*(0*[®(a) — }] + [1 — ®(a)]) (4.8)
As %bg} = 6[90(0) — go(a)] —ny(a), we have
by <0 <= o [p(0) — p(a)] < p(a) (4.9)

And as ic = 6[®(a) — 1] — n[l — ®(a)], we have

c>0 < o[®(a)— 3] > [1 - ®(a)] (4.10)
But -

a[l — ®(a)] < / zo(z)dz = p(a) (4.11)
e (0) - ¢(@) (0) - p(x)

©(0) — p(a p(a) — (oo

®(a) — 0(0) = ®(c0) — @(a) (4.12)
imply

¢(a) 1 — ®(a)

©(0) — ¢(a) >0 ®(a) — ®(0) (4.13)

for o = 0, = a[l — ®(a)]/[¢(0) — ¢(a)] . Then (4.8) defines us 1 =7, .
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As b3 < 0 < ¢, by, the coefficients of the projection & on G = (cf)lin{gy, g2}
satisfy 41 > 0 > 43; confer (2.29). Therefore, K # the projection £ on the
(closed) convex cone G generated by g¢; and g3, and so ||&]| < ||]|.

In minimizing the Lagrangian corresponding to (2.30), we can again rule out
that both multipliers vanish. If 3 > 0 then 93 = 0 and 73 = b3+ 33 > 0.
As b3 < 0, necessarily 33 > 0, hence y3 = 0 as 373 = 0, which leads to an
approximation error of ||[x — 0||*> = 1. This is worse than the error obtained
under the assumption that F3 > 0. For in this case, y3 =0 and 91 = b1 + (1
where #; = 0 due to $;7; = 0 and b; > 0. Hence 9; = b;, and the error
amounts to ||k —b1g1]|* = 1 — b3 < 1. Altogether, this proves that & = byg; .

4.3 Approximate Uniqueness

Given two probabilites P and () on some sample space, let

(4.14)

. [1 if dQ > cdP
T 70 if dQ < cdP

be a Neyman-Pearson test for P vs. @ with critical value ¢ € [0,00] (and
possibly nonconstant randomization if d@ = c¢dP). By |v.| we denote the total
variation measure of dv, = d@Q) — cdP.

Lemma 4.1 Consider any test T for P vs. ) such that, for some § € (0,1),

/rdpg/r*dp+5, /TdQZ/T*dQ—(S (4.15)

Ve >0 (4.16)

Then 5

wl{lr = > e} (140’
ProoOF Choose any dominating positive measure p and densities p, ¢ such
that dP = pdu and d@ = q¢dp. Then dv, = (¢ — ¢p) dp and, by Rudin (1974;
Theorem 6.13), d|v.| = |¢ — ep|dp. Since [(7* —7)dv, < (1+4¢)6 by (4.15),
and (7" —7)(¢ —cp) > 0 a.e.p, we have

/Ir* — 7| d|ve| =/(T* —7)dv. < (1+c¢)8 (4.17)

Via the Chebyshev-Markov inequality, this proves (4.16). /i

Acknowledgement I thank Peter Ruckdeschel for assistance and numerical
computations.
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