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Hazard Regression
Birgit Grund and Lijian Yang

Hazard regression models are convenient tools to discover the structure
and dependencies in time-to-event data with covariates. In medical research,
the influence of certain covariates on the length of patients’ survival is often
evaluated with hazard regression models, see, for instance, Cox and Oakes
(1984). In econometrics, hazard regression is being used, among others, to
model insurance industry and employment data; see, for example, Heckman
and Singer (1985), Lancaster (1990).

The XploRe quantlib hazreg provides a number of quantlets for the analysis
of right-censored time-to-event data. These include Kaplan-Meier estimates of
the survival function and pointwise confidence intervals for the Kaplan-Meier
estimates. For the Cox proportional hazards model, we provide estimates for
the regression coeflicients and their covariance matrix, significance tests for the
regression coefficients, and estimates for the baseline hazard and conditional
survival functions. This chapter is a tutorial for the quantlets in the hazreg
quantlib. We provide the syntax, shortly describe the underlying statistical
theory, and illustrate their use with examples. In Section 1, we introduce right-
censored time-to-event data and present quantlets that arrange the data into
a form suitable for analysis in XploRe. Section 2 is dedicated to Kaplan-Meier
estimates and corresponding confidence intervals for the survival function. Sec-
tion 3 describes semiparametric estimation and hypothesis testing in the Cox
proportional hazards model. We apply these methods to a data set on the
length of stay in nursing homes.



1 Data Structure

{data, ties} = hazdat(t, delta{, z})
sorts the times t in ascending order, cosorts the censoring indi-
cator delta and the covariates in z, and provides tie information

nar = haznar(data)
calculates the size of the risk set at each observed time point

atrisk = hazrisk(data, i)
determines which observations are at risk at time ¢;

The quantlib hazreg provides methods for analyzing right-censored time-to-
event data. The observed data are triples (¢;,9;,2;), ¢ = 1,...,n, where t;
denotes the observed survival time of the i-th individual, z; = (zi1,... ,2ip) T
denotes the p-dimensional covariate vector associated with the i-th individual,
and J; is the censoring indicator.

Let y; denote the uncensored survival time, and ¢; the random censoring
time. The observed survival time of the i-th individual is then given by
t; = min(y;, ¢;). The censoring indicator takes the value §; = 1 when y; < ¢;; in
this case, the observed time, t; = y;, is called event time. Otherwise, §; = 0,
and the observed time is censored, t; = ¢;. We assume that censoring is unin-
formative; this means, given the covariate values, the conditional distributions
of the survival time and of the censoring time are independent.

For many computations, information on the presence and location of ties is
required. Obviously, we could locate the ties each time that a method requires
this information. However, in a typical session the same dataset will be studied
for various purposes. It is much more efficient to gather the tie information
once, and link it to the data set. We address this problem by compiling most
of the necessary data information into a matrix data, which is passed on as an
argument to the various data analysis quantlets.

The quantlet hazdat sorts the right-censored data (t;,0;,2;), 1 = 1,...,n in
ascending order with respect to time ¢, cosorts the censoring indicator and
covariate values, evaluates ties, and organizes the data and tie information in
the matrix data.



It has the following syntax:
{data,ties} = hazdat(t, delta {,z})

Input:

n X 1 vector of survival times ¢;,

delta
n x 1 vector of censoring indicators J;,

z

n X p matrix of covariate values, with rows 2}; default is an empty matrix.
Output:
data

n x (p + 4) matrix of cosorted time-to-event data, with

column 1: observed times t;, sorted in ascending order,

column 2: censoring indicator d;, cosorted,

column 3: original observation labels (1,... ,n), cosorted,

column 4: number of tied observations in time t;, cosorted,

columns 5 through (p+4): covariate values 2] = (zi1,. .. ,2ip), cosorted;
ties

scalar, indicator of ties, with ties=1 when ties in the ¢; are present, and
ties=0 when there are no ties.

Example 1. With this example, we illustrate the use of the quantlet hazdat.
The censoring and the observed times are chosen to better demonstrate the
handling of ties (column 4 in data, and tie indicator ties=1). There are no
covariates. Note that at the start of each session, the quantlib hazreg has to
be loaded manually, with the command library("hazreg").

library("hazreg")

y = 2[113[(2/4171113]2 ; uncensored event times

c = 3|1|5]6]1116(2]415 ; censoring times

t = min(y~c,2) ; observed (censored) times
delta = (y<=c) ; censoring indicator



{data,ties} = hazdat(t,delta)
data
ties

Q‘ha201.xp1

The variables data and ties take the following values:

data =
1 0 5 3
1 1 7 3
1 1 2 3
2 1 4 3
2 1 9 3
2 1 1 3
3 1 8 2
3 1 3 2
6 0 6 1
ties =
1

The first column of data provides the observed times in ascending order. Col-
umn 3 gives the original order of the sample. The elements of Column 4 count
how many observations (censored or uncensored) are tied at the corresponding
times. In our data, three observations are tied at time points t = 1 and t = 2,
each.

Remark 1.1 Most of our hazard regression quantlets require an input variable
data, which provides the time-to-event data and tie information in exactly the
same format as the hazdat output variable data (first element in the output
list). Therefore, we recommend to run the quantlet hazdat at the beginning
of each session, or whenever a different set of covariates or a subset of time
points is to be considered.

In order to simplify notation, we assume from now on that the observed times
are sorted, t; <ty <...<t,.

For many calculations we need to know which observations are in the risk set for
any given event time. The risk set at time ¢ is defined as R(t) = {j: t <t;}. It
consists of all observations that did not have an event or were censored prior to



time ¢, and thus are still at risk for an event. The quantlet hazrisk determines
the observations at risk at a given observed time point, ¢;. The syntax is given
below:

atrisk = hazrisk(data,i)

Input:

data
n X (p + 4) matrix, the sorted data matrix given by the output data of
hazdat;

i
scalar, the position of ¢; in the ordered list t; <ty < ... < {,.

Output:

atrisk

n x 1 vector, with elements 0 or 1 that indicate whether observations are
in the risk set at time ¢;.
atrisk[j] = 1 when ¢; <t;, and atrisk[j] = 0, otherwise.

Example 2. We illustrates the use of the quantlet hazrisk with the data set
of Example 1. Note that the first 6 lines of the XploRe code are identical.
In line 6, we call hazdat to organize the observations and the tie information
into the matrix data, which is displayed as output of hazdat in Example 1. In
line 7, data is passed as input argument to the quantlet hazrisk.

library("hazreg")

y = 2[|1]1312]4]|7]11]3]2 ; uncensored event times
c = 3|1|5]611]6/2]4]5 ; censoring times
t = min(y~c,2) ; observed (censored) times
delta = (y<=c) ; censoring indicator
{data,ties} = hazdat(t,delta) ; organize data
atrisk = hazrisk(data,6) ; risk set at observation 6
atrisk

Q'hazOQ.xpl

The variable atrisk takes the value atrisk = (0,0,0,1,1,1,1,1,1)%. In this



example, the times t4 = t5 = tg are tied. Therefore, the risk set at time tg
includes all observations with index j > 4.

The quantlet haznar returns the size of the risk set at each observed time
t;, i =1,...,n . Its syntax follows below:

nar = haznar(data)
Input:
data
n X (p + 4) matrix, the sorted data matrix given by the output data of
hazdat.

Output:

nar
n X 1 vector, the number (of observations) at risk at each time point.

Example 3. The use of the quantlet haznar is illustrated with the same
data set used in the previous two examples. Again, the first 6 lines of code are
identical to Example 1, preparing the data. The input matrix data is obtained
as part of the output of the hazdat call; data is displayed in Example 1.

library("hazreg")

y = 2[113(2]4171113]2 ; uncensored event times
c = 3|1|5|6l116/21415 ; censoring times
t = min(y~c,2) ; observed (censored) times
delta = (y<=c) ; censoring indicator
{data,ties} = hazdat(t,delta)
nar = haznar(data) ; calculate the number at risk
nar

Q haz03. xpl

The output variable nar takes the value nar = (9,9,9,6,6,6,3,3,1)7. The first
three observations are tied, and, therefore, have identical risk sets.



2 Kaplan-Meier Estimates

{cil, kme, ciu} = hazkpm(data{, alpha})
calculates Kaplan-Meier estimates and confidence bounds for the
survival function

Let t(1) < t(2) < ... < t(;,) denote the distinct times in which an event was
observed, d; the number of events that occurred at time %(;), and r; the size
of the risk set at time ¢(;). The Kaplan-Meier estimate for a survival function,
also called product-limit estimate, is given by

S’( ) 1, if t<tu), )
t) = ; .
Ht(i)gt [1 - :—:] , if t(l) S t.

The Kaplan-Meier estimate S (t) is a right-continuous step function with jumps
in the event times. Censoring times affect the estimate only by reducing the
risk set for next event, and thereby increasing the hight of the next jump.

In the presence of censoring, Greenwood (1926) suggested the following esti-
mate for the variance of the Kaplan-Meier estimate:

UOERIONY m (2)

The Kaplan-Meier estimate S (t) is asymptotically normally distributed. This
leads to the following pointwise confidence intervals for the survival function,

S(t),
[é(t) — 2o V®Y2, S() + 21— /QV(t)l/z] , (3)

where (1 — ) is the coverage probability, z, denotes the p x 100-th percentile
of the standard normal distribution, and V(t) is Greenwood’s estimate of the
variance of S(t), given in formula (2). Note that Greenwood’s estimate tends to
slightly underestimate the true variance, so that the true coverage probability
of the confidence intervals might be somewhat smaller than stated.

The quantlet hazkpm computes the Kaplan-Meier estimates and confidence
bounds of the survival function using formulae (1) and (3). It requires that
the data are organized in the specific form as provided by hazdat. The syntax
is given below:



{cil,kme,ciu} = hazkpm(data {,alphal})
Input:

data
n X (p + 4) matrix, the sorted data matrix given by the output data of
hazdat;

alpha
scalar, the specified error rate of the confidence interval, default option
is 0.05 (coverage probability of 0.95).

Output:

cil
n X 2 matrix, the first column consists of the sorted ¢;, the second column
contains the Greenwood lower confidence bounds at ¢;, defined in (3);

kme
n % 2 matrix, the first column consists of the sorted ¢;, the second column
contains the Kaplan-Meier estimates at t;;

ciu
n X 2 matrix, the first column consists of the sorted ¢;, the second column
contains the Greenwood upper confidence bounds at ¢;, defined in (3).

By definition, the Kaplan-Meier estimate S'(t) is a right-continuous step func-
tion. The quantlet hazkpm supplies the coordinates (t;, S(¢;)) of the upper left
corners of each step, as well as coordinates of pointwise confidence limits for the
S(t;), (ti,cil(t;)) and (t;, ciu(t;)). Note that the output of hazkpm provides
one row for each observed time ¢;, censored or uncensored. In the case of ties,
the rows are repeated.

The quantlet steps4plot provides support for plotting step functions. Given
the coordinates of the upper left corners and the leftmost starting point, quant-
let steps4plot adds the coordinates of the lower right corner points in the
correct order. Optionally, a right endpoint may be specified. The output is a
(2n+2) x 2 matrix of point coordinates. The step function may then be drawn
into a graph by connecting consecutive output points with line segments.



Syntax of steps4plot:

{xyline}=steps4plot(xy {,xymin} {,xmax})
Q‘hazO4.xp1

Input:

Xy
n X 2 matrix, coordinates (z;, y;) of the jump points of a right-continuous
step function which jumps in z; to value y;. The z; (first column) are
required to be sorted in ascending order.

Xymin
1 x 2 matrix, coordinates of the leftmost starting point of the plotted step
function. Default is the first row in xymin. If xymin[1,1] > xy[1,1],
then the leftmost starting point is set to the first row of xy.

Xmax
scalar, z-coordinate of the rightmost endpoint.
Default: xmax = xy[n,1] + 0.01x(xy[n,1] - xy[1,11), adding 1 %
of the x range to the last jump point. If xmax < xy[n,1], then xmax is
set to xy[n, 1], the last jump point.

Output:

xyline
(2n + 2) x 2 matrix, rows are coordinates of the starting point, the lower
right and the upper left corner points, and the end point of a step function
with jumps in z; to value y; (given in input xy). Connecting consecutive
points with lines draws a plot of the step function.

Example 4. We illustrate the use of hazkpm and steps4plot by plot-
ting a Kaplan-Meier estimate and Greenwood’s confidence limits for simu-
lated data. The data are provided in the file haz01. They were obtained
by generating n = 20 independent, uniformly distributed covariate values
Z; = (Zli,ZQi)T, with Zki ™~ U[—05,05], k = 1,2, 1= ].,... , 1 uniformly
distributed censoring times, ¢; ~ U[0,4]; and exponentially distributed sur-
vival times y;|z; ~ Exzp (A\(2;)), with A(2) = exp(z; + 222). The first column
in haz01 contains the observed times, t; = min(c;,y;), the second column is



the censoring indicator, and the third and fourth columns contain the covari-
ate values. In this particular sample, three of the observations are censored,
including the largest time, to.

In this example, we display the confidence limits as step functions, although
hazkpm provides only pointwise confidence intervals at the event points ¢;. Al-
ternatively, readers may choose to draw vertical lines connecting the confidence
limits (¢;,cil(¢;)) and (¢;, ciu(¢;)) to emphasize the pointwise nature of the
confidence intervals.

library("hazreg")
dat=read("haz01.dat")

t = dat[,1] ; observed times
delta = dat[,2] ; censoring indicator
z = dat[,3:4] ; covariates
{data,ties} = hazdat(t,delta, z) ; preparing data

{cil,kme,ciu} = hazkpm(data)
; compute kme and confidence limits

setsize(600,400) ; initiating graph
plotl=createdisplay(1,1) ; initiating graph
n = rows(data) ; sample size
pm = (#(1,n+2)°+ (0:n)) | (#(2*n+2,3*n+3) ’+ (0:n))

; points to be connected
cn = matrix(2*n+2) ; color_num, controls colors
ar = matrix(2*n+2) ; art, controls line types
th = matrix(2*n+2) ; thick, controls line thickness

cilline = steps4plot(cil) ; points for step function plot

setmaskl(cilline, pm, cn, ar, th) ; lines control
setmaskp(cilline, 4, 0, 8) ; points control
ciuline = stepsdplot(ciu) ; points for step function plot
setmaskl(ciuline, pm, cn, ar, th) ; lines control
setmaskp(ciuline, 4, 0, 8) ; points control

kmeline = steps4plot(kme, 071)

; points for step function plot
setmaskl (kmeline, pm, cn, ar, 2*th) ; lines control
setmaskp (kmeline, 4, 0, 8) ; points control

10



show(plotl, 1, 1, cilline, kmeline, ciuline)

setgopt (plotl, 1, 1, "title","Kaplan-Meier Estimates")
setgopt (plotl, 1, 1, "xlabel","Time")

setgopt (plotl, 1, 1, "ylabel","Survival Function")

setgopt (plotl, 1, 1, "ymajor",0.2)
print (plotl,"hazkpmtest.ps")

clh.azO4.xp1

Figure 1 displays the three estimated functions. The pointwise confidence limits
are truncated to 0 or 1 when the asymptotic confidence intervals exceed these
values. Each step in the Kaplan-Meier estimate corresponds to one event time.
In our sample, the event times ¢t5 and t3 are very close, and the two jumps
merge into one on the plot.

Kaplan-Meier Estimates

Oi6 0.8
T

Survival Function

0.4

0.2
i
T

Time

Figure 1: Kaplan-Meier estimate (bold line) and pointwise confidence limits
for the survival function. Estimates are based on the simulated data in haz01.

The Kaplan-Meier step function is plotted starting at the point (0,1), while the
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step functions for the confidence limits start at the first event point, t; > 0.
This is achieved through the argument xymin in the steps4plot calls. In
defining kmeline for the Kaplan-Meier step function, xymin is set to (0, 1),
while this argument is omitted when defining cilline and ciuline for the
confidence limits.

3 The Cox Proportional Hazards Model

{11, 111, 112} = hazregll(data,beta)
calculates the value of the partial log-likelihood function and of
the first two derivatives

{betahat, betak, ck} = hazbeta(data {,maxit})
estimates the regression coefficients for the Cox proportional haz-
ards model

{bhaz, bsurv} = hazbase(data)
estimates the baseline hazard and survival functions

surv = hazsurv(data, z)
estimates the conditional survival function

val, df, pval} = haztest(data, index)
p
performs the likelihood ratio test, Wald’s test and the score test

The semiparametric Cox proportional hazards model is the most commonly
used model in hazard regression. In this model, the conditional hazard function,
given the covariate value z, is assumed to be of the form

A(t]2) = Mo (t) exp{87 2},

where 8 = (B1,-.-,8,)T is the vector of regression coefficients, and Ao (t) de-
notes the baseline hazard function. No particular shape is assumed for the
baseline hazard; it is estimated nonparametrically. The contributions of co-
variates to the hazard are multiplicative. An accessible introduction to the
Cox model is given, for example, in Klein and Moeschberger (1997).

The quantlib hazreg provides quantlets for estimating the regression coeffi-
cients, 3, standard deviations of these estimates, and estimates for the cumu-
lative baseline hazard and the conditional survival function. Our calculations

12



are based on standard partial likelihood methods in the proportional hazards
model. Additionally, we provide three commonly used tests for the hypothesis
that one or more of the ’s are zero. These tests are useful for model choice
procedures.

3.1 Estimating the Regression Coefficients

Let us assume that there are no ties between the event times. In this case, the
partial likelihood function is given by

1 exp (BT 2) 6i
LW)—II{z: )} ; (4)

i1 | Zjer) P (BT

where R(t;) = {j: t; > t;} denotes the risk set at time ¢;. Note that only event
times contribute their own factor to the partial likelihood. However, both
censored and uncensored observations appear in the denominator, where the
sum over the risk set includes all individuals who are still at risk immediately
prior to t;.

Let 3 denote the maximum (partial) likelihood estimate of 3, obtained by
maximizing the partial log-likelihood function, I(8) = In L(8). From (4), it
follows immediately that

n

l@:Z@W@—Z&m > exp(87z) . (5)

i=1 JER(t:)

The first derivative of I(58) with respect to 8 is called vector of efficient
scores, given by

" i 1 €X Tz- AT
U = a =677 — 251. z:JeR(te) p (ﬂ JT) (3 )’ ©)
dp i=1 > jenr) exp (B7z;)
where § = (81,... ,6,)7 denotes the vector of censoring indicators, and Z is the

(n x p)-matrix of covariate values, with the j-th row containing the covariate
values of the j-th individual, Z(; .y = 2] .

For the case of ties in the event times, there are several ways to define a
partial likelihood function. Currently, we are using formula (4) both for data
with and without ties. Each event time contributes one factor to the likelihood

13



function; for tied events, all events in the tie appear with the same denominator.
This approach was suggested by Breslow (1974), and is implemented in most
statistical packages. When there are few ties, this approximation to the partial
likelihood works rather well, see Klein and Moeschberger (1997), p.238.

The information matrix I(5) is given by the negative of the second derivative
of I(B). Let 1g(;) € IR™ denote the indicator vector of the risk set R(t;); this
means, the j-th element of 1g(;) is 1 when ¢; > ¢;, and 0, otherwise. Then, the
information matrix takes the form

18) = —% o
= w,»?é)z Z(i)" [wi(8) Diag {exp(ZB)} — exp(ZB) exp(ZB)T] Z(i),

where the w;(8) = lfz(i) exp (ZB) are scalars; for any vector v, Diag{v} de-
notes the diagonal matrix with the main diagonal v, and exp(v) is defined
elementwise; and Z(i) = Diag {1g(;)} Z. The matrices Z(i) are modifications
of the design matrix Z, setting the rows of Z (%) to zero when the corresponding
observation is not in the risk set for time ¢;. Note that the index ¢ runs through
all n observations. When ties are present, each of the tied event times appears
once, with the same risk set, and contributes the same term to the information
matrix.

For large samples, the maximum likelihood estimate B is known to follow an
asymptotic p-variate normal distribution,

18)/2 {8 = B} —nso0 N(O, ).

The inverse of the information matrix, I=1(3), is a consistent estimate of the
covariance matrix of 8. It may be used to construct confidence intervals for
the components of 3.

The quantlet hazregll computes the partial log-likelihood function, its first
derivative (efficient scores), and the negative of the second derivative (infor-
mation matrix). The first and second derivatives of the log-likelihood function

(5) are later used to obtain ,5’ , as well as for computing test statistics for local
tests on 3. The syntax of hazregll is given below:

{11,111,112} = hazregll(data,beta)

14



Input:

data
n X (p + 4) matrix, the sorted data matrix obtained as output data of
the quantlet hazdat;

beta
p x 1 vector, the regression coefficient vector 3.

Output:

11
scalar, the log-likelihood function at parameter value 3;

111
p %X 1 vector, the first derivatives of the log-likelihood function at param-
eter value f3;

112
p X p matrix, the negative Hessian matrix of the log-likelihood function
at parameter value 8 (information matrix).

Example 5. The simulated data in the file haz01 were generated from a pro-
portional hazards model with p = 2 covariates, the conditional hazard function
A(t|z) = exp(BT2), and B = (1,2)T. The baseline hazard is constant, A¢(t) = 1.
We use the quantlet hazregll to calculate the partial log-likelihood function,
the efficient scores and the information matrix at the true parameter value,

B =(1,2)7.

library("hazreg")
dat=read("haz01l.dat")

t = datl[,1] ; observed times
delta = datl[,2] ; censoring indicator
z = dat[,3:4] ; covariates
{data,ties} = hazdat(t,delta, z) ; preparing data
beta = 1|2

{11,111,112} = hazregll(data,beta)

Q'ha205.xp1
The calculations yield 11=-34.679 for the value of the log-likelihood function,

15



111 = (0.014323,0.88238)7 for the first derivatives, and

1.3696  —0.43704
H2= ( —0.43704  0.8285 )

for the information matrix.

The quantlet hazbeta calculates the maximum likelihood estimate B by solving
the nonlinear equation system U(8) = 0, defined in (6). We use a Newton-
Raphson algorithm with the stopping criterion

) |Bs - Bs—1|
C s) = ——== -
(ﬂ ) |l(ﬂs—1)|

The syntax of hazbeta is given below:
{betahat, betak, ck} = hazbeta(data {,maxit})
Input:

data
n X (p + 4) matrix, the sorted data matrix obtained as output data of
hazdat;

maxit
scalar, maximum number of iteration for the Newton-Raphson procedure,
default is 40.

Output:

betahat
p x 1 vector, estimate of the regression parameter 3;

betak
maxit X p matrix, iterated parameter values through the Newton-Raphson
procedure;

ck

maxit x 1 vector, values of the convergence criterion at each iteration of
the Newton-Raphson procedure.

16



Example 6. In this example, we compute B for the data in haz01, and esti-
mate the covariance matrix of 3 by I71(3). We use the quantlets hazbeta and
hazregll. The data was generated from a proportional hazards model with
B = (1,2)T. Details are given in Examples 4 and 5.

library("hazreg")
dat=read("haz01.dat")

t = dat[,1] ; observed times
delta = dat[,2] ; censoring indicator
z = dat[,3:4] ; covariates

{data,ties} = hazdat(t,delta, z) ; preparing data
{betahat,betak,ck} = hazbeta(data)

{11, 111, 112} = hazregll(data, betahat)

sigma = inv(112) ; covariance matrix estimate

Q'hazOG.xpl

The calculation results in betahat = (1.4599,3.3415)7, with the estimated

covariance matrix
1.019  0.55392 )

sigma = ( 0.55302 1.5847

Both components f; = 1 and 2 = 2 are within their respective asymptotic
95% confidence intervals that may be constructed with betahat and the square
root of the diagonal elements of sigma.

3.2 Estimating the Hazard and Survival Functions

We estimate the cumulative baseline hazard function, Ag(t) = fg Xo(s)ds, by

Ao(t) = Z i

it <t > jer@) P87 %))

The estimate Ao is a right-continuous step function, with jumps in the event
times. The index ¢ cycles through all observations, i = 1,... ,n. In the case of
tied events, each of the events in the tie contributes its own term to the sum;
this term is the same for all events in a particular tie. The estimate Ao can
be derived through a profile likelihood approach, see Klein and Moeschberger
(1997), pages 260 and 237, and Johansen (1983).

17



We estimate the baseline survival function, Sg(t) = exp {—Ao(t)}, by
So(t) = exp {—f\o(t)} .

In the Cox proportional hazards model, the survival function S(t|z) of an in-
dividual with covariate values z is given by
T
z

S(t)z) = So(t)™(572). (8)

Consequently, we estimate the conditional survival function by substituting
estimates for So(t) and S,

}exp(afz) |

S(tz) = exp {~Ro() ©)

Note that the estimates Ag(t), So(t) and S(t|z) are all step functions, with
jumps at the event times. All three estimates are non-negative, Ag(t) is mono-
tonously increasing, and the survival function estimates are monotonously de-
creasing.

The quantlet hazcoxb provides the estimates Ag(t) and So(¢). It has the fol-
lowing syntax:
{bcumhaz, bsurv} = hazcoxb(data)

Input:

data
n X (p + 4) matrix, the sorted data matrix given by the output data of
hazdat.

Output:

bcumhaz
n X 2 matrix, with rows (ti, Ao(ti)), sorted in the same order as the ¢; in
data;

bsurv
n X 2 matrix, with rows (ti, S’o(t,-)), sorted in the same order as the ¢; in
data.
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Example 7. In this example, we calculate and plot estimates of the cumulative
baseline hazard Ag(t) and of the corresponding survival function Sy(t), for
the simulated data in haz01. The estimates are calculated using the quantlet
hazcoxb. Plotting of the step functions is supported by steps4plot. The
resulting plots are displayed in Figures 2 and 3. The data in haz01 were
generated from a proportional hazards model with Ag(t) = t and Sp(t) =
exp(—t); details are given in Examples 4 and 5.

library("hazreg")
dat=read("haz01.dat")

t = dat[,1] ; observed times
delta = dat[,2] ; censoring indicator
z = dat[,3:4] ; covariates
{data,ties} = hazdat(t,delta, z) ; preparing data
{bcumhaz,bsurv} = hazcoxb(data) ; compute estimates
setsize(600,400) ; initiating graph
plotl=createdisplay(1,1) ; initiating graph
plot2=createdisplay(1,1)

n = rows(data) ; sample size

pm = (#(1,n+2)’+ (0:n)) | (#(2%n+2,3*n+3)’+ (0:n))
; points to be connected

cn = matrix(2*n+2) ; color_num, controls colors
ar = matrix(2*n+2) ; art, controls line types
th = matrix(2*n+2) ; thick, controls line thickness

bsurvline = steps4plot(bsurv, 071)

; points for step function plot
setmaskl(bsurvline, pm, cn, ar, th) ; lines connected
setmaskp (bsurvline, 4, 0, 8) ; points controlled

bcumhazline = steps4plot(bcumhaz, 070)

; points for step function plot
setmaskl (bcumhazline, pm, cn, ar, th)
setmaskp (bcumhazline, 4, 0, 8)

show(plotl, 1, 1, bcumhazline) ; plot baseline hazard
setgopt (plotl, 1, 1, "title","Cumulative Baseline Hazard")
setgopt (plotl, 1, 1, "xlabel","Time")

setgopt (plotl, 1, 1, "ylabel","Cumulative Hazard")
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setgopt (plotl, 1, 1, "ymajor", 0.5)
print (plotl,"hazbcumhaztest.ps")

show(plot2,1, 1, bsurvline) ; plot baseline survival
setgopt (plot2, 1, 1, "title","Baseline Survival Function")
setgopt (plot2, 1, 1, "xlabel","Time")

setgopt (plot2, 1, 1, "ylabel","Survival Function")

setgopt (plot2, 1, 1, "ymajor", 0.2, "ylim", (0[1.01))

print (plot2,"hazbsurvtest.ps")

Q'hazO7.xp1

Cumulative Baseline Hazard

- -

Cumulative Hazard

Time

Figure 2: Estimate of the cumulative baseline hazard in the proportional haz-
ards model. Data were generated in a model with Aq(t) = ¢.

The quantlet hazsurv provides an estimate of the conditional survival function,
S(t|z), as defined in formula (9). It has the following syntax:

surv = hazsurv(data,z)
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Figure 3: Estimate of the baseline survival function in the proportional hazards
model. Data were generated in a model with Sy(t) = exp(—t).

Input:
data

n X (p + 4) matrix, the sorted data matrix given by the output data of
hazdat;

p x 1 vector, value of the covariates;
Output:
surv

n X 2 matrix, the first column is the sorted ¢;, followed by the estimated
conditional survival function S(¢;|z).
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Example 8. We calculate and plot the estimate S(t|z) of the conditional
survival function for z = (0.1, —0.3), using the simulated data in haz01. The
resulting graph is displayed in Figure 4.

library("hazreg")
dat=read("haz01.dat")

t = dat[,1] ; observed times
delta = dat[,2] ; censoring indicator
z = dat[,3:4] ; covariates
{data,ties} = hazdat(t,delta, z) ; preparing data

zl =0.1/-0.3 ; covariate values

surv = hazsurv(data, z1)
; estimate conditional survival function

setsize (600, 400) ; initiating graph
plotl=createdisplay(1,1) ; initiating graph
n = rows(data)

pm = (#(1,n+2)’+ (0:n)) | (#(2*n+2,3*n+3) ’+ (0:n))

; points to be connected
cn = matrix(2*n+2) ; color_num, controls colors
ar = matrix(2*n+2) ; art, controls line types
th = matrix(2*n+2)

; thick, controls line thickness

survline = steps4plot(surv, 071)
; points for step function plot
setmaskl(survline, pm, cn , ar, th) ; lines connected

setmaskp(survline, 4, 0, 8) ; points controlled
setsize (600,400)

show(plotl, 1, 1, survline)

setgopt (plotl, 1, 1, "title","Conditional Survival Function")
setgopt (plotl, 1, 1, "xlabel","Time")

setgopt(plotl, 1, 1, "ylabel","Survival Function")

setgopt (plotl, 1, 1, "ylim", (0[1.01), "ymajor", 0.2)
print (plotl,"hazsurvtest.ps")

Qvh.az08.xp1
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Figure 4: Estimated conditional survival function based on the data in haz01,
for z = (0.1,-0.3)7.

3.3 Hypothesis Testing

The quantlib hazreg offers three tests for hypotheses about regression param-
eters: the likelihood ratio test, Wald’s test and the score test. Assume that
B = (BL,BT)T where the g-dimensional subvector 3; consists of the regression
coefficients of interest, and the (p — ¢)-dimensional subvector §» contains the
remaining parameters. We are testing the hypotheses Hy: 1 = 0 versus
H,: 31 # 0, in the presence of the remaining unknown (p— ¢) regression coeffi-
cients; 0 denotes the ¢-dimensional zero vector. This type of tests is often used
in model choice procedures, testing whether a given model can be improved by
including certain additional covariates or covariate combinations.
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3.3.1 Likelihood Ratio Test

The test statistic for the likelihood ratio test is given by
Tpr = 21(B) — 21(Bo),

where By = (07, 87)T, and 0 and 3, are the g-dimensional zero vector and the
conditional maximum likelihood estimate for f», given 1 = 0, respectively.
The estimate (2 is obtained by substituting the fixed null hypothesis value,
B1 = 0, for the corresponding 3’s in the partial log-likelihood function (5).

Under the null hypothesis, the asymptotic distribution of Ty g is xg. We cal-
culate p-values as tail probabilities of the Xc21 distribution, P(X?I >TLR)-

3.3.2 Wald Test

Let B = (BT, BT)T denote the usual maximum partial likelihood estimate of
the full parameter vector 8 = (8%, 8%)T. Now, let us partition the inverse of
the information matrix I(8) into

_ Ill 112
I 1(ﬂ)= ( 2t 122 )7

where I'! denotes the ¢ x ¢ submatrix corresponding to #;. The information
matrix is defined in (8). The test statistic for the Wald test is given by

T =47 ['G)] A

Under the null hypothesis, the distribution of Ty converges to xﬁ-

3.3.3 Score Test

Let U1(B) denote the subvector of the first ¢ elements of the score function
U(B), defined in (6). The test statistic for the score test is

Tsc = Ui (Bo)T" T (Bo) Ui(Bo),

where By = (07, 7)7 is the maximum likelihood estimate for 8 under the null
hypothesis, introduced in Section 3.3.1. Again, the large sample distribution
of the test statistic under the null hypothesis is x.

For more details on hypothesis testing in the Cox model, see Klein and Moesch-
berger (1997), Section 8.4.
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3.3.4 Implementation

Values of the three test statistics Trr, Tw and Tsc, and the corresponding
asymptotic p-values are provided by the quantlet haztest. p-values are com-
puted as tail probabilities of the x§ distribution, which is the asymptotic dis-
tribution for each of the three tests. The syntax of haztest is given below:

{ttest, val, df, pval} = haztest(data,index)
Input:

data
n X (p + 4) matrix, the sorted data matrix given by the output data of
hazdat;

index
p % 1 vector, with index[i]=0 when ; = 0 is part of the null hypothesis,
and index[i]=1, otherwise;

Output:

ttest
printed output, table with values of the test statistics, degrees of freedom
and p-values for the likelihood ratio test, Wald’s test and the score test.

val
3 x 1 vector, values of the test statistics, in the following order: likelihood
ratio test, Wald’s test, score test;

df
scalar, degrees of freedom of the Xﬁ reference distribution;

pval
3 x 1 vector, p-values of the tests.
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Example 9. We are testing the null hypothesis Hy: 82 = 0 for the data
in haz01. The quantlet haztest provides values for three test statistics and
computes the corresponding p-values as tail probabilities of the x? distribution.

library("hazreg")
dat=read("haz01.dat")

t = dat[,1] ; observed times

delta = dat[,2] ; censoring indicator

z = dat[,3:4] ; covariates
{data,ties} = hazdat(t,delta, z) ; preparing data

index = 1/0 ; testing if the second

; coefficient is zero
{testt, val,df,pval} = haztest(data, index)
testt ; print summary table

Qvh.azOQ.xpl

The variable testt contains the summary table. The last line of the code
prints the table into the XploRe output window:

"Cox Proportional Hazards Model"
nn

"Hypothesis: betal=0 for a subvector of regression coefficients"
nn

" Test statistic DF P-value "
M o o o m e o o o o e e e em e em em e e e em e e e e em em e e = e "
"LR Test 7.56687 1 0.00595"
"Wald Test 7.04612 1 0.00794"
"Score Test 4.25763 1 0.03908"

Additionally, the test statistic values and the p-values are stored in the variables
val and pval, respectively. The data in haz01 were generated from a propor-
tional hazards model with 3 = (1,2)7. For this sample, all three tests result in
small p-values, providing evidence against the null hypothesis Hy: 82 = 0.
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3.4 Example: Length of Stay in Nursing Homes

Nursing homes provide both short-term and long-term care, and patients may
stay from a few days to several years. In this section, we investigate how
certain characteristics of nursing home patients influence their length of stay.
We use a subset of the nursing home data presented by Morris, Norton,
and Zhou (1994). The original study was sponsored by the National Center
for Health Services in 1980-1982, and investigated the the impact of certain
financial incentives on the nursing home care of Medicaid patients. Thirty
six nursing homes were randomized into a treatment or control group; nurs-
ing homes in the treatment group received financial incentives for admitting
more disabled Medicare patients, for improving their health status, and for
discharging the patients to their homes within 90 days. The nursing home
data consist of n = 1,601 patients from this study. Patients were admitted
to participating nursing homes between May 1, 1981, and April 30, 1982, and
followed over a period of up to three years. The following characteristics were
recorded: age, marital status, gender, health status. The data set is avail-
able on a floppy disk distributed with Lange et al. (1994), and at StatLib,
http://www.stat.cmu.edu/datasets/csb/.

We restrict our analysis to nursing homes in the control group, which represents
the standard care without additional financial incentives, and to patients that
were at least 65 years old and of comparatively good health (health status =
2). Our subset consists of n = 214 patients. The patients were followed from
admission to either discharge, or death. For patients that were still in a nursing
home on April 30, 1983, the length of stay is recorded as censored (25 % of
the observations).

Our subset of the nursing home data is provided in nursing. The first
column of the data file contains the length of stay in the nursing home (in
days), the second column is the censoring indicator, and columns 3—5 contain
the age (in years), the gender (1=male, 0=female), and the marital status
(1=married, 0=unmarried), respectively. Twenty one percent of the patients
are male, and 14 % are married.

In order to identify the impact of age, marital status and gender on the length
of stay in a nursing home, we are fitting a Cox proportional hazards model
with p = 3 covariates: agespline, gender and married. The first variable
measures the age of a patient as agesp = min(age, 90)—65; this transformation
was suggested in Morris, Norton, and Zhou (1994). The other two covariates
are indicator variables for the gender and marital status, respectively. The
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Covariate | Mean B8 LR Test Wald Test Score Test

(SD) | SE(B) | p-value p-value p-value
agespline | 15.6 | -0.052 | 0.00001 0.00001 0.00001
(7.06) | (0.011)

gender 0.210 | 0.037 0.86 0.86 0.09
(0.213)

married 0.140 | 0.040 0.87 0.87 0.12
(0.246)

Table 1: Covariates in a Cox proportional hazards model fitted to the data
in nursing. The time-to-event is the length of stay of patients in a nursing
home (in days).

second column of Table 1 provides the sample means of the covariates and the
standard deviation of agespline.

The following code reads in the data and calculates estimates of the regression
coeflicients, 3, and their covariance matrix:

library("hazreg")

dat=read("nursing.dat") ; read data from file

t = dat[,1] ; time = length of stay
delta = datl[,2] ; censoring

age = dat[,3] ; covariate AGE

gender = dat[,4] ; covariate GENDER
married = dat[,5] ; covariate MARRIED
1limit = matrix(rows(dat), 1)*90 ; transform AGE

agespline = min(age~limit,2) - 65
{data, ties} = hazdat(t, delta, agespline”gender married)
; prepare data
{betahat, betak, ck}=hazbeta(data) ; estimate beta
{11, 111, 112} = hazregll(data,betahat)
sigma = inv(112)
; covariance matrix of betahat

Table 1 presents the estimated regression coefficients in the fitted model (/3’,

the value of betahat) and their estimated standard deviation, SE(f3), obtained
as square root of the diagonal elements of sigma.
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Let us test, for each of the covariates, whether it contributes to the hazard in
the presence of the other two variables:

{ttestl, vall, dfl, pvalll} = haztest(data, (0[1]1))

;test for AGESPLINE
{ttest2, val2, df2, pval2} = haztest(data, (1/0]1))

;test for GENDER
{ttest3, val3, df3, pval3} = haztest(data, (1[110))

;test for MARRIED

@ haz10.xpl

The variables ttest1, ttest2 and ttest3 contain the summary tables for the
covariates agespline, gender, and married, respectively. The p-values are
provided in Table 1.

The only covariate with a significant contribution to the hazard is the age.
In comparison, in Morris, Norton, and Zhou (1994), a Cox model is fitted to
all n = 1,601 observations, with additional variables that identify the health
status at entry and the treatment group. Here, the age does not appear to be
significant, while gender, marital status and poor health significantly contribute
to the length of stay.

These results are an example that caution is advised in interpreting fitted
models. In our case, gender and marital status are correlated with the health
status: married patients tend to enter the nursing home with more advanced
health problems, and men are more likely than women to be admitted in poorer
health. In our restricted data set of patients with similar, good health at entry,
neiter gender nor marital status are helpful for modeling the expected length
of stay in the framework of proportional hazards.
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