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Reducing Size Distortions of Parametric Stationarity Tests
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Abstract

The use of asymptotic critical values in stationarity tests against the al-
ternative of a unit root process is known to lead to overrejections in finite
samples when the considered process is stationary but highly persistent.
We claim that in recent parametric tests this is caused by estimation er-
rors which result when the autoregressive parameters used to describe the
short-run dynamics of the process are replaced by estimators. We suggest
a modification that corrects for these errors and show by simulation that
the modified test works reasonably well when the persistence is moderate
and there is no time trend in the model. An empirical illustration with

inflation rate data is provided.
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1 Introduction

The problem of discriminating between a stationary process and a unit root or so-
called I(1) process has received considerable attention in the recent time series and
econometrics literature. Unit root tests based on the null hypothesis of an I(1) pro-
cess have been used extensively for this purpose since the early eighties and during
the last few years the more recent tests based on the opposite null hypothesis of sta-
tionarity have also gained popularity. By now, several stationarity tests are available.
They include the tests proposed by Kwiatkowski, Phillips, Schmidt, and Shin (1992),
Saikkonen and Luukkonen (1993), Choi (1994), and Leybourne and McCabe (1994,
1999) to mention a few. The tests of Saikkonen and Luukkonen (1993) and Leybourne
and McCabe (1994, 1999) are parametric and derived in the context of autoregressive
integrated moving average (ARIMA) models whereas the tests of Kwiatkowski et al.
(1992) and Choi (1994) are similar semiparametric tests. A problem with all these
tests is that they are asymptotic and the use of asymptotic critical values can cause
serious size distortions when the considered process is stationary but highly persistent.
The simulation results of Saikkonen and Luukkonen (1993) were already indicative
about this and recently the problem was pointed out very clearly by Caner and Kilian
(1999) for the tests of Kwiatkowski et al. (1992) and Leybourne and McCabe (1994).

The purpose of this paper is to develop a modification of the parametric tests
of Saikkonen and Luukkonen (1993) and Leybourne and McCabe (1994). The mod-

ification is developed in the framework of Leybourne and McCabe (1994) and its



application requires that the least squares estimation used to compute the test statis-
tic in that paper is replaced by a Gaussian maximum likelihood (ML) estimation of
an auxiliary regression model with moving average errors and nonlinear multiplica-
tive constraints between the regression coefficients and moving average parameters.
Thus, compared with the original test, the required computations are clearly more
involved but, as will be seen, the gains achieved in the finite sample size performance
are substantial. The modified test works reasonably well when the persistence of the
considered series is moderate but even it has difficulties to maintain its size when the
persistence gets very high. This, however, is expected because stationary but highly
persistent series can be modeled by nearly integrated processes whose long-run prop-
erties are closer to those of I(1) processes than stationary processes. Although our
modification reduces size distortions in a model without a time trend, a disappointing
finding is that this does not occur in a model with a time trend.

The plan of the paper is as follows. Section 2 introduces the considered stationarity
tests and develops the modified test. Section 3 presents results of a simulation study
which show the advantages of the modification. Section 4 provides an empirical
illustration with inflation rate data from thirteen OECD countries. Finally, Section

5 concludes.



2 Test Procedures

The stationarity tests to be considered in this paper can be motivated by the simple

model

t
yt:lj’+2nj+8t7 til,...,T, (1)

Jj=1

where g, ~ NID (0,0%) and 7, ~ NID(0,07). Assuming that the sequences ; and
7, are mutually independent, Kwiatkowski et al. (1992) and Leybourne and McCabe
(1994) derived a locally best invariant unbiased (LBIU) test for the null hypothesis
0727 = 0 against the alternative Jf} > (. Thus, under the null hypothesis the observed
series is generated by Gaussian white noise while under the alternative it contains a
nonstationary random walk component. As is well known, model (1) is distribution-

ally equivalent to the ARIMA(0,1,1) model
1=L)y=Q0-0L)¢, 0<0<T1, (2)

where L is the usual lag operator, that is, Ly, = 31 and ¢, ~ NID(0, 0%) with o7 =

o2 /8. Moreover, the parameter 6 is related to o according to § = (7‘ +2— (124 4r)Y 2) /2

2:

where 7 = 07 /02. This means that the null hypothesis o7

0 is equivalent to the
moving average unit root hypothesis # = 1 in (2). This fact provides another possi-
bility to obtain a stationarity test, as noticed by Saikkonen and Luukkonen (1993)
(see also Tanaka, 1990). The LBIU test developed by these authors for the moving
average unit root hypothesis § = 1 can also be obtained from model (1) by defining
n; = (1 —0)ej_1 and g9 = 0. In this approach there is thus a perfect linear depen-

dence between the two sequences 7, and e;. Despite this difference, the LBIU test
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obtained in this framework is based on the same test statistic as the test based on
the mutual independence assumption of the sequences 7, and ;.

The practical usefulness of models (1) and (2) is rather limited because, under
the null hypothesis, no short-run dynamics are allowed. Therefore, various extensions
of the stationarity tests initially derived for these models have been devised. These
extensions differ in the way the short-run dynamics are taken into account. A non-
parametric approach was employed by Kwiatkowski et al. (1992) while Saikkonen
and Luukkonen (1993) and Leybourne and McCabe (1994) used a parametric ap-
proach. In this paper we only consider the parametric approach which in the above
mentioned papers was implemented in two different ways. Saikkonen and Luukkonen
(1993) generalized the error term ¢, in (2) to a stationary and invertible ARMA pro-
cess while Leybourne and McCabe (1994) added a finite number of lagged values of y,
to the right hand side of model (1). The latter approach may be more attractive from
a practical point of view because the short-run dynamics are modeled by a simple
autoregressive model. This approach will also be used in this paper. This is partly
because of its simplicity but also because tests based on it had somewhat better size

properties in preliminary simulation experiments. Thus, we extend model (1) to

t

¢(L)ytzﬂ+znj+€t7 tzlv"'vTv (3)
j=1
where the lag polynomial ¢ (L) =1 — ¢;L — --- — ¢,LP has all its roots outside the

unit circle. Instead of model (2) we now have

¢(L)A=L)yy=(1—-0L)¢, 0<O<1. (4)
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Thus, under the null hypothesis 0'% =0 or 6 = 1 the observed series is generated by a
stationary AR(p) process while under the alternative a nonstationary ARIMA(p,1,1)
process applies.

As far as the subsequent stationarity tests are concerned, one can assume that in
(3) the processes 7, and &; are either totally independent or 7, = (1 — 6) &1 with
go=0(t=1,2,...). With the former assumption the model and stationarity test of
Leybourne and McCabe (1994) are obtained. If the latter assumption is made the
model becomes equivalent to that used by Saikkonen and Luukkonen (1993) except
for the treatment of initial values in the short-run dynamics. Since the treatment of
such initial values has no effect on the asymptotic properties of the related stationarity
tests the test procedures to be described below can also be seen as asymptotically
equivalent alternatives to the corresponding test of Saikkonen and Luukkonen (1993).

A stationarity test based on model (3) can be obtained by first replacing the lag
polynomial ¢ (L) by a consistent estimator ¢* (L) = 1—¢]L—---—¢, LP, say, and then
proceeding in the same way as in the simple model (1) with y; replaced by ¢* (L) y;.
As explained by Saikkonen and Luukkonen (1993) and Leybourne and McCabe (1994)
the consistency of the test requires that the estimated lag polynomial ¢* (L) is not
based on the null model. Therefore, ¢* (L) is obtained by estimating the parameters

of the ARIMA(p,1,1) model (4) by ML. The next step is to construct the series

p
UZ:yt—Zéb;yt—ja t:p+177T7
j=1

and its demeaned version &, = u;—u* (t = p+1,...,T) wherew* = (T — p) ™" 1 U



The test is then based on the test statistic
S =&Vr_,2/(T — p)*5? (5)

where & = [£,41...87], 62 = &'2/(T —p), and Vy_, is a (T — p) x (T — p) matrix

[

with the ijth element equal to the minimum of ¢ and j. Under the null hypothesis,
g d [! 2
g -4, / [B(r) —rB (1)) dr (6)
0

where B (r) is a standard Brownian motion and consequently B (r) — rB (1) is a
standard Brownian bridge (see Leybourne and McCabe, 1994). Large values of the
test statistic are critical. Critical values can be found in Kwiatkowski et al. (1992).
A problem with the above test is that the asymptotic null distribution given
by (6) can provide a poor approximation for the actual finite sample size, as the
recent simulations of Caner and Kilian (1999) demonstrate. Poor size performance
occurs when the lag polynomial ¢ (L) has a root close to unity. This is intuitively
understandable because then the observed series is close to an I(1) process even under
the null hypothesis. However, for a series of one hundred observations or so rather
serious size distortions occur even when the roots of ¢ (L) appear to be reasonably
far away from unity. For instance, it will be seen in the next section that in the case
p = 1 parameter values like ¢; = 0.6 — 0.7 are already difficult. This is unfortunate
because such parameter values are relevant in many applications where the test is
used to discriminate between a stationary but rather persistent series and an I(1)

series.



In the simple special case (1) the asymptotic null distribution of test statistic S is
known to provide a good approximation for the actual finite sample distribution. This
implies that the reason for the poor size performance of the test is that estimators
are used in place of the unknown parameters in the lag polynomial ¢ (L) or that the

series u; = ¢ (L) y; is replaced by u;. To see this, write

up = — D (95 — 6;) U (7)

j=1
and assume that the null hypothesis holds. When the process y; is persistent its
variation is large and, even though ¢; — ¢; converges to zero in probability, the
second term on the right hand side of (7) can have a substantial effect on the series
u; and hence on the finite sample distribution of the test. A fairly obvious way to
allow for the estimation errors on the right hand side of (7) would be to base the
test statistic not on & but on the least squares residuals of a regression of u; on
an intercept term and y;_1,...,%_p. This, however, destroys the power of the test
because under the alternative both uy and v, are affected by the same random walk
component. This implies that even in large samples the above mentioned least squares
residuals behave like a stationary series and not like an I(1) series as assumed by the
test. (A similar argument actually explains why the estimator ¢* (L) cannot be based
on the null model.) To overcome this difficulty, we shall replace (7) by an alternative

representation which makes use of the well-known decomposition

¢(L)=¢(1)+¢(L)(1-L)



p—1
=0

where ¢ (L) = @, L7 with p; = >7_; | ¢;. Using this identity we can write

- i(aﬁ Lo = (6 (L) — (L) é() (1) ®)

j

= B(L) Lo (L) — B (L) Lp (L) A
where A=1—Land (L)L = (¢* (L) — ¢ (L)) /¢ (1). A more explicit expression of
B (L) is given by B(L) = YF_, B,L7 " = 34 $ (1)~ (¢; — ¢;)L7"". Now, denoting
wy = Yi_y 1;+& we have ¢ (L) y = ug = p+w; and it follows from (8) that equation

(7) can be written as
u; =v — B (L) (L) Ay1 + wi + B (L) w— (9)

where v = p+ (1) p. Thus, we have obtained a regression model for the residual
series uf. The parameters in this regression model are not parameters in the usual
sense, though, because they depend on the estimation errors gb;‘- — ¢; and are therefore
random variables which converge to zero in probability as the sample size tends to
infinity. The regressors consist of an intercept term and lagged values of the differences
Ay;. The errors are autocorrelated and follow a conventional pth order moving average
process under the null hypothesis. However, under the alternative the innovations of
this moving average process contain the same random walk component as the previous
models (1) and (3). There are also multiplicative constraints between the regression
coefficients and the parameters of the error process.

An important feature in the regression model (9) is that, instead of lags of the

levels y;, the regressors include lags of the differences Ay, which are stationary whether



the null hypothesis is true or not. Therefore, the regressors in (9) cannot explain the
I(1) type nonstationarity of the regressand which occurs under the alternative. This
implies that no serious loss of power should result from using model (9) to allow for the
estimation errors caused by replacing ¢ (L) y; in (3) by ¢* (L) y;. Asymptotically the
regression model (9) reduces to (3). Thus, our idea is to estimate the parameters in
(9) and use the resulting residuals instead of £, to construct a modified version of test
statistic S. We assume that the null hypothesis holds and estimate the parameters
in (9) by ML. Since w; = &; under the null hypothesis this amounts to using ML
to estimate parameters of a regression model with Gaussian moving average errors.
Since the lag polynomial 3 (L) ¢ (L) is of order 2 (p — 1) model (9) is considered for
t=2p+1,...,T in this estimation and the multiplicative constraints between the
regression coefficients and the moving average parameters are taken into account. In
the special case p = 1 we have 3(L) = 3, and ¢ (L) = ¢,, and there is no need
to take these constraints into account because no reduction in the dimension of the
parameter space is achieved. To illustrate the constraints in the general case, suppose

that p = 2. Then equation (9) becomes

up = v— B1pgAys 1 — (51‘101 + 52900)Ayt,2 — Bop1Ay;3

+wy + Brwi—1 + Bowi—o

demonstrating that by taking the constraints into account the number of parameters
is reduced by one. In general the reduction is p — 1.

Now, let &, (t =2p+1,...,T) be the residuals from the ML estimation described

10



in the preceding paragraph. Our modified test is based on the test statistic
S = E'Vr_,8/(T — 2p)*5? (10)

where & = [Fopy1...27) , 62 = EE/(T — 2p), and Vr_g, is a (T — 2p) x (T — 2p)
matrix with the ijth element equal to the minimum of ¢ and j. As will be discussed
below, test statistics S and S have the same limiting distribution under the null
hypothesis. However, one would expect that the modification improves the accuracy
of the asymptotic approximation because the residuals &; are obtained by modeling
the estimation errors in the series u; whereas the residuals €; are directly affected
by these estimation errors. On the other hand, the modification should not destroy
the power of the test because under the alternative hypothesis the residuals &; should
behave like an I(1) series.

We shall not prove in detail that the limiting null distribution of test statistic
S is the same as that of S but only briefly indicate how a proof can be obtained.
First, one needs to establish the consistency of the ML estimators of the intercept
term and the parameters in the lag polynomials 3 (L) and ¢ (L) in (9). This can be
done by following the arguments in Hannan and Deistler (1988, Chapter 4.2) which
also apply to models with multiplicative parameter constraints of the type in (9).
After the consistency has been established the limiting distribution of test statistic
S can be obtained in the same way as in the previous similar cases in Saikkonen and
Luukkonen (1993, 1996) and Leybourne and McCabe (1994). In particular, one can

follow the proof in Saikkonen and Luukkonen (1996) where the authors derive the
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limiting distribution of a moving average unit root test in a regression model with
ARMA errors. Although the regressors were assumed to be strictly exogenous in that
paper similar arguments apply in the case of model (9) and give the desired result.

We wish to emphasize that the parameters in (3) and (9) are supposed to be es-
timated by (exact) ML (with Ays,..., Ay, treated as constants in (9)). As pointed
out by Leybourne and McCabe (1999), ML procedures in programs such as GAUSS
and SHAZAM have no difficulty in fitting model (3) with # = 1. However, our ex-
perience with the GAUSS-ARIMA procedure is that it is not uncommon that the
algorithm fails to find a global maximum of the likelihood function. Therefore, care
is needed to ensure that a global maximum of the likelihood function is found when
model (3) is fitted. A more detailed discussion of this point along with some practical
recommendations will be given in the next section.

We close this section by noting that the above modification can also be used in a
model with a linear time trend. Then a linear time trend also appears in model (9)
but otherwise the modified test is obtained in the same way as before (cf. Leybourne
and McCabe, 1994). However, we will not give details of this modification because
simulation experiments showed that its size performance is more or less the same as
that of the original test. Reasons why the modification does not help in this case
are not clear to us. However, as will be explained in the next section, the estimation
of the parameters of the auxiliary regression model (9) gets unreliable when the lag
polynomial ¢ (L) has a root close to unity and, due to the large variation of the trend

variable, the effect of the resulting estimation errors on the modified test may be
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much larger in a model with a trend than in a model without a trend.

3 Simulation Study

In this section we provide Monte Carlo simulation results to illustrate the finite sample
performance of the original and modified stationarity tests. Although the modification
seems to correct for overrejection in a model with no time trend, no such improvement
is detected in a model including a time trend, as mentioned above. Therefore, the
results for the latter case are not reported. This finding is somewhat discouraging, but
on the other hand, in that case the overrejection problem is not nearly as severe as in
the case with no time trend. All results are based on only 1,000 replications because
the estimation involved in computing the value of the test statistic is computationally
burdensome (see below). For judging the results, it may be worth taking into account

that the standard error of an estimator of a true rejection probability P based on

1,000 replications is \/ P (1— P)/1,000. Hence, for significance levels P = 0.01, 0.05
and 0.1, the two-standard-error confidence intervals are [0.007,0.013], [0.043,0.057]
and [0.091, 0.110] , respectively.

As Caner and Kilian (1999) recently pointed out, the choice of starting values
in the (exact) ML estimation of the parameters of the ARIMA model (4) has a
large effect on the behavior of test statistic S because with inappropriate starting
values a global maximum of the likelihood function is not likely to be found. These
authors followed Leybourne and McCabe (1994) in selecting the initial value for the
moving average parameter # on a grid ranging from 0 to 1 with the autoregressive

13



parameter(s) fixed at # — 0.1, but in addition, they also included the default starting
values provided by the GAUSS-ARIMA routine among the candidate starting values.
Instead of keeping the initial values of the autoregressive parameters fixed, we consider
generalized least squares (GLS) estimators based on model (4) with the value of 6
varying over a grid from 0 to 1. For each set of starting values obtained in this way
the parameters of model (4) are estimated by ML and the value of the likelihood
function is computed. After this, estimates maximizing the likelihood function are
selected. It turned out that with fixed starting values of the autoregressive parameters
the algorithm often fails to find a global maximum of the likelihood function, while
our procedure involving the initial GLS estimation does find it.

Our experimentation with different ways of selecting the starting values suggests
that for the size properties of the modified test statistic S finding good starting
values is not equally critical. If the largest root of the lag polynomial ¢(L) is not very
close to unity, the real size of the modified test is not much affected by the choice of
starting values. Still, the empirical size is always closest to the nominal size if the GLS
estimation described above is used, especially for highly persistent processes. Hence it
may be advisable to employ that procedure despite the fact that it is computationally
burdensome. The exact ML estimation of the parameters of model (9) did not seem
so sensitive to the choice of starting values, and the reported results are based on the
default starting values provided by the GAUSS-ARIMA routine.

The size of test statistics S and S is studied in the cases of AR(1) and AR(2) data

generation processes (DGP) with various values of the autoregressive parameters.
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Table 1 presents rejection rates for the AR(1) case, i.e., the DGP is

yt:¢1yt—1+€t7 tzl;"'vT;

where e, ~ NI1D(0,1). For 100 observations the original test statistic S overrejects
for all values of ¢;. For highly persistent series (¢; > 0.9) the modification does not
provide sufficient size correction but already for ¢; = 0.8 the empirical size of the
modified test statistic S comes close to the nominal size. Notice that the relative
size distortions of the modification depend on the significance level of the test which
indicates that for very small samples the tail of the true distribution has a shape
rather different from that of the asymptotic distribution (6). At the 5% level the
distortions seem to be smallest. The rejection rates of the original test statistic S
are roughly in accordance with, although somewhat smaller than, those obtained by
Caner and Kilian (1999). For 200 observations the size distortion of the modified test
is only modest already for ¢, = 0.9, and for the lower values of ¢; the modified test
seems somewhat conservative. Intuitively, the reason why the modification does not
alleviate the overrejection problem for highly persistent series, can be easily seen in the
AR(1) case. From (3) it can be seen that, under the null hypothesis, Ay; approaches
gt as ¢, approaches unity, and therefore model (9) is almost unidentified, making the
estimation unreliable. For negative values of ¢, (not reported) the size of the original
test statistic S is very close to the nominal size already for 100 observations, and the

modification does not provide much improvement.
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Rejection rates for the AR(2) case, i.e., for the following DGP,

Yt = QY1 + Polr—2 + €, t=1,....T,

are presented in Table 2. We simulated AR(2) models with both roots of the au-
toregressive polynomial equal to 0.8, 0.7 and 0.6, corresponding to the sums of the
autoregressive coefficients equal to 0.96, 0.91 and 0.84, respectively. In this context
the sum of the autoregressive coefficients turned out to be the best indicator of the
persistence of the series and thus also of the performance of the modification. For
®1 + @9 = 0.96 the reduction in the rejection rate due to the modification turned
out to be substantial but the size is not yet very close to the nominal size for even
200 observations. When the sum of the autoregressive coefficients equals 0.91, the
modification is satisfactory for 7" = 200 whereas there is still room for improvement
for T = 100. It is only when ¢; + ¢, = 0.84 that the modification almost reaches
the nominal size with 100 observations. Notice that even in this case the original test
statistic S leads to overrejections for both sample sizes and for the smaller sample
size T = 100 the overrejections are severe.

To show that the modification does not destroy the power of the test, Table 3
presents results of empirical power simulations. The DGP is model (1) with u = 0,
and the test is based on estimating the parameters of an ARIMA(1,1,1) model (4) at
the first stage. This model is thus overparameterized which should affect the power
adversely. For a given value of 03} the power increases with sample size as expected.

The power also initially increases with the variance of the random walk component
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(or equivalently, as 6 gets further away from unity), but for 0727 > 2 the power starts
to decline. This may be due to the fact that when the value of a% increases the
ARIMA(1,1,1) model (4) becomes nearly unidentified. This implies large estimation
errors which may make the estimation of the parameters of the auxiliary regression
model (9) difficult and thereby impair the effectiveness of the modification. Still,
the test is reasonably powerful against alternatives very close to a pure random walk
with only 100 observations. We also computed the empirical power against a pure
random walk, and with 037 = 1. At the 5% level of significance the rejection rates
were 0.66 and 0.70 for samples of 100 and 200, respectively. We also tried the sample
size T' = 500 and obtained the empirical power 0.78. The corresponding rejection
rates for the original test statistic S show a similar pattern although because of the
overrejection problem these figures cannot be interpreted as power. These results go
contrary to the recent claim of Hobijn, Franses, and Ooms (1998) that test statistic

S is not consistent against the alternative of a pure random walk.

4 Empirical Illustration

As an empirical example we consider testing the stationarity of inflation rates. Whether
inflation can be considered a stationary or unit root process has a number of economic
implications, and inflation rates from different countries and time periods have been
extensively subjected to unit root and stationarity tests (for references to some of the
previous studies, see Culver and Papell, 1997). The data set consists of the quar-
terly inflation of thirteen OECD countries, computed from consumer price index data

17



obtained from the International Financial Statistics published by the International
Monetary Fund. The inflation rate is calculated by differencing the logarithm of the
consumer price index. The series cover the period from 1957:IT to 1997:I11 (162 ob-
servations). Corresponding monthly data were recently studied by Culver and Papell
(1997).

The test results are presented in Table 4. In addition to test statistic S and its
modified version S we also report the results of the augmented Dickey—Fuller (ADF)
test and the ADF-GLS test of Elliott, Rothenberg, and Stock (1996) for comparison.
The latter test is expected to be more powerful against local alternatives. The lag
length of the autoregressive polynomial ¢(L) was selected by BIC. Time trend is
not included in the models that the test are based on because a trend would not be
consistent with long-run non-accelerating inflation. The irrelevance of a trend is also
supported by visual inspection of the graphs of the inflation series. There seems to be
predominantly evidence for stationarity of inflation. Test statistic S rejects the null
of stationarity only for Belgium, Italy and Norway at the 1% level and for the UK
at the 5% level, whereas the modified test rejects only for the Netherlands at the 1%
level and for Italy at the 5% level. In addition, the modified test rejects for Belgium
and Germany at the 10% level. The reason that the modified test clearly rejects for
the Netherlands although the original test does not reject, seems to be the sensitivity
of test statistic S for initial values. The 1957:II observation for this series is quite
exceptional (the second largest observation in the series). The values of test statistics

S and S for the series excluding the first observation are 1.02 and 0.84, respectively,
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indicating rejection of the stationarity null by both tests. This result suggests that
the modified test is not as sensitive to initial values as the original test. The modified
test also seems to accord with the unit root tests more often than the original test.
At the 10% level there is only one discrepancy between the ADF-GLS test and our
modified test: for Belgium both tests reject. The S and ADF-GLS tests, on the other
hand, disagree in five cases: for Belgium, Germany, the Netherlands, Norway and the
UK.

When the stationarity tests of this paper are applied it is reasonable to have
an idea about the persistence of the short-run dynamics of the considered series.
Therefore we computed the sums of the estimated autoregressive parameters in model
(4). Typically they varied between 0.8 and 0.9. The maximum was 0.91 (Canada and
France), and for Norway the sum was as small as 0.27. Judging by the simulation
results in Table 2 the modification can hence be expected to work fairly well for these

series.

5 Conclusion

In this paper we have modified previous stationarity tests and shown that in many
cases of practical relevance the modified test has substantially smaller size distortions
than its original counterpart. Compared with the original test, results of the modified
test were also in closer agreement with those of unit root tests in the empirical illus-
tration of the paper. When the persistence of the considered series is very high even
the modified test was seen to suffer from size distortions, though. However, since such
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series can be interpreted as realizations of nearly integrated processes whose long-run
properties are similar to those of I(1) processes this is simply what one can expect.
Thus, even when the modified test of this paper is applied it is advisable to try to
asses the persistence of the short-run dynamics of the considered series. Studying the
roots of the autoregressive polynomial estimate obtained from the ML estimation of
the parameters of model (4) may be useful in this respect. If roots very close to unity
are found the results of the test should be interpreted with caution. Another situation
where care is needed is when a time trend is included in the model because then the
modification does not reduce size distortions. It is also to be emphasized that finding
the maximum of the likelihood function for model (4) is not necessarily easy, and care
must be taken especially in selecting the starting values. The procedure where a grid
is formed for the moving average parameter and the other starting values are found

by GLS estimation prior to the exact ML estimation seems to work satisfactorily.
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Table 1: Empirical size of the original and modified Leybourne McCabe tests when

the DGP is an AR(1) model.

o} Nominal T
size 100 200
S S S S
0.95 0.01 0.403 0.304 0.242 0.164
0.05 0.453 0.385 0.286 0.218
0.10 0.484 0.446 0.333  0.278
0.90 0.01 0.218 0.114 0.091 0.026
0.05 0.278 0.193 0.148 0.074
0.10 0.314 0.262 0.199 0.136
0.80 0.01 0.088 0.026 0.035 0.002
0.05 0.159 0.076 0.086 0.045
0.10 0.223 0.154 0.134 0.094
0.70 0.01 0.049 0.007 0.021 0.002
0.05 0.114 0.054 0.066 0.040
0.10 0.179 0.130 0.114 0.084
0.60 0.01 0.036 0.007 0.017 0.004
0.05 0.095 0.045 0.061 0.039
0.10 0.159 0.112 0.103 0.081

The figures are rejection rates based on 1,000 replications of
an AR(1) model with autoregressive coeflicient ¢; and without

drift. T is the sample size.
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Table 2: Empirical size of the original and modified Leybourne-McCabe tests when

the DGP is an AR(2) model.

) o ¢, + ¢, Nominal T
size 100 200
S S S S
1.60 -0.64 0.96 0.01 0.411 0.319 0.212 0.041
0.05 0.546 0.240 0.346 0.101
0.10 0.614 0.338 0.427 0.181
1.40 -0.49 091 0.01 0.145 0.026 0.043 0.006
0.05 0.230 0.082 0.110 0.033
0.10 0.295 0.175 0.166 0.098
1.20 -0.36  0.84 0.01 0.078 0.006 0.023 0.007
0.05 0.145 0.054 0.073 0.030
0.10 0.213 0.116 0.122  0.085

The figures are rejection rates based on 1,000 replications of an AR(2) model with

autoregressive coeflicients ¢; and ¢, and without drift. 7" is the sample size.
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Table 3: Empirical power of the modified Leybourne-McCabe test.

0727 0 T

100 200

Nominal size

0.01 0.05 0.10 0.01 0.05 0.10

0.001 0.969 0.048 0.152 0.240 0.204 0.347 0.457

0.010 0.905 0.328 0.482 0.586 0.646 0.784 0.840

0.100 0.730 0.647 0.785 0.863 0.873 0.937 0.963

1.000 0.382 0.835 0.916 0.950 0.970 0.982 0.989

2.000 0.268 0.817 0.880 0.907 0.965 0.980 0.983

4.000 0.172 0.739 0.795 0.823 0.899 0.917 0.928

8.000 0.101 0.641 0.704 0.746 0.776  0.798 0.820

The DGP is the following: y; = 22:1 n;te, t=1,...,T, where g; ~
NID(0,1) and 1, ~ NID (0,0%). Equivalently the DGP can be expressed
as ¥y = yi_1 + ¢, — ¢, with ¢, ~ NID(0,67"). The test is based on

estimating and ARIMA(1,1,1) model (4) in the first stage.
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Table 4: Stationarity and unit root tests for quarterly inflation rates 1957:11-1997:1I11.

Country Lag ADF* ADF-GLS®  §° Se
Belgium 3 -2.63*  -2.64** 2.35%* 0.42*
Canada 4 -1.87 -1.64* 0.15 0.24
Finland 4 -2.44 -2.81* 0.17 0.16
France 4 -3.70"*  -2.73** 0.29 0.16
Germany 4 -2.59*  -1.60 0.10 0.37*
Italy 3 -2.22 -1.61 1.69**  0.50™*
Japan 4 -2.89* 22,720 0.34 0.19
Luxemburg 4 -2.36 -2.27 0.14 0.15
Netherlands 4 =277 -0.67 0.19 0.76™**
Norway 4 -3.09"*  -2.62*** 0.74** 0.18
Spain 4 -2.48 -1.86* 0.18 0.28
United Kingdom 5 -2.64*  -2.51* 0.64*  0.16
United States 4 -2.03 -2.04* 0.12 0.12

Rk K and * indicate rejection at the 1, 5 and 10 % significance levels,

respectively.
2The 1, 5 and 10% critical values: -3.43, -2.86, -2.57.
’The 1, 5 and 10% critical values: -2.58, -1.95, -1.62.
“The 1, 5 and 10% critical values: 0.74, 0.46, 0.35.
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