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Consistency of a least squares orthonormal
series estimator for a regression function

Michel Delecroix®, Camelia Protopopescu’

*ENSAI, Rue Blaise Pascal, Campus de Kerr Lann, 35170 Bruz, France,
e-mail: delecroi@ensai.fr; *GREQAM, Centre de la Vieille Charité, 2 rue de la Charité,

13002 Marseille, France, e-mail: camelia@ehess.cnrs-mrs.fr

Abstract: This paper establishes the almost sure consistency of least squares regression
series estimators, in the L?-mnorm and the sup-norm, under very large assumptions on
the underlying model. Three examples are considered in order to illustrate the general
results: trigonometric series, Legendre polynomials and wavelet series estimators. Then
optimal choices for the number of functions in the series are discussed and convergence
rates are derived. It is shown that for the wavelet case, the best possible convergence rate
is attained.

Keywords: Nonparametric regression, orthonormal series estimators, least squares,
almost sure consistency, convergence rates, trigonometric series, Legendre polynomials,
wavelets.



1 Introduction

Let (X;,Y:), ¢ = 1,...,n, be a random sample of independent, identically distributed
variables, taking values respectively in X C IR? and IR. Let g denote the regression
function of Y; given X;, so that g(z) = E(Y;|X; =), for + € X. It is assumed that
the distribution of X; is absolutely continuous with density f. This paper deals with the
problem of estimating g, in a nonparametric approach.

Our method relies on what has been called the “projection” method (see e.g. Bosq
and Lecoutre [5] or, more recently, Shen and Wong [17] and Shen [16] for the “sieve”
approach). It consists, generally speaking, in estimating the projection ¢g* of g onto a
finite dimensional space, the dimension of which is allowed to grow to infinity, with ¢*
depending on a finite number of real numbers ¢;. The estimator g, is then defined using
the least squares estimates of ¢;, computed on the basis of the sample.

In the particular case where g* is a finite linear combination of known functions (g,
is then called a “series-type” estimator), several important results have been recently
achieved, a few of which are described below. For this purpose, three types of criteria,
previously used in studying the large sample properties of these estimators, are first

defined:

e the sample mean squared error: — Z [, (X)) — g (XZ-)]2 , (1)
n

=1

e the integrated squared error (weighted by the marginal density):

[ 6 @) =g @ F (@) e 2)

e the maximal absolute deviation: sup [g, () — g (z)|. (3)
reX

Newey [14] obtained a consistency theorem for a large class of series estimators and
used it to establish the consistency of power series and regression splines estimators. He
gave asymptotic bounds in probability for criteria (1) and (3), and showed asymptotic
normality for nonlinear functionals of series estimators. Andrews [1] gave an asymptotic
distribution theorem: he provided conditions under which g, (z) is asymptotic normally
distributed after being centered at either its expectation or the estimand and normalized
by premultiplication by the squared root of its covariance matrix.

Both the previous authors supposed g to belong to a Sobolev space and used a sequence
of functions which span it. Related work can be found in Lugosi and Zeger [12]. They
used an uniformly bounded sequence of functions (¢j)j>1 for which the set of all finite



linear combinations is assumed to be dense in L*(u), for any probability measure p on
krn
X. Then g, = Z a;jv;, where (aj)j:m minimizes:
=1
kn
Yie Y aj; (X)) (4)
=1

J

1 n

krn
under a boundedness constraint on Z la;|. A universal strong consistency is proved
j=1
for this estimator, namely the almost sure convergence of risk (2) for all distributions of
(X;,Y;:) with E|Y;|* < oo,

The case of an orthonormal basis on a compact interval X' is analyzed in Andrews
[1], for the particular case of trigonometric functions, and in Eubank and Speckman [8],
where upper bounds for the expectation of risk (1) are obtained, for trigonometric and
polynomial-trigonometric least squares estimators. Antoniadis, Grégoire and McKeague
[2] obtained the same type of result, among several others, when using wavelet series
estimators.

The estimator defined in this paper is also based on orthonormal bases. The previous
authors typically assumed that the density f is bounded from below on X', or an equivalent
condition'. Tn the same way, they assumed that g belongs to L? (X).

In this paper, the asymptotic consistency of the estimator will be established assuming
only the following hypothesis, which seemed to provide a more realistic condition on the
model:

HO There exists an increasing sequence of bounded sets K, such that U K, = X and:
n>1

® glx € L*(K,),Vn > 1;
° a, g f(z)>0,¥n>1.
r€K,,

For instance, assumption HO is fulfilled if K, are compact sets, if f is continuous and
doesn’t vanish on X', and if ¢ is continuous or bounded on X. This kind of regularity
condition (with respect to f) imposed on the sequence (K,) o, is a possible approach in
the case when regression estimator consistency cannot be obtained over the whole space,
but only over a suitably increasing sequence of compact sets (see also Bosq [4], in the case
of kernel density estimation for discrete time processes).

The regression estimator g, is then formally defined by:

gn (w) =) e () I, (), (5)

'A boundedness condition on the smallest eigenvalue of a second moment matrix (see also Lemma 1
in the Appendix) is imposed in Andrews [1] and Newey [14].



where
2
n

a(n)
(E‘?a 78;1(71))/ = arg min Z Y;_ Z (lj&? <X2> IKn (Xz> 3
%5 i=1 i=1

(e?)j>1 denotes an orthonormal basis of L?(K,) and ¢(n) is a deterministic sequence of

integers increasing to infinity with the sample size.

To study the consistency of the proposed estimator, it was considered more natural
to use the criteria ||g, — gHm2 and ||g, — gHmoo, where HHmQ denotes the usual norm of
L*(K,) and ||-||, .. denotes the sup-norm on K,,. These two norms correspond to intrinsic
distances between two curves, which do not change with the distribution of the regressors.
The main goal of this paper is to study their almost surely asymptotic behavior, which, to
the best of our knowledge, was not considered until now for regression series estimation.

The remainder of the paper is organized as follows. Section 2 will give general sufficient
conditions for the almost sure consistency of the estimator in the previous norms. In
Section 3, these results will be particularized in the case where d = 1 and (e?)j>1 is
the Fourier or Legendre basis. Section 4 focuses on a particular case of wavelet basis in
the multidimensional setting. In Section 5 general bounds in probability for the criteria
defined above will be obtained, after which the problem of the optimal choice of ¢ (n) will
be studied. We shall derive best possible rates of convergence and compare them with the
classical results obtained by Stone [18]. Finally, in Section 6, some concluding remarks

will be highlighted. An Appendix contains the proofs of the results stated in the text.

2 General consistency results

Let us first introduce some notations. Let U; =Y; — g (X;), ¢ = 1, n, denote the errors of

the regression model and 02(,10) =V({Y|X;=2)=E (Uﬁ-2 X; = z) denote the conditional

o0
variance of Y, given X; = z. Let c?e” be the series expansion of ¢ in the basis of
1 (3 777 p q
=1

L?(K,), where ¢} = /1’ g(z)e?(z)dr. Let 2% denote the almost sure convergence
Xln

n—o0o

and — the complete convergence of random variables (see e.g. Billingsley [3]). The
n—oo

following assumptions will furthermore be considered:

H1 3 ¢y > 0 such that f(z) < Cp,Vz € X.

H2 sup o%(z) < oo.
reX

H3 3 (w,),>, an increasing sequence such that sup ‘e? (x)‘ < wp,Vn > 1.

- reK,

1

Jj=1,q(n)



H4 3 C, > 0 such that E[|Ui|" |X,] < (Co)" 7 plE [|U:* |X,], Vp > 3.

The upper bound imposed on the density by H1 and the bounded second condi-
tional moment assumption H2 are quite common in the literature (see e.g. Andrews [1]).
Assumption H3 is a regularity condition imposed on the basis. In particular, it holds
with w, = M for the trigonometric basis and w, = M+/q(n) in the case of Legendre
polynomials. The last assumption, known as “Cramer’s condition”, is needed in order
to write exponential type inequalities to obtain the almost sure consistency. Assumption
H4 is trivially verified if, for example, Y; is bounded or in the case where U; is normally
distributed.

Then one gets the following consistency result:

Theorem 1 a) If assumplions HO to H4 hold and the sequence q(n) verifies:

. q(n)ZwZ = N2
(1) o’ (Cj.) n_>_o>o 0
j=q(n)+1
> nat
1) Vv >0 exp | —vy——2—| < >
(i) Vv ; p{ vq(m%g}

then:

15— gl 2% 0

b) If furthermore,

(iii) :eug)n g(z)— 2 crel (z) 7H—O>OO
]:
then:

~ a.s.
192 = gllnoe =2 0

Proof. See Appendix.

The assumptions in this theorem are somewhat complicated in this general form.
Hypothesis (iii) is a uniformly approximation property that characterizes the basis, whereas
the first two conditions can be expressed in terms of convergence rates for the sequences

o0
q(n), w,, a, and Z (cy)Z . However, a more simple form for these sufficient condi-
J=q(n)+1
tions can be given if, in each space L? (K, , a classical basis (e?>j>1
section). In that case, w, and coeflicients ¢ can be evaluated if the regression function

is chosen (see the next

is supposed to belong to some regularity class. In this way, the sufficient conditions for
the almost sure consistency will be expressed only in terms of convergence rates of ¢ (n)
to infinity and of a, to zero or, equivalently, in terms of growth rates of ¢ (n) to infinity

and of K, to X.



Let it be noted that if our study is confined to the classical case analyzed in the
literature, in which the density f is bounded from below on X', then all the sufficient
conditions will be simplified: in this particular case, the sequence «, will be bounded
away from zero and thus will disappear from all assumptions. In the particular cases
presented in Section 3, ¢ (n) thus remains the unique parameter to be chosen in order to
obtain consistency.

3 The one-dimensional case: two examples

This section will be focused on the univariate case, to illustrate the application of the
general consistency results in a simple classical situation. However, the following dis-
cussion can be generalized in a straightforward manner to higher-dimensional settings,
using product bases. The two following examples, which are of interest in their own right,
will be our main cases of application: the first uses trigonometric bases and the second -
Legendre polynomial bases.

For the sake of simplicity, it will be assumed that hypothesis HO is fulfilled for a se-
quence of compact symmetric intervals K, = [—ky, k,], with (k) -, being an increasing
sequence of positive numbers. This implies that X' must be a symmetric (bounded or
unbounded) interval, an assumption which is not restrictive, because a one-to-one trans-
formation of the original X; variables can always be performed onto such an interval. One
can then evaluate the coeflicients ¢ (see Lemmas 3 and 4 in the Appendix) and obtain
relatively simple sufficient conditions for the general results of Section 2, corresponding
to a large class of regression functions. More precisely, it is assumed that g belongs to
the Sobolev space W™ (X') (the space of functions which are m — 1 times continuously
differentiable on X', and such that their mth derivative is square integrable).

Example 1: Legendre polynomials

Let (e?)j>1 denote the orthonormal basis of Legendre polynomials on K,,:

27 +1 1 & AN 25 + 1 T .
e]+1 (I) an (an)j]' dx |:(‘r kn) } an PJ kn y & € An; J = 07

1 7 .
where Pj(y) = —— [(y2 — 1)]} , y € [—1,1], is the standard Legendre polynomial

q(n)

n

of order j. Then assumption H3 will be verified for w, =

(see Delecroix and

Protopopescu [6]).
One obtains in this case the following consistency result:

Corollary 1 [If assumptions HO, H1, H2 and H4 hold, (e}l)j>1 denotes the Legendre
basis on K,, g € W™ (X)), with m > 3, and the sequence q(n) verifies:



k2m—1
n
a%q (n)Qm 4 n—oo

(1)

419
no k2

q(n)’

< 00

(ii) Vy > 0: Zexp [—7
n=1
then:

2) [~ gll,p 2% 0

b) H/gn _an,oo ﬁ) 0
n—00

Proof. It follows from Theorem 1 and Lemma 3 in the Appendix.

As a consequence, if the tail behavior of the marginal density is known, it is possible

to express the sufficient conditions above in terms of growth rates for ¢ (n) and k,. This
will be done in two particular cases, which are extreme situations for the behavior of the
distributions tails: the standard normal distribution and the Cauchy distribution. Let us
note that the results can be presented in a more classical way: the obtained choices are
valid for every density such that: f(k,) > C - fo (k,), where fy is the particular chosen
density. The regression function is supposed to belong to the regularity class W™ (X),
with m > 3. The obtained sufficient conditions for the almost sure consistency results in

Corollary 1, are given in the table below:

X; ~N(0,1) X; ~ Cauchy
q(n)Qm_l 1 S
7=O(n2+_f>,7'>0 q(n)=0<nm+7),7>0

Ing(n)
2m—4 77

For the sake of brevity, the proof is left to the reader.

Example 2: Trigonometric functions

Let (e?)j>1 denote the orthonormal basis of trigonometric functions on K,,:

1
e (z) = , Ve e K, ;

2k,

1 (ﬂm) .
——cos | =— |, j even
k 2k . .
" () = " S , ] >2, Ve € K,.
E o L sin 7@ —mz 7 odd ' = '
VEn 2k, ’

Then assumption H3 is fulfilled for w, =

Vi,

-~

and we obtain the following result:



Corollary 2 If assumptions HO, H1, H2 and H4 hold, (e?)j.>1
metric basis on K,, g € W™ (X), with m > 2, and verifies for each n the periodicity
condition g (—ky) = gt (kyn), fori=0,m — 1, and the sequence q(n) verifies:

denotes the trigono-

k,?m
———ms 2 0
= not k2
i) Vv > 0: exp |— P < oo
(0 ¥ nz:; p{ ")’
then:

a) [[Ga = gll,, =0

n—o0
b) Hgn - g”n,oo 2} 0
n—oo
Proof. This follows from Theorem 1 and Lemma 4 in the Appendix.

In the particular cases of standard normal distribution and Cauchy distribution, the
following sufficient conditions are found:

X, ~N(0,1) X; ~ Cauchy
2m—1 1
aln) ™ :O(n?if), >0 q(n)z(’)(nl?ﬂ"ﬁ*’), >0
VIng(n)
kn < 54—+ 1HQ(n),n>0 kn=O<Q(n)%+">,n>0
2’m—3—{_77

4 The multidimensional case: a wavelet basis

In this section the wavelet version of our estimator is studied, under the general assump-
tions HO, H1, H2 and H4 stated in the first part of the paper. Wavelet estimation
is computationally convenient, because the estimator is summarized by relatively few
estimated coefficients. Antoniadis, Grégoire and McKeague [2] proved the convergence

n
in expectation of the sample mean squared error, n=! Z [g (X)) — Gn (X:)]?, assuming
=1

that g belongs to a Sobolev space on X = [0,1] and verifies the boundary condition
9(0)=g(1).



Without loss of generality (see the argument in Section 3), in this section we assume
that X is a centered ball of IR? and that hypothesis HO is verified for a sequence of
centered balls K, of increasing radii. In every space L?(K,) we will consider a wavelet
orthonormal basis, as described by Jaffard and Meyer [10]. This basis is composed of
functions

{5 17 23do(n), k€ R}Y,
where j, (n) is an integer depending on the bounded set K, and R? is a finite set defined
as R? = A7, \ A7, with
N ={ke27Z'NK, | d(k,0K,) > (p+1)27}.

Here p > 1 is a fixed integer and d(-,-) is the distance corresponding to the norm |z| =
max || .
i=1,d

Assumption H3 is then verified for w, = C729("M/2 with C} > 0 (see the localization
formula denoted by (F) in [10]), so we have:

3C7 > 0 such that sup |7 (2)| < Cr2tt/2 yn > 1. (6)
reKy,

j=jo(n),q(n) kERT

The least squares wavelet estimator will be formally defined as:

Z Y Tt (@) Ik, (), (7)

J=jo(n) kER}

where

@k)jzw = arg l"ilin d v Z > it (X Ik, (X))
€ 7 a3, =1

J=jo(n) kERY

and ¢(n) > j, (n) is a sequence of integers increasing to infinity.
Since X' is bounded, there exists an integer .J, such that j,(n) > J,, Vn > 1 and thus:

card (R?) < M2, ¥n > 1, ¥j > j, (n),
with M > 0 constant. Then the number of functions used in the definition of the estimator
is bounded by 2M2%()

Let Z Z ¢ p7, denote the series expansion of g in the basis of L*(K,), where
i= jo( k‘ER"

Ay = / g (x) % (x)dz. A result in Jaffard and Meyer [10, Theorem 1] gives a charac-
K,

terization for the space C™ (X') of Holder continuous functions of degree m, in terms of
coefficients ¢7,. More precisely, if 0 < m < 2u — 2, then g belongs to C™ (X) if and only
if

|| < 29227 i > 1, V5 > g, (n), VE € RY, (8)
with Cy > 0 a constant depending only on d and p.

9



The wavelet estimator inherits the properties proved in Theorem 1. Thus we get the
following consistency theorem:

Theorem 2 If assumptions HO, H1, H2, and H4 hold, (;/);tk)Jk denotes the wavelet

basis defined above and g € C™ (X)), with 0 < m < 2u — 2, then for any sequence q(n)
such that:

2(3d—2m)q(n)

O —— 20
.. - na,
(ii) Vy >0 Zexp ~VZadz(ny | <
n=1
we have:

2) 3 —gll,., =% 0

b) “gﬂ _g”n,oo ﬁ} 0

n—oo

Proof. See Appendix.

5 Convergence rates

The present section is devoted to the study of mean square and uniform convergence rates
for our estimator, in the particular cases considered in the previous sections.
We first state the general result:

Theorem 3 If assumptions HO to H3 hold, then:

. 1«
D) g —ale = 0n (L) w0 [ 150 (@)

" e
1/2
. q(n)w, q(n) 2
b) I3 — gll. = op( )+op " S (@) |+0r (s [0 (o)
N a, Pl Ky,

Proof. See Appendix.

In the three cases introduced in Sections 3 and 4, it will be possible to get the values
of ¢(n) minimizing the obtained Op bounds. To compare them with Stone’s optimal
bounds, it will be assumed, as in Stone’s paper [18], that density f is bounded away from
zero on its support X', which is a compact set of IR? (to the best of our knowledge, the
desire to eliminate this restriction still remains an open question). Therefore assumption

HO will be replaced by:

10



HO’ 3C > 0 such that f(z) > C,Vz € X and g € L* (X).

In this particular case, the regression estimator can be defined using a single orthonor-
mal basis of L (X) (i.e. ¢} = e;, Yn € IN), obtaining results valid over the whole space
X. In the sequel, |||y, and ||-||y .. will denote respectively the norm of L? (X') and the
sup norm on X. ’ ’

The previous theorem can thus be rewritten as follows:

Corollary 3 Given assumptions HO’, H1, H2 and H3, we have:

D 5= la =0 () w00 [ Y 4

j=q(n)+1
1/2

. n)w, C n
b) 16 — dllx.. = Or (—q“ )+op o lam) 3 @ |+or (sup \gq“(x)\)
v j=a(n)+1 rex

As is common in smoothing methods, antagonistic terms appear in these upper bounds:
o0

the bias terms, depending on Z c?, which are decreasing functions of ¢ (n), while the
J=g(n)+1

variance terms, depending on ¢ (n), increase with the parameter. Achieving a trade-off

between the smoothness of the estimator and fidelity to the sample will produce the best

minimizing choice for ¢ (n). In the following, the practical choices adapted to the three

bases introduced above will be given, then the appropriate decay rates for the two criteria

will be calculated:

Example 1: Legendre polynomials
Using the bounds derived in Lemma 3 (see Appendix), we obtain for X = [k, k], k > 0
and g € W™ (X), withm > 2:

~ q(n 1
G —gll, = Op <%> +Op <W> and

_ (n) !
Hgn—gllx,oo = Or (q\/ﬁ >+OP (W)

When ¢ (n) goes to infinity at the same rate as n#, it results that

90 = gll2 = Op (n= 57" ) and
(9)

~ m=3/
50 = gll e = O (n="5).

In Stone [18], it has been proven that the best global convergence rates of any non-
parametric regression estimator in the class C™ (X') are respectively n™" for the integrated

11



squared error and (n~'logn)" for the sup norm, where r = 22
2m

7 and d is the dimension
of the regressors. Let us note that the convergence rates (9) do not attain Stone’s optimal
bounds.

Example 2: Trigonometric functions
In this second particular case, if ¥ = [-k,k], k > 0 and g € W™ (X), m > 2, satisfies
the periodicity condition: g() (—k) = ¢ (k) , for i = 0,m — 1, then:

6.~ ols = O (U2) +0r (—mr ) and
o.(18) o (i)

1 :
zm , we obtain the convergence rates

92 = 9l x 00

—

When ¢ (n) goes to infinity at the same rate as n

6n = gl3 = Op (n=57" ) and
(10)

m—1

60 = gl v = Or (n=%7).

which are again not optimal in the sense of Stone’s bounds, nevertheless the second of
these improves on the corresponding rate (9) obtained in the previous case.

Example 3: Wavelet basis
If g€ C™ (X), with m > 3d/2, for a fixed ball X C IR?, the results of Section 4 lead to

R ) 9da(n) 1
1 Gn _ng,g = 0P< - ) + Op (W) and

R 93dq(n)/2 1
19n = 9llyee = Op <T> +0p (W)

(see also the bounds derived in the proof of Theorem 2). Then, choosing ¢ (n) so that

21") goes to infinity at the same rate as n2ml+d, we obtain the convergence rates

5 = 9ll%. = Op (n"77) and

(11)

- _ m—d
19 — QHX,OO =0Op (n 2m+d> ]

In this case, the rate for the integrated squared error is optimal, i.e. it reaches Stone’s
bound on the best obtainable rate.

Obviously, to decide if the series estimator is or is not optimal in the first two cases,
it would be necessary to obtain equivalent functions of ||g, _ngY,Z and ||gn —ng,ooa
instead of upper bounds. But, the dependence of the two criteria on g (n) is somewhat
complicated (see Appendix). As far as we know, the problem remains open.

12



6 Conclusion

In this paper it has been shown that series estimators can be used for regression
problems under large assumptions on the underlying model. They are almost surely
consistent for practical choices of the parameters, which are detailed in the text for several
classical cases.

In particular, it is not necessary to assume that the density of the regressors is bounded
from below on its support.

Finally, it has been deduced from the obtained results that choosing a wavelet basis
leads to the optimal decay rate of convergence given by Stone, when assuming his own
basic hypothesis.

7 Appendix

This Appendix contains the proofs of the results stated in the text. To give them, some
additional definitions and notations are introduced. We define:

N, = (n3) = (¢ (Xi) Ix, (X))

Y* = (V...

i=1,..,n, j=1,..,9(n)’

In the sequel we will use the following ¢ (n) x g (n) matrices A,, and B,, of which the
generic entries are respectively

n 1 - n n
afy = — ) €l (Xe) €] (Xi) I, (Xi)
k=1

and
b?] = Ea?j = /e? (x) e? (x) f (x) dz.
Kn
The above notations are similar to those in Delecroix and Protopopescu [6]: the B,

matrix is in fact identical, but A, is a little bit different, although its properties are the
same.

1
Then we have A, = —N/! N,, and the coefficients that define the estimator will be given
n

by the matricial formula:
(/6\9117 7a;(n)), = (NTILN”)_ N'r,LYna

where ()7 denotes a generalized inverse.

Let ||A]l, df sup ||[Az||, denote the matricial norm corresponding to the Euclidean

ll=ll,=1

k3

norm for vectors and ||A]|_, d:efm_ax (Z |(12]|> . Let Apin (A) and Apax (A) denote respec-
J

tively the minimum and maximum eigenvalue of a symmetric matrix A.

13



The next two lemmas show some properties of the matrices A,, and B, used in proving
the results. As a consequence, we can deduce that, under assumptions HO and H1, B,
is a positive definite matrix. By a similar argument, A,, is only a positive semidefinite
matrix (we cannot obtain a nonrandom lower bound for Ay (4,)).

Lemma 1 Given assumptions HO and H1, the matriz B, verifies:
(877 S /\rnin (Bn) S /\max (Bn> S Cl,\V/TL Z 1.

Proof. See Delecroix and Protopopescu [6].

Lemma 2 Given assumptions HO and H3, if the sequence q(n) verifies:
Yy >0 Z [ na } <
q(n)* exp — 00
! RIOR=1

then the following complete convergence results hold:
] cO.

a) —||A, — B,||., — 0 and
y, n—00

b) @ [|Az]l, 2 1.

n—o0

Proof. a) This is similar to the demonstration given in Delecroix and Protopopescu [6]
(the single difference lies in the sample size used in the definition of the matrix A,,).
b) For any ¢ > 0 we can write:

1
PlanllAz]l, = 1> ¢] = P | Amae (A7) > 25 ]
Qp,
1 e+1 .
= D (A s (A > 0]~ =F ey A () P (40) et 1
1=1,9(n)

Using the inequality between eigenvalues of matrices A, and B, (see, for example,

Lascaux and Théodor [11]),
[Ai (An) = Ai (Ba)| < [[An = Ball. (12)

we can write:

Lemma 1
min_[A; (An) |Xi (An) > 0] 2 Amin (Bn) = [|[An = Bulle 2 0w — [[An — Ball

i=1,q(n)

and therefore

Ploa||A7]],—1>¢] <P |an—|A

1 e
Bull < 2] = P | 140 Bl > =

14



Using part a), the last quantity is the general term of a convergent series, so this
proves the result. W

Proof of Theorem 1. .
a) The first part of the theorem is established as follows. We denote ¢ = (qu’ ”(n)>

e €
!
and ¢" = (/c?, '-'76\;(71)) . Then we have:

16 ~allz = [ Gnle) =g @ de= Yo (@) + Y @)

K, j=q(n)+1 7=l

Let us now establish the following majorization:

o0

2
G0 =gl < D0 () (VAT VY = | T (40) > 0
j=q(n)+1
2
+ ‘(N;Nn)‘ NY™ = | Amin (An) = 0] (13)
2

To prove this, it suffices to write that:

(n)

>

2

J
1

(@ =)' =l = <"l = || (Vo N Ny — e

2

J

The first term of (13), which is non random, converges to zero by hypothesis (i). The
third term converges to zero almost surely, because for any ¢ > 0 we have

P

(NN~ NV = {2 T Do (An) = 0] > €] < P i (An) = 0]

Lemma 1 1
2 sz%—w%—ng=P{—w%—Bmmz@
Ay

1 CcO. .
and — |4, — By||,, — 0 by Lemma 2 a). Finally, the second term of (13) can be
!

n n—oo
majorized as following:

[(NLN) T NG Y — |21 Pin (4,) > 0
T [Amin (An) > 0]

2

1N, (V™ = Nac™) 13 T Danin (Ar) > 0]

1
:W?~WMW—Mﬂ>
n
1

2,42
nog

< [on [ A7")°

According to Lemma 2 b), it remains to show that

1 n n 2 a.s.
Tz IV 07 = N 25 0

To see this, we shall use the following notations:

g = (9(X0) Ik, (X1), o0 9 (Xn) I, (X5n))'

g = <g<I(n) (X1> 7 _”7ng(n) (Xn)) ;

15



a(n)
where ¢4 (z) =g(z)1g, (z Z cjej (z). Then g, = N,c" + g, and thus

7=1
] ! n ny |2 ] ! n 2 ] 1 o2
N = N S e N = gl e IV (1)

We will prove the almost sure convergence to zero for each term of this formula. Let
us first compute:

-trace (N, N,)

1N lls < [Z (9 (x2))°

k=1

n

< nQ(n)[ (9" (X))’

k=1

) )\max (An>

and, therefore, using (12) and Lemma 1, this gives the following majorization:

1 r Q(n) - n 2
L gz < 12 [z (6 (%0)

167 —

By Lemma 2 a), ||A, — B,||., —= 0, therefore it remains to be proven that
n— 00

2tt) [i (g (Xk))2] — 0, (15)

k=1

to get the almost sure convergence to zero for the second term of (14).

Let us now denote (] = (gq(“) (Xk))Z , Vk = 1,n. Then

B = [0 @) fmdra Y (@) (16)
Kn j=q(n)+1

Hence we obtain:

)5 (o (x0) < LS w1 a1 S (o

2 2
na na
nog=1 " k=1 on j=gq(n)+1

The second term converges to zero by (i) and for ¢ > 0 we have by Hoeflding’s
inequality:

n 4.2
P 9 (712) (G —E¢)| >e| <2exp |— nane I
nal |“— q(n)
k=1
2q(n)” | sup |g(z)— el (z)

16



Using (iii), there exists a constant v > 0 such that
4
P M >¢e| < 2exp |:—7 nan2:| ,
q(n)

which, combined with (ii) and Borel-Cantelli’s lemma, yields the statement (15).

n

> (G —E¢)

k=1

Finally, it remains to prove the almost sure convergence for the first term of (14). For
any ¢ > 0 we have

2
1 n 2 n n
P ol N, (Y —gn)|\2>e} = P [ e (Xk)(Yk—g(Xk)IKn(Xk))] > nfale

e (Xp) (Vi — g (Xp))| > a—] -

P
= Z q(n)

The random variables in the last sum are centered and their variance is bounded:
Vel (Xi) (Yo — g (Xi))]
= VE[e] (Xy) (Ve — g(Xi)) [ Xi] + EV [e] (Xi) (Vi
= E[(e] (Xx))"V (Yi|Xy)] = E[(e] (Xi))" 0* (X))
< {sup 02(33)} /(e;I (2))* f () dz < C4 {sup 02($):|
reX

reX

— g (Xk)) | Xi]

Kn

Combined with Bernstein’s inequality and assumption H4, this gives

1 !
P [— INL (V7 — gl > e <

n2 o2
nea;

1
< 2q(n)exp _I %t

N,/

q(n)

q(n) 4nC |sup 0'2(:6):| + 2C5w,
lzeX

Thus, there exists a constant v > 0 such that

I . na?
Pl vy —gn>u§>e] < 24 (n) exp [—7 }

n o, q (TL) W,

and the last expression is the general term of a convergent series, by hypothesis (ii).

b) For the second part of the theorem, we can write:

q(n)

G2 = 9lluee = sup [Gu(z) —g ()l =sup > (& —¢}) e} (x) — g™ ()
reK, reK, =1
q(n) \ 2
< sup " (@) + e/ () |30 (@F =) (17)
TENK, j=1

17



The first term converges to zero by hypothesis (iii) and it remains to prove that

converges to zero almost surely. The result can be easily verified by arguments similar to
those in the first part of this demonstration. W

Lemma 3 If (e?)j>1 denotes the Legendre basis on K, = [—k,,k,] and g € W™ (X),
m > 2, then: -

o 2m
a) ), (02'1)2:@(%) as n — 00
i=am4l q(n)

Proof. For parts a) and b) see Delecroix and Protopopescu [6].
c¢) Given the assumptions above, we can prove that (see again Delecroix and Protopopescu

6] i
‘C?H‘ =0 (%)

and thus we obtain

sup ciel (x)] < sup ‘cj+lej+1 ($)| =0 ]i ) Z —
TE€EKn | . TEKn . no . J
j=q(n)+1 i=q(n) i=q(n)
kn
- 0 ——
q(n)
Lemma 4 [If (e}l)j>1 denotes the trigonomelric basis on K, = [k, k,], g € W™ (X),
m > 2, and verifies for each n the periodicity condition
g" (—k,) = g" (kn), fori=0,m—1, (18)

then:

18



00 ) kim-}-l
a)z (C?) :O<W> asn — o0

Proof. For parts a) and b) see Delecroix and Protopopescu [6].
¢) Under the assumptions above, we can prove that (see again Delecroix and Protopopescu

6)) 1
fn 7
‘(’J‘ - ( gm )

and thus we obtain

- 1 & kT km
ap | X gnn-of o > B co(-H) .
TR Jiza(n)+1 Vo e a(n)

Proof of Theorem 2.

The proof of consistency for the wavelet version of the estimator follows the proof of
Theorem 1 given in the general case of an arbitrary orthonormal basis, with simple modi-
fications. Essentially, one replaces in the demonstration the number of terms in the series,
q(n), by 2da(n) (here the constant has been omitted) and uses the uniform bound given
by w, = C;2%()/2 and formula (8).

First, the matrices A, and B, defined like in the case of general orthonormal bases,

M n 1 - n n
An = (“?Al,m) , with Aix1,xe = n Z d’i,kl (Xk) @Z’j,kz (Xk) Ik, (Xk)

k=1

By = (b3, j5,) s with by, = / Ui (@) $fy, (2) [ (2) de,

Ky
satisfy the convergence properties of Lemma 2, for any sequence ¢ (n) that verifies as-

sumption (ii) of Theorem 2.
a) The following similar formula holds for the integrated squared error criterion:

lon = allie= > > (G) Z > @e—cii) (19)
J

:q(n)+1 k‘ER? i= ]O )kER"

The first term (which is non random) converges to zero because, using (8), we have:

Z Z (c;k)Q < Z card (R?) . (C*Q_dj/ZQ_jm:)Q (20)
j=q(n)+1 kER] j=q(n)+1
2 —2m __ MCE
< MCH Z 2=% @ 1) B — 0.

=q(n)+1

19



By following a similar computation as that given in the proof of Theorem 1, the second

term of (19) is bounded by:

q(n)
Yo @) < [an| AL - a7 IV 07" = N T Dhmin (40) > 0]

=jo(n) kERY

+ H(N;Nn)‘ NLY™ o zI[Amin (A,) =0]. (21)

Using the results of Lemma 2 a) and b) as well as the proof of Theorem 1, in order to

get its almost sure consistency it is sufficient to show that

ING, (Y™ = Nac®)ll; =% 0.

noz2 —00

With the notations of Theorem 1, we can write in a similar fashion:

n ny |2 1 n 2
LN - N € e N = )
2M2%) | & , 2
VTS () (X00)* | 140 = Bl + €.
n k=1

Since ||A, — By, 2% 0 (by Lemma 2 b)), for the second term of the right hand side
n—o0

it remains to prove that

qu(n) - 2 a.s.
w2 [ (" (X))} 52 0
n k=1
Let denote (} = (gq(”) (Xk))Q , Vk =T1,n. Then
2da(n) | & . ) oda(n) " gda(n)
[Z @ )’| s TGP G Y Y (G
T Lk=t Tok= on j=q(n)+1 kER?
< 2da(n) L B 4 O MO 9dq(n)
- nao? — (G = BG) + G “aZ (22m —1) 92mq(n

The second term converges to zero by (i) and for ¢ > 0 we have by Hoeffding’s
inequality:
-]

n

9dq(n)
P [ na2 Z

(GF = BCE)

k=1
4.2
na,e
< 2exp |— z I
2 224a(?) | sup |g( Z Z P
] k73, k
L r€Rn j=jo(n) kER} ]

20



But

sup g Z Z ],k¢ —= SUP Z Z j,k¢

reK, = Jo(n) kER" reK, izq +1 kER"
Z N CLandifzgmin . Cr2dil < 0,07 Z card (R?) 27
=q(n)+1 kER} J=q(n)+1

oo . MC.C

* —(m—d) — 1
<MC.Cy > 2 ! (2m=1 — 1) 20m=Da(n)”
=g(n)+1

Notice that assumption (i) implies that 3d —2m < 0 and thus m —d > 0. In conclusion,
there exists a constant v > 0 such that

9dg(n)
P [
no?

n

n

> (¢ - B

k=1

’IZOé4

TLO[74I
> e §26Xp —FXW <26Xp ’ym 5

which, combined with (ii), proves the required statement.

Finally, i

(Y™ — g, %@ 0. For ¢ > 0 we have by

Bernstein’s inequality:

1 2
p V" — g,
o N0 = >
no,\/e
Z Y P ) (Ve — g (Xi) Ik, (Xk))‘ > ]
=q(n)+1 kER? q(n)
na’e
< AM2%) exp | — L
SMC, |:supa( ) 2dq(n —I—QCQC*\/ M 2da(n ozn\/g
reX
2
da(n) PV
< 4AM2°1") exp [ Y g | - with v > 0,

which is the general term of a convergent series, by hypothesis (ii).

b) As in the case of a general orthonormal basis, we obtain:

190 = gllue < sup |g"" (x)| + T2 Z 3l -

reky, i=Ga(n )kER"

1 g(n)
ey T OTV2M2I Y TN (@ )

i=io(n) kERT

< MC.CY

The first term converges to zero since m — d > 0, so it remains to prove that the
second one converges to zero almost surely. It is easy to see that we only have to repeat
the arguments of the first part of the demonstration. Indeed, the almost sure convergence
of the two terms of (21) multiplied by 22d1(n) will be verified under our hypothesis. W
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Proof of Theorem 3.

This is a refinement of the corresponding proof in Newey [14, Theorem 1]. To get
the result, the majorization (13) in the proof of Theorem 2 will be used. When n is
large, the third term of (13) becomes negligible with respect to the first, i.e. it is an

o0
2 . . .
Op E (c?) , since for a given ¢ > 0, we can write
J=q(n)+1

PRl (@) Vv vy~ 3 T min (An) = 0] > &

1
(&%)
and the last expression is the general term of a convergent series. Therefore,

: - : - ! n v 2
G, = allZe <0p |30 ()] + [V T N = || T (40) > 0] (22)

J=q(n)+1

Using the notations in the proof of Theorem 1, the second term in the latter formula
can be rewritten as

2
v Ay — | T (42) > 0]

= v T N N | T i (4) > 0]

< {H(N;Nnrl N =g+ v N | }I[Amin (42) > 0] (23)

2
2

Let us now compute

2
|vav) ™ Mg = gV (NN (NN N

IN

Amax (N N2) ™ g,/ Nu (NN ) ™ Nyg,
- 2

< Amax (NN ™ Anas {Nn(N;Nn)_lN” (6™ (X0))”.
k=1

Since the matrix N, (N/ N,))™" N! is idempotent, this gives

n

n
2

1 2
2 < E |‘A;1H2 Z (gq(n) (Xk))

k=1

|[(NJN,) ™" N

_ 1 " " 2 Lemma 2 b) 1 " n 2
<o 1471 1] — > ("™ (X0))” =" 0p (1) (9 (X))

" k=1

and, using (16), we obtain

|viv ™ Mg T (A) >0 =00 [ S (@) @)
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Finally, for the first term of (23) we can write

JVNGY N (Y = g2 < (VP ga) Na (VNG ™ (N2 N,) ™ N2 (V7 = g,)
< Amax (NI N,)TH(Y™ — g) Ny (NN, N (Y™ — @)
= [ A7 ) —— (V" = g N (NN N, (V7 g,) (25)

~or (= )m—m Ny (NN N (Y — g,).

noy,
Let us now denote X" = (X, ..., X,,)'. Then
B [(V" = ) N (NN T N (V" = g,) [ X7]

= E {trace N, (N;an)_l N (Y™ —g,) (Y — gn),} |Xn}

= ftrace {Nn (N;Nn)_l N/ E [(Yn —gn) (Y" = 971)/ |Xn} }

< [Sup o’ (x)] trace {Nn (N'N,)™! N;} < q(n) [Sup o? (x)}

reX rEX

and, combined with (25), this gives

H(N;Nn)—l N (Y™ = ga) ZI Panin (An) > 0] = Op (‘I(")) . (26)

nao,

From inequalities (23), (24) and (26), we obtain finally

/ - v n 2 _1 N n)? \n
H(NHNH) ENYT = T in (A2) > 0] = Op | — > () +0P<n(a)>
™ jzg(m+1 o

and, comparing with (22), this proves the first part of the theorem.

The Op bound of ||g, — g]|,, ., follows then straightforwardly, using inequality (17). H
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