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1. Introduction 

One of the central propositions of modern finance theory is the efficient markets 

hypothesis (EMH), which in its simplest formulation states that the price of an asset at 

time t should fully reflect all the available information at time t.1  This has often been 

tested by using the present value (PV) model of stock prices, since, if stock market returns 

are not forecastable, as implied by the EMH, stock prices should equal the present value 

of expected future dividends.  As pointed out by Campbell and Shiller (1987a) in their 

seminal paper, this implies that stock prices and dividends should be cointegrated, and 

recent studies of PV models have mainly used cointegration techniques. However, the 

discrete options I(1) and I(0) offered by classical cointegration analysis are rather 

restrictive, which might explain why the available empirical evidence is inconclusive. 

Adjustment to equilibrium might in fact take a longer time than suggested by standard 

cointegration tests. In other words, stock prices and dividends might be tied together 

through a fractionally integrated I(d)-type process such that the equilibrium errors exhibit 

slow mean reversion. 

 The contribution of the present paper is two-fold. First, we propose a two-step 

testing strategy for testing the null of no cointegration against alternatives which are 

fractionally cointegrated. We conduct Monte Carlo simulations in order to evaluate the 

size and power properties of this test, which is shown to outperform existing ones, and to 

compute appropriate critical values for finite samples. Second, we apply the new 

methodology to an updated version of the Campbell and Shiller’s (1987a) dataset to test 

the adequacy of PV models of stock prices. We find that stock prices and dividends are 

both I(1) nonstationary series, but they are fractionally cointegrated. This implies that, 

although there exists a long-run relationship which is consistent with PV models, the error 

                                                           
1 See Fama (1970) for a definition of weak, semi-strong and strong efficiency, and Fama (1991) for 
alternative definitions in terms of return predictability. 
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correction term possesses long memory, and hence deviations from equilibrium are highly 

persistent. 

The layout of the paper is the following. Section 2 briefly reviews the existing 

literature on PV models. Section 3 initially describes the concepts of fractional integration 

and cointegration. A procedure for testing the null hypothesis of no cointegration against 

fractionally cointegrated alternatives is then proposed in this section, and its properties are 

investigated by conducting Monte Carlo experiments. This methodology is applied in 

Section 4 to test PV models, and Section 5 offers some concluding remarks. 

 

2. Review of the literature 

The literature on PV models has rapidly grown in the last two decades. Early studies, such 

as Shiller (1981) and LeRoy and Porter (1981), assumed that dividends were trend-

stationary. They carried out variance bounds tests, finding that prices were too volatile to 

be consistent with the present value of rationally expected future dividends discounted by 

a constant real interest rate. Subsequent studies pointed out that the assumption of trend-

stationarity for stock prices and dividends might be invalid. In particular, Marsh and 

Merton (1986) showed that the results were reversed if the variables of interest were in 

fact integrated. Kleidon (1986) then developed variance bounds tests which were valid 

under integration, and reported that the evidence was not inconsistent with the EMH. 

West (1988a) also tested for excess volatility by developing a method valid under either 

integration or trend-stationarity, though its parameter estimates were not consistent if 

dividends were trend-stationary as opposed to difference-stationary as he assumed.2 

 The above tests crucially depend on being able to establish the order of integration 

of  the  variables.   But,  as it was shown in the econometric literature,  unit root tests have  

  

                                                           
2 See also Flavin (1983), who argued that volatility tests are vitiated by small sample bias. 
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very low power in finite samples, and it is practically impossible to distinguish between a 

unit and a near-unit root (see West, 1988b, Campbell and Perron, 1991 and McCallum, 

1993). It was generally felt that alternative tests for excess volatility in stock price might 

be more useful for investigating market efficiency (see Cochrane, 1991). 

In a seminal paper, Campbell and Shiller (1987a) tested the PV model of stock 

prices adopting Engle and Granger’s (1987) cointegration procedure, an approach which 

is valid provided stock prices and dividends are stationary in first differences rather than 

in levels.3  They used the Standard and Poor’s (S&P’s) dividends and value-weighted and 

equally-weighted New York Stock Exchange (NYSE) 1926-1986 datasets. In the case of 

the S&P series they were unable to reject the null for stock prices, but rejected it for 

dividends, whilst they could not reject it in both cases when using the NYSE data. As for 

cointegration, their results were also mixed, some test statistics rejecting the null 

hypothesis of no-cointegration, other failing to reject it.  In a companion paper (Campbell 

and Shiller, 1987b), they also showed that excess volatility directly implied forecastability 

of infinite-period returns, and that a long moving average of real earnings helps to 

forecast future real dividends. It should be noted, though, that failure to find cointegration 

could indicate that there are speculative bubbles, or a non-stationary time-varying 

discount rate, or some other form of misspecification. Diba and Grossman (1988) tested 

for bubbles by constructing the component of stock prices which is determined by the 

dividend and unobservable variables, and argued that if the latter two are stationary in 

first differences, stock prices should also be so in the absence of bubbles. In other words, 

bubbles can be ruled out if both dividends and prices are integrated series and they are 

                                                           
3 The links between cointegration and market efficiency are discussed in Caporale and Pittis (1998), where 
it is pointed out that if one adopts alternative definitions of efficiency, for instance in terms of no risk-free 
returns above opportunity costs (as in Dwyer and Wallace, 1992), cointegration can be found in efficient 
markets.  They then suggest that examining the implications of cointegration for predictability of asset 
prices might be more useful. 
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cointegrated. However, Evans (1991) showed that in fact cointegration is not inconsistent 

with the existence of an important class of bubbles. 

Subsequent papers either used Bayesian methods or exploited further advances in 

cointegration analysis. Bayesians argue that classical integration tests give strong prior 

probability to explosive roots. DeJong and Whiteman (1991) therefore developed a 

Bayesian approach aimed at analysing the type of prior needed to support difference-

stationary (DS) representations in preference to trend-stationary (TS) ones. Their 

procedure is based on the likelihood principle, and the inferences are conditional on the 

given data. They find that TS specifications are much more likely than DS ones. 

Specifically, integration is inferred when the deterministic trend is restricted to be zero, a 

restriction which makes unit root tests inconsistent against TS alternatives, and which is 

not justified even from a Bayesian viewpoint. By contrast, trend stationarity is not 

rejected either by classical or Bayesian tests when the trend is included. Therefore, 

according to DeJong and Whiteman (1991), stock prices and dividends are in fact 

stationary series, and the evidence against the EMH presented by Shiller (1981) and 

others should be considered valid. 

DeJong (1992) also developed a Bayesian approach to cointegration analysis 

which is based on the same idea, namely examining the relative support the data give to 

integrated, cointegrated and TS alternatives. Having investigated the integration 

properties of the series as in DeJong and Whiteman (1991), he then tested for 

cointegration by looking at the dominant roots of a bivariate VAR representation and 

again exploiting the likelihood principle. He concluded that integration and cointegration 

are only inferred when TS alternatives are given zero prior probability; if this restriction is 

not imposed, the evidence points to trend stationarity, indicating that the series being 

considered (such as stock prices and dividends) share common deterministic trends.  A 

Bayesian methodology was also used by Koop (1991), who once again concluded that 
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stock prices and dividends do not contain unit roots, and hence questioned the usefulness 

of classical cointegration analysis for testing the EMH. 

As for papers still relying on classical cointegration approaches, but using 

procedures other than Engle and Granger’s (1987), a study by Han (1996) pointed out that 

if log dividends and log prices are DS and cointegrated, the cointegrating vector (1, -1) 

eliminates both stochastic and deterministic trends. One can test the latter (deterministic 

cointegration) restriction separately applying the Canonical Cointegrating Regression 

(CCR) (see Park, 1992), a procedure which involves testing the null of cointegration and 

has desirable small sample properties. Han (1996) used Johansen’s (1991) maximum 

likelihood (ML) method, and found that the deterministic cointegration restriction can be 

rejected on the basis of the CCR tests, and that stochastic cointegration is also rejected. 

He interpreted these findings as evidence that the PV model does not hold, and that 

bubbles might exist in the deterministic components of stock prices. 

Yuhn (1996) argued that in fact the PV model requires non-linear cointegration 

between stock prices and market fundamentals when it is linked to the flow of 

information. He claimed therefore that Campbell and Shiller’s (1987a) tests for linear 

cointegration are not appropriate for investigating the EMH. He suggested that the 

evidence supports non-linear cointegration, which means that deviations of US stock 

prices from their long-run equilibrium are temporary, and the market is efficient in the 

sense that stock prices are not affected by public information about market fundamentals.4 

In studies relying on standard cointegration analysis the equilibrium errors are 

restricted to be an I(0) process, which is not persistent. However, it might be the case that 

the equilibrium errors respond more slowly to shocks, which results in highly persistent 

deviations from equilibrium. Therefore, we introduce below a testing procedure which 

                                                           
4 Other studies using cointegration techniques include Cerchi and Havenner (1988), Bossaerts (1988), 
Taylor and Tonks (1989), Rappoport and White (1991) and Kasa (1992). 
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allows for the possibility of a long-memory cointegrating relationship, and which enables 

us to gain a better understanding of the relationship between stock prices and dividends. 

 

3. Testing for  fractional cointegration 

3.1 Fractional integration and cointegration 

For the purpose of the present paper, we define an I(0) process ut, t = 0, ±1, ….., as a 

covariance stationary process with spectral density which is positive and finite at zero 

frequency. In this context, an I(d) process, xt, t = 0, ±1, …., is defined by  

(1 – L)d xt  =  ut,      t = 1, 2, … ,    (1) 

         xt = 0          t ≤ 0     (2) 

where L is the lag operator. The macroeconomic literature focuses on the cases d = 0 and 

d = 1 (see, e.g., Nelson and Plosser, 1982), whereas we define (1 – L)d for all real d by 
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The process ut in (1) could be a stationary and invertible ARMA sequence, with an  

exponentially decaying autocovariance function, or it could decay much slower than 

exponentially. The latter property can be said to characterise a “weakly autocorrelated”  

process. When d = 0, xt = ut, so a “weakly autocorrelated”  xt is allowed for. When d = 1, 

xt  has a unit root, while for a general integer d, xt has d unit roots. For 0 < d < 0.5, xt is 

still stationary, but its lag-j autocovariance γj decreases very slowly, like the power law 

j2d-1 as j → ∞, and so the γj are non-summable. The distinction between I(d) processes 

with different values of d is also important from an economic point of view: if a variable 

is an I(d) process with d ∈ [0.5, 1), it will be covariance nonstationary but mean-reverting 

since an innovation will have no permanent effect on its value. This is in contrast to an 
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I(1) process which will be both covariance nonstationary and not mean-reverting, in 

which case the effect of an innovation will persist forever. 

Robinson (1994) proposes LM tests for testing unit roots and other forms of 

nonstationary hypotheses, embedded in fractional alternatives. He tests the null 

hypothesis: 

Ho:  θ  =  0     (3) 

in the model 

yt = β’zt + xt  t = 1, 2,…   (4) 

         (1 – L)d + θ xt  =  ut,         t = 1, 2, … ,   (5)          

where yt  is a raw time series; zt is a (kx1) vector of deterministic regressors that may 

include, for example, an intercept (zt ≡ 1) and/or a linear time trend (zt = (1, t)’ ); ut is an 

I(0) process, and d is a given value that may be 1 but also any other real number. 

Specifically, the score test statistic proposed by Robinson (1994) takes the form: 
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from the spectral density function of tû : ),;(
2

);(
2

τλ
π

στλ jj gf =  with τ̂  obtained by 

minimising σ2(τ).  Robinson (1994) showed that under certain regularity conditions: 

.)1,0(ˆ ∞→→ TasNr d    (7) 

Thus, a one-sided 100α%-level test of (3) against the alternative H1: θ > 0 is given by the 

rule: ‘Reject Ho if  r̂  >  zα’ , where the probability that a standard normal variate exceeds 

zα is α, and, conversely, an approximate one-sided 100α%-level test of (3) against the 

alternative H1: θ < 0 is given by the rule: ‘Reject Ho if  r̂  <  -zα’ . Furthermore, he shows 

that the above tests are efficient in the Pitman sense, i.e. that against local alternatives of 

the form: Ha: θ = δ T-1/2, for δ ≠ 0, the limit distribution is normal with variance 1 and 

mean which cannot (when ut is Gaussian) be exceeded in absolute value by that of any 

rival regular statistic.5 

Having defined fractional integration and described a way of testing I(d) statistical 

models, we next introduce the concept of fractional cointegration. The components of a 

(nx1) vector Xt are said to be fractionally cointegrated of order d,b, (Xt ∼ CI(d,b)) if a): all 

components of Xt are integrated of order d (X it ∼ I(d)), and b): there exists a vector r (r ≠ 

0) such that Nt = r’Xt is integrated of order d-b (Nt∼I(d-b)) with b > 0.6  The vector r is 

called the cointegrating vector and r’Xt will represent an equilibrium constraint operating 

on the long-run component of Xt. If Xt has more than two components then there may be 

more than one cointegrating vector r, though in what follows we will assume that Xt does 

have only two components, so that Xt = (X1t, X2t)’ , where X1t and X2t correspond to the 

variables to be analysed later.  

                                                           
5  An empirical application of this testing procedure using historical U.S. annual data can be found in Gil-
Alana and Robinson (1997). 
6 A more general definition of fractional cointegration, allowing different integration orders for each series, 
can be found in Marinucci and Robinson (1998). They define X t ∼ CI(d1, d2, dn, b) if X it ∼ I(di) for all i, and 
there exists a vector r ≠ 0 such that Nt = r’X t ∼ I(d), where d = max1≤i≤n (di – b). Note that this property is 
possible and meaningful if and only if b > (max1≤i≤n di – min1≤i≤n di). 
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We propose here a two-step testing procedure based on a methodology similar to 

that put forward by Engle and Granger (1987) (for more details, see Gil-Alana, 1997). We 

initially test the order of integration of the original series using Robinson’s (1994) 

univariate tests, and, if all of them have the same order of integration (say d), we then test 

the degree of integration of the estimated residuals of the cointegrating structure. Since all 

linear combinations of X1t and X2t except the one defined by the cointegrating regression 

will be integrated of order d, the least squares estimate from the regression of X1t on X2t 

(or viceversa), under cointegration, will produce a good estimator of that relationship. In 

standard cointegration analysis, (where cointegration of order 1,1 is considered), Stock 

(1987) showed that the least squares estimate of the cointegrating parameter was 

consistent and converged in probability at the rate T1-δ for any δ > 0, rather than the usual 

T1/2. Cheung and Lai (1993) and others extended the analysis to the case of fractional 

cointegration, and showed that the least squares estimate was also consistent, though with  

possible different convergence rates, depending on the cointegration order. In particular, 

they showed that under the general hypothesis of cointegration of order d,b with d > 0.5 

and b > 0, the least squares estimate was consistent and converged at the rate Tb-d, Stock’s 

(1987) result being a special case with b = 1.  

Given the consistency of the least squares estimates, it is legitimate to use 

Robinson’s (1994) univariate tests for testing the integration order of the equilibrium 

errors  

       ...,2,1,ˆ 21 =−= tXXe ttt α   (8) 

where α̂   is the least squares estimate of the cointegrating parameter, and the test statistic 

will have the same limit normal distribution. Thus, one can consider the model: 

        (1 – L)d+θ et   =   vt        t   =   1, 2, …,  (9)  

with I(0) vt and test the null hypothesis: 
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Ho: θ = 0     (10)  

against the alternative  

Ho: θ < 0     (11)  

and the test statistic will have an asymptotic null N(0,1) distribution. Rejections of (10) 

against (11) will imply that X1t and X2t are fractionally cointegrated, given the fact that 

the equilibrium errors et exhibit a smaller degree of integration than the original series. 

However, as the equilibrium errors are not actually observed but obtained from 

minimising the residual variance of the cointegrating regression, in finite samples the 

residual series might be biased towards stationarity, and thus we would expect the null 

hypothesis to be rejected more often than suggested by the nominal size of the Robinson’s 

(1994) test. A similar problem arises in Engle and Granger (1987) and Cheung and Lai 

(1993) when testing for cointegration. In order to deal with this problem, we obtain the 

empirical size of Robinson’s (1994) tests for cointegration in finite samples by using a 

simulation approach. 

 

3.2 Monte Car lo analysis 

In Table 1 we report the critical values of Robinson’s (1994) tests for cointegration 

corresponding to different sample sizes (T = 50, 100, 200 and 300). We use a Monte 

Carlo approach based on 50,000 replications, assuming that the true model consists of two 

I(1) processes with Gaussian independent white noise disturbances that are not 

cointegrated.7  For simplicity, we also assume that vt in (9) is  white noise, though one can 

extend the analysis to cover the case of weak parametric autocorrelation in vt. We observe 

that the distribution has a negative mean and the critical values are smaller than those 

given by the normal distribution, which is consistent with the earlier discussion pointing 

                                                           
7  The experiment was also extended to allow the true model to consist of two I(d) non-cointegrated 
processes with d = 0.6, (0.1), 1.5, the critical values being displayed in Gil-Alana (1997). 
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out that, when testing (10) against (11) in (8) and (9), the use of the standard critical 

values will result in the cointegration tests rejecting the null hypothesis of no 

cointegration too often. We also see that the empirical distribution is positively skewed 

with kurtosis greater than 3, though as the sample size increases the three statistics (mean, 

skewness and kurtosis) approximate to the values corresponding to the normal 

distribution. 

(Table 1 about here) 

 Table 2 examines the power properties of Robinson’s (1994) tests for 

cointegration relative to the ADF and Geweke and Porter-Hudak (GPH, 1983) tests. The 

ADF unit root test recommended by Engle and Granger (1987) is given by the usual t-

statistic for b0 in 

tptpttt eLbeLbebeL ε+−++−+=− −−− )1(...)1()1( 1110  

where et are the equilibrium errors and the lag parameter p can be selected using some 

model-selection procedures such as the Akaike and Schwarz information criteria. The 

GPH test for cointegration proposed by Cheung and Lai (1993) is based on the estimation 

of the fractional differencing parameter d in the linear regression 

j
j

jI ε
λ

ββλ +





+=

2
sin4ln)(ln 2

10  

where λj = 2πj/T and I(λj) is the periodogram of et at the ordinate j. Given that the least 

squares estimate of β1 provides a consistent estimate of 1 - d (see, e.g., Robinson, 1995a), 

hypothesis testing on the value of d can be carried out using the t-statistic of the 

regression coefficient. 

(Table 2 about here) 

We analyse the case of a bivariate I(1) system, assumed to be non-cointegrated 

under the null hypothesis, and compare the power function of the three tests for 



 12

cointegration (Robinson’s, ADF and GPH) against different fractional alternatives. 

Results for the ADF and GPH tests have been taken from Cheung and Lai (1993). We 

consider Xt = (X1t, X2t)’ , where 

X1t  +  X2t   =   u1t    (12) 

and 

X1t  +  2 X2t    =   u2t    (13) 

where 

(1 – L)u1t  =  ε1t    (14)  

and u2t is generated as a fractional noise process, i.e. 

(1 – L)d u2t   =   ε2t    (15)  

where the innovations ε1t and ε2t are generated as independent standard normal variates. 

Thus, if d = 1 in (15), the two series are I(1) and non-cointegrated, whereas if d < 1 in 

(15), X1t and X2t are fractionally cointegrated, and (13) is their cointegrating relationship. 

As in Engle and Granger (1987) and Cheung and Lai (1993), we use samples of size T = 

76, and sample series for X1t and X2t were generated setting the initial values of u1 and u2 

equal to zero, creating 126 observations, the first 50 of which were discarded to reduce 

the effect of the initial conditions. We report the rejection frequencies of Robinson’s 

(1994) test statistics with d in (15) equal to 0.05, (0.10), 0.95, for four different 

possibilities, assuming that the differenced series are white noise and AR processes of 

order 1, 2, and 3, for the 5% and 10% significance levels, based on 10,000 replications. 

 We can see in Table 2 that Robinson’s (1994) tests perform better than the ADF 

and GPH tests, regardless of whether the disturbances are white noise or follow AR 

processes. The highest rejection frequencies are obtained with white noise disturbances if 

the integration order ranges between 0.05 and 0.75, but when this parameter approximates 

1 better results are obtained for weakly parametrically autocorrelated disturbances. The 
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relatively pronounced difference in power between the tests of Robinson (1994) and the 

ADF and GPH tests for cointegration is not surprising, since the ADF test is based on an 

I(0) versus I(1) dichotomy and the GPH test requires the estimation of the fractionally 

differencing parameter, whereas Robinson’s (1994) tests do allow fractional differencing 

and do not require the estimation of the fractional differencing parameter.8 

 

4. Testing present value models of stock pr ices 

The validity of PV models of stock prices is tested in this section by means of fractional 

cointegration techniques. In particular, we use the methodology described in Section 3, 

testing initially for the order of integration of the individual series, and then testing for the 

possibility of their being fractionally cointegrated. 

The dataset we use is the standard one in the equity premium literature, and has 

been updated compared to Campbell and Shiller (1987a), covering the sample period 

1871-1995. Both series are annual. The price series is the Standard & Poor’s Monthly 

Composite Stock Price Index (S&P 500) for January divided by the January Produced 

Price Index. The series has been extended back to 1871 using data from Cowles (1939). 

The dividend series is the total dividends for the calendar year for a portfolio including 

the stocks in the index divided by the January Produced Price Index. Data from Cowles 

(1939) have been used prior to 1926, from which year the S&P series is available.9  

We start by performing Robinson’s (1994) univariate tests on the individual series. 

Using the notation yt for the log of each series, we employ throughout the model given by 

(4) and (5) with zt = (1, t)’ , t ≥ 1, zt = (0, 0) otherwise, so that under Ho (3), 

yt  =  β1  +  β2 t   +   xt  t = 1, 2, …,   (16) 
 

                                                           
8  A similar experiment but based on AR alternatives, (i.e., with (1 – ρL)u2t = ε2t in (15)) for ρ = 0.05, 
(0.10), 0.95 was also conducted in Gil-Alana (1997), Robinson’s (1994) tests again outperforming ADF and 
GPH tests for cointegration. 
9 More details on the data can be found in Campbell (2000). 
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    (1 – L)d xt    =    ut   t = 1, 2, …,   (17) 
 
treating separately the cases β1 = β2 = 0 a priori, β1 unknown and β2 = 0 a priori, and (β1, 

β2) unknown. We model the I(0) process ut to be both white noise and to have parametric 

autocorrelation. Thus, if ut in (17) is white noise, when d = 1, for example, the differences 

(1 –L)yt behave, for t > 1, like a random walk when β2 = 0, and a random walk with drift 

when β2 ≠ 0. However, we report test statistics not merely for the null with d = 1 in (17) 

but with d = 0.50 (0.25) 2.00, thus including also a test for stationarity (d = 0.50) and for 

I(2) (d = 2), as well as other possibilities. 

(Table 3 about here) 

 The test statistic reported in Table 3 is the one-sided one given by (6), so that 

significantly positive values are consistent with greater values of d and, conversely, 

significantly negative ones are consistent with smaller d’s. Starting with dividends (in the 

upper part of the table), it can be noted that the results are quite similar across the 

different specifications in (16). Thus, whether or not we include an intercept and/or a 

linear time trend, the null (3) cannot be rejected when d = 0.75 and 1 if ut is white noise or 

AR(1), being strongly rejected for the remaining values of d. If ut is AR(2),  these two 

values are also not rejected along with d = 1.25. Looking at stock prices (in the lower part 

of the table), we can see that if ut is white noise, the unit root is the only non-rejection 

value across the different d’s, and this is observed whether or not deterministic regressors 

are included in (16). Allowing ut to follow AR processes, we observe a few more non-

rejection values, occurring then when d = 0.75, 1 and 1.25, and in all cases, the lowest 

statistics occur in the unit root case (i.e., d = 1). In view of these results, we can conclude 

that both series may contain a unit root10. 

                                                           
10  Unit root tests based on AR alternatives (like Dickey and Fuller, 1979, and Phillips and Perron, 1988) 
were also performed on these series, obtaining further evidence in favour of the presence of a unit root. 
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 Having found that both individual series exhibit unit root behaviour, we next 

examine the possibility of their being fractionally cointegrated. Table 4 reports results for  

r̂ defined as in (6) when using the model given by (16) and (17), with d = 1 + θ, and yt in 

(16) replaced by et, where et are the residuals from the cointegrating regressions 

0.063 0.026

(0.005) (0.0012)
t td p= +

. 

and 

1.643 33.831

(0.2452) (0.0012)
t tp d= − +

 

Clearly, if we cannot reject the null given by (3), the estimated residuals will be I(1), 

indicating that there is no cointegration. On the other hand, rejections of (3) against the 

alternative H1: θ < 0, will imply that the estimated residuals are fractionally integrated, 

with stock prices and dividends being (possibly fractionally) cointegrated. 

(Table 4 about here) 

 Again we present the results for the cases of no regressors (β1 = β2 = 0); an 

intercept (β1 ≡ 1) and a linear time trend (β1 and β2 unknown), with white noise and 

autoregressions of orders 1, 2 and 3, using the finite sample critical values obtained in 

Table 1.11  It can be seen from Table 4 that the null hypothesis of no cointegration is 

practically always rejected. In fact, the only non-rejection case occurs when regressing 

stock prices on dividends with AR(1) disturbances. For all the remaining specifications, 

the null (3) is always decisively rejected in favour of alternatives which are less 

integrated, suggesting that the estimated residuals from the cointegrating regression 

exhibit an order of integration smaller than one. 

                                                           
11 The critical values allowing weakly autocorrelated disturbances and deterministic regressors like an 
intercept and a linear time trend were also calculated using a Montecarlo simulation approach, obtaining 
values very similar to those given in Table 1 (only the second decimal digit being affected). 
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 As mentioned above, the fact that the least square estimate of the cointegrating 

parameter is a consistent estimate of the true value under cointegration, allows us to use 

the asymptotic critical values given by the normal distribution when testing d on the 

estimated residuals above. Table 5 extends the results of Table 4 for values of d = 0, 

(0.10). 0.90, again with different regressors and different types of disturbances. As we 

should expect, the results are similar whether we regress prices on dividends or vice 

versa. If vt is white noise, the non-rejection values range between 0.60 and 0.90 with the 

lowest statistics occurring in all cases when d = 0.70. However, when allowing for 

autocorrelated disturbances, one finds a somewhat smaller degree of integration, with d 

fluctuating between 0.30 and 0.80 with AR(1) disturbances, and between 0.30 and 0.70 

with AR(2) vt. Higher order autoregressions were also allowed obtaining results similar to 

those in the AR(2) case and are not reported here. We see that the lowest statistics across 

d are obtained in practically all cases when d = 0.50 (and d = 0.60 in some cases), 

suggesting that the estimated residuals still may be nonstationary. On the other hand, if d 

= 0, Ho (3) is always decisively rejected in favour of alternatives of form H1: θ > 0, 

indicating that classical cointegration between stock prices and dividend does not apply. 

(Table 5 about here) 

 We can conclude therefore that there is evidence in favour of fractional  

cointegration between stock prices and dividends, with the estimated residuals from the 

cointegrating regression showing long-memory behaviour. As a result, deviations from 

equilibrium will be long-lived, with mean reversion occurring very slowly. 

 
5. Conclusions 

We have shown in this paper that the cointegrating relationship between stock prices and 

dividends possesses long memory, i.e., it can be characterised as a fractionally 

cointegrated I(d)-type process. This is an important finding, as it means that, although 
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these two variables are linked in the long run, adjustment to equilibrium takes a long time. 

Consequently, the validity of PV models of stock prices is confirmed, but only over a long 

horizon. Failure to take into account this slow adjustment process explains why the 

evidence from standard cointegration tests is often contradictory, as for instance in the 

seminal study due to Campbell and Shiller (1987a). An implication of our results is that 

investment strategies should allow for the slow response to shocks and the persistence of 

deviations from equilibrium. 

 We have also made a methodological contribution by proposing a two-step testing 

strategy for fractional cointegration. This procedure is based on Robinson’s (1994) 

univariate tests, and it involves initially testing the order of integration of the individual 

series, and then testing the degree of integration of the estimated residuals from the 

cointegrating regression. As the Monte Carlo analysis shows, the suggested test has 

higher power than alternative tests for the null of cointegration against fractional 

alternatives. 

It should also be mentioned that we did not attempt in this paper to select a 

specific model for the residuals from the cointegrating regression. In fact, our approach 

generates simply computed diagnostics for departures from any real d. Thus, given the 

continuity of d on the real line, it is not surprising that, when fractional hypotheses are 

considered, the evidence should appear to be supportive. Other methods for estimating d, 

based on semiparametric approaches, have been recently proposed (see, e.g., Robinson, 

1995a, 1995b), and they could also be usefully employed for analysing financial series (as 

in the present study) or other macroeconomic time series. 
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TABLE 1 

Critical values of Robinson’s (1994) tests for the null hypotheses of two I(1) non-cointegrated 
processes against fractional cointegration 

Perc.  /  T T  =  50 T  =  100 T  =  200 T  =  300 
0.1% -2.93 -2.96 -3.19 -3.19 
0.5% -2.66 -2.63 -2.66 -2.60 
1% -2.52 -2.48 -2.45 -2.44 

2.5% -2.30 -2.23 -2.20 -2.18 
5% -2.10 -2.00 -1.97 -1.91 
10% -1.84 -1.74 -1.66 -1.60 
20% -1.50 -1.38 -1.28 -1.21 
30% -1.25 -1.11 -1.00 -0.92 
40% -1.02 -0.87 -0.74 -0.67 
50% -0.80 -0.64 -0.51 -0.43 
60% -0.57 -0.39 -0.26 -0.19 
70% -0.30 -0.12  0.01  0.07 
80%  0.02  0.20  0.33  0.40 
90%  0.51  0.67  0.79  0.87 
95%  0.94  1.11  1.21  1.29 

97.5%  1.37  1.49  1.55  1.69 
99.0%  1.87  1.97  2.01  2.12 
99.5%  2.25  2.29  2.33  2.41 
99.9%  3.04  3.09  2.98  2.91 

  Mean -0.71 -0.56 -0.46 -0.39 
Skewness  0.58  0.45  0.32  0.29 
Kurtosis  3.68  3.40  3.26  3.15 

The critical values were obtained on the basis of 50,000 replications in simulation, assuming that the true 
system is two non-cointegrated I(1) processes. 
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TABLE 2 

Power  of the ADF, GPH and Robinson tests for  cointegration against fractional alternatives 

  Values of d 

Size Test statistic 0.95 0.85 0.75 0.65 0.55 0.45 0.35 0.25 0.15 0.05 

ADF (p = 4) .06 .07 .10 .14 .19 .26 .36 .50 .61 .73 

GPH (µ=.55) .06 .09 .15 .21 .30 .37 .47 .56 .61 .64 

GPH (µ=.575) .06 .10 .16 .24 .33 .42 .53 .62 .67 .71 

GPH (µ=.60) .06 .11 .18 .28 .40 .52 .63 .73 .78 .81 

ROB. (W.N.) .07 .22 .50 .78 .94 .99 .99 1.00 1.00 1.00 

ROB: (AR1) .15 .22 .35 .52 .71 .85 .94 .97 .99 .99 

ROB: (AR2) .22 .26 .31 .41 .54 .67 .78 .86 .92 .95 

 
 
 

5 % 
 

ROB: (AR3) .30 .32 .35 .41 .50 .59 .68 .76 .82 .85 

ADF (p = 4) .11 .13 .18 .24 .32 .41 .53 .67 .78 .87 

GPH (µ=.55) .12 .17 .26 .35 .46 .56 .65 .72 .76 .78 

GPH (µ=.575) .12 .18 .27 .38 .50 .60 .71 .77 .81 .83 

GPH (µ=.60) .12 .19 .30 .43 .57 .68 .79 .85 .88 .90 

ROB. (W.N.) .16 .37 .66 .88 .97 .99 1.00 1.00 1.00 1.00 

ROB: (AR1) .26 .36 .51 .69 .84 .94 .98 .99 .99 .99 

 
 
 
10 % 
 

ROB: (AR2) .32 .37 .45 .57 .69 .81 .89 .94 .97 .98 
ADF is the augmented Dickey-Fuller test statistic and p is the lag parameter selected using the AIC and the SIC. 
GPH is the  Geweke and Porter-Hudak test statistic and µ is the value used in the sample-size function n=Tµ. 
Results for the ADF and GPH have been taken from Cheung and Lai (1993), (pages 108 and 109). ROB stands for 
Robinson’s (1994) tests. The power of each test is based on 10,000 replications and the Monte Carlo experiment 
with the Fortran code is available from the authors upon request. 
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TABLE 3 

Univariate tests of Robinson (1994) for testing (3) in (4) and (5) 

Dividends 
i): with white noise ut 

zt  /  d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
 With no regressors 6.63 1.27’  -1.72’  -3.33 -4.21 -4.73 -5.07 
Wiith an intercept 6.42 0.54’  -1.88’  -3.60 -4.38 -4.84 -5.15 
With a linear trend 4.84 0.48’  -1.86’  -3.60 -4.39 -4.86 -5.17 

ii): with AR(1) ut 
zt  /  d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

With no regressors 1.99 1.06’  -0.74’  -2.23 -3.23 -3.89 -4.35 
Wiith an intercept 2.70 -0.10’  -1.45’  -2.73 -3.61 -4.18 -4.56 
With a linear trend 2.61 0.04’  -1.42’  -2.73 -3.64 -4.24 -4.63 

ii): with AR(2) ut 
zt  /  d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

With no regressors 2.17  1.26’   0.55’  -0.54’  -1.98 -2.29 -2.86 
Wiith an intercept 6.89 -0.27’  -0.33’  -1.21’  -2.08 -2.76 -3.24 
With a linear trend 1.98  0.09’  -0.29’  -1.22’  -2.15 -2.88 -3.40 

Stock prices 
i): with white noise ut 

zt  /  d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 
With no regressors 9.65 4.33 0.07’  -2.38 -3.60 -4.21 -4.55 
Wiith an intercept 8.36 3.54 -0.39’  -2.70 -3.82 -4.37 -4.67 
With a linear trend 9.14 3.81 -0.33’  -2.71 -3.85 -4.38 -4.68 

ii): with AR(1) ut 
zt  /  d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

With no regressors 4.00 2.29 1.12’  -1.15’  -2.73 -3.55 -3.95 
Wiith an intercept 10.54 0.44’  0.30’  -1.66’  -3.08 -3.79 -4.11 
With a linear trend 2.18 1.56’  0.39’  -1.71’  -3.17 -3.84 -4.13 

ii): with AR(2) ut 
zt  /  d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

With no regressors 7.00 1.29’  1.10’  -1.76’  -2.26 -2.68 -3.43 
Wiith an intercept 11.39 1.27’  0.89’  -0.92’  -1.97 -2.12 -2.73 
With a linear trend 6.07 0.48’  0.03’  -0.80’  -1.97 -2.22 -2.78 

‘ : Non-rejection values of the null hypothesis (3) at the 95% significance level. 
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TABLE 4 

Testing the null hypothesis of no cointegration against 

cointegration with the tests of Robinson (1994) 

vt 
Dividends  / 
Stock prices 

Stock prices. / 
Dividends 

White noise vt 

With no regressors: -2.45’  -2.31’  
With an intercept: -2.79’  -2.55’  
With a time trend: -2.78’  -2.54’  

AR(1)  vt 

With no regressors: -2.06’  -1.92  
With an intercept: -2.71’  -2.39’  
With a time trend: -2.70’  -2.37’  

AR(2) vt 

With no regressors: -2.06’  -2.04’  
With an intercept: -2.81’  -2.51’  
With a time trend: -2.84’  -2.63 

AR(3) vt 

With no regressors: -2.17’  -2.15’  
With an intercept: -2.77’  -2.73’  
With a time trend: -2.73’  -2.80’  

‘ : Rejections of the null hypothesis of “no cointegration”  at the 95% 
 significance level. 
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TABLE 5 

Robinson’s (1994) tests on the estimated residuals from the cointegrating regression 

dt   =   0.063   +   0.026 pt 

i): White noise vt: 
zt  /  d 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

With no regressors 13.33 10.38 7.77 5.56 3.73 2.20 0.91’  -1.16’  -1.07’  -1.83’  
With an intercept 13.33 10.35 7.62 5.23 3.23  2.60’  0.30’  -1.72’  -1.55’  -2.23 
With a time trend 7.81 6.46 5.12 3.80 2.52  2.31’  0.22’  -1.73’  -1.55’  -2.23 

ii): AR(1) vt: 
zt  /  d 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

With no regressors 3.25 3.08 2.11 1.28’  1.06’  0.68’  0.19’  -0.35’  -1.97’  -2.01 
With an intercept 4.50 3.06 2.97 1.90’  1.41’  -0.20’  -0.80’  -1.34’  -1.93’  -2.28 
With a time trend 4.88 3.72 2.52 1.84’  1.61’  -0.69’  -0.98’  -1.37’  -1.82’  -2.27 

i): AR(2) vt: 
zt  /  d 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

With no regressors 6.30 3.60 2.55 1.24’  0.76’  0.44’  -0.99’  -1.15’  -1.99 -2.14 
With an intercept 6.30 3.55 3.33 1.92’  1.19’  -0.90’  -1.05’  -1.44’  -1.93 -1.99 
With a time trend 6.77 3.87 3.44 1.83’  1.34’  -0.37’  -0.77’  -1.54’  -2.11 -2.16 

pt   =   -1.643   +   33.831 dt 

i): White noise vt: 
zt  /  d 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

With no regressors 11.15 9.22 7.43 5.75 4.17 2.71 1.39’  0.22’  -0.78’  -1.62’  
With an intercept 11.15 9.19 7.32 5.54 3.87 2.35 1.01’  -0.13’  -1.10’  -1.90’  
With a time trend 9.89 8.43 6.93 5.40 3.87 2.41 1.07’  -0.09’  -1.07’  -1.89’  

ii): AR(1) vt: 
zt  /  d 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

With no regressors 3.39 2.81 2.19 1.02’  0.86’  -0.61’  -0.83’  -1.67’  -1.87’  -1.99’  
With an intercept 3.39 2.85 2.16 1.37’  0.94’  -0.62’  -0.92’  -1.85’  -1.95’  -2.09 
With a time trend 4.43 3.79 2.18 1.62’  0.95’  -0.68’  -0.98’  -1.74’  -1.98 -2.06 

i): AR(2) vt: 
zt  /  d 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

With no regressors 6.31 3.65 2.66 1.35’  0.90’  0.04’  -0.31’  -1.37’  -1.97 -2.04 
With an intercept 6.31 3.70 2.83 1.72’  1.09’  -0.22’  -0.95’  -1.46’  -1.98 -2.01 
With a time trend 7.76 4.66 2.43 1.90’  1.10’  -0.37’  -0.56’  -1.67’  -1.96 -2.12 

‘ : Non-rejection values of the null hypothesis at the 95% significance level. 
 


