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ABSTRACT 

We propose in this article a general time series model, whose components are modelled in terms 

of fractionally integrated processes. This specification allows us to consider the trend, the 

seasonal and the cyclical components as stochastic processes, including the unit root models as 

particular cases. A very general version of the tests of Robinson (1994) is used to test the order 

of integration of each component. Finite-sample critical values of the tests are evaluated and, an 

empirical application, is also carried out at the end of the article. 
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1. Introduction 

We propose in this article a general time series model whose components are separated into a 

trend, a seasonal and a cyclical component. The first two components may be formulated in 

terms of explanatory variables consisting of a time trend and a set of seasonal dummies. 

However, for many time series, this may be inadequate. The necessary flexibility may then be 

achieved by letting the regression coefficients change over time. A similar treatment may be 

accorded to the cyclical component, which may be expressed in terms of a stochastic process 

instead of a deterministic model. Traditionally, the simplest way of modelling the trend 

component is a random walk, i.e., 

             ,)1( 1ttTL ε=−     (1) 

with white noise ε1t, and similarly, for the seasonal component, 

              ,)1( 2tt
s SL ε=−     (2) 

where s indicates the number of periods per year. Finally, the cyclical component may be 

specified as 

      ,)21( 3
2

ttCLL εµ =+−    (3) 

where the periodicity is implicit in µ. (See, eg. Harvey, 1985 and Ahtola and Tiao, 1987). In 

this article we generalize the above specifications by allowing each of the components to be 

fractionally integrated. Thus, the trend component will be specified as 

         ,)1( 1
1

tt
d TL ε=−      (4) 

where d1 is a given real value. Note that the polynomial in (4) may be expressed in terms of its 

Binomial expansion such that 
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for any real d1. Clearly, if ε1t is I(0), defined for the purpose of the present paper as a covariance 

stationary process with spectral density that is positive and finite at any frequency, Tt is 
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(fractionally) integrated of order d1, and if d1 > 0, Tt is said to be long memory, so-named 

because of the strong association between observations widely separated in time. This type of 

processes were proposed by Granger and Joyeux (1980) and Hosking (1981, 1984), and were 

theoretically justified by Robinson (1978) and Granger (1980), showing that they can arise from 

aggregation of individual processes. Examples of empirical applications based on fractional 

models like (4) are Diebold and Rudebusch (1989, 1991) and more recently, Gil-Alana and 

Robinson (1997) and a good survey can be found in Baillie (1996). 

 Similarly, the seasonal unit root model (2) can be generalized to permit long memory and 

thus, we can consider 

        ,)1( 2
2

tt
ds SL ε=−      (5) 

where 2)1( dsL−  can be expanded as 
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for any real d2. This model was studied in Porter-Hudak (1990) and Ray (1991), and another 

empirical application is Gil-Alana and Robinson (2000). 

 The cyclical component can also be extended for long memory. Gray et al. (1989, 1994) 

showed that the cyclical stochastic model (3) can be generalized as 

,)21( 3
2 3

tt
d CLL εµ =+−     (6) 

where 3)21( 2 dLL +− µ can be expressed  in terms of the polynomial )(
3, µdjC , such that for all 

d3 ≠ 0, 
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and Γ(x) means the Gamma function. Simulated realizations based on fractionally cyclic models 

like (6) can be found in Gray et al. (1989) and an empirical application is Gil-Alana (2000). 

 All these components can be jointly considered in the following model, 

,)21()1()1( 321 2
tt

ddsd UYLLLL =+−−− µ   (7) 

where Ut is I(0) which may include possible weakly autocorrelated processes. We propose in this 

article the use of a very general version of the tests of Robinson (1994) for testing the order of 

integration of each of the components in (7). The outline of the paper is as follows: Section 2 

briefly describes the tests of Robinson (1994) for testing the orders of integration of the trend, 

the seasonal and the cyclical components. Section 3 evaluates finite-sample critical values of the 

tests. Section 4 contains an empirical application and finally, Section 5 contains some concluding 

comments. 

 

2. The tests of Robinson (1994) 

Robinson (1994) considers the following regression model, 

    ,' ttt XZY += β       (8) 

where Yt is the time series we observe; β = (β1, …, βk)’ is a (kx1) vector of unknown parameters; 

Zt is a (kx1) vector of deterministic regressors, and the regression errors Xt are such that 

     ,);( tt UXL =θρ      (9) 

where Ut is I(0) and the function ρ is specified as 

∏
=

+++ +−+−=
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dd jjLLwLLL
3

2 ,)cos21()1()1();( 2211 θθθθρ   (10) 

for given real numbers d1, d2, …, dp and wr. 

 Based on (8), (9) and (10), Robinson (1994) proposes a Lagrange Multiplier (LM) tests of 

            ,0)'...,,,(: 21 == poH θθθθ      (11) 

against the alternative Ha:  θ ≠ 0. Specifically, the test statistic is given by 
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g(λ; τ) is the function appearing in the spectral density of Ut: f(λ; τ) =  (σ2/2π) g(λ; τ), evaluated 

at τ̂  = arg min  σ2(τ), and I(λ) is the periodogram of tÛ  defined as: 
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where ρ(L) = ρ(L; θ = 0) and the summation on * in the above expressions are over λ ∈ M 

where M = {λ: -π < λ < π, λ ∉ (ρl - λ1, ρl +λ1), l=1,2,…s}, such that ρl, l = 1,2,…s < ∞ are the 

distinct poles of ψ(λ) on (-π, π]. 

Robinson (1994) showed that, under very general conditions, the above test statistic has an 

asymptotic distribution given by 

,,ˆ 2 ∞→Χ→ TasR p     (13) 

and the same limit distribution holds whether or not deterministic regressors are included in (8). 

Furthermore, he shows that the test is efficient in the Pitman sense, i.e., that against local 

alternatives of form: Ha: θ = δ T-1/2, for δ ≠ 0, the limit distribution is 2
pχ (υ) with a non-

centrality parameter, υ, which is optimal under Gaussianity of Ut. 
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 We can now particularize Robinson’s (1994) model, and consider β = 0 a priori in (8) and 

      .)cos21()1()1();( 332211 2 θθθθρ +++ +−−−= d
r

dsd LLwLLL   (14) 

Thus, under the null hypothesis (11), (9) and (14) imply the fractional model (7) described in 

Section 1, and testing (11) against Ha: θ ≠ 0 will be a test of the orders of integration of the trend, 

the seasonal and the cyclical components of the series. Furthermore, the limit distribution will be 

standard and will be given by a 2
3χ  distribution. 

 

3. Finite-sample critical values 

In this section we evaluate finite-sample critical values of the tests of Robinson (1994) by means 

of Montecarlo simulations. We consider a  model given by (9) and (14) with s = 4 and white 

noise Ut. In this context of white noise disturbances, with s = 4 and p = 3, the test statistic greatly 

simplifies and becomes 
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 We first compute the empirical distributions of R~  in (15) for sample sizes of 48, 96 and 144 

observations, generating Gaussian series obtained by the routines GASDEV and RAN3 of Press, 

Flannery, Teukolsky and Vetterling (1986) with 50,000 replications in each case. Note that the 
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empirical distributions are not affected by the orders of integration d1, d2 and d3, given that the 

test statistic is based on the null differenced model. However, for the cyclical component, we 

need to impose values of wr = 2πr/T, i.e., the number of periods per cycle. We do it for r = T/4, 

T/6, T/12 and T/24, i.e., we consider cycles occurring every 4, 6, 12 and 24 periods. This choice 

is not completely arbitrary: The results obtained in several empirical applications based on unit 

and fractional root cycles (eg., Gil-Alana, 2000) suggest that most of the cycles occur at 

approximately six years. Thus, it has interest to consider r = T/6 (if the data are annual) and r = 

T/24 (it they are quarterly); r = T/4 and r = T/12 have also interest in case of quarterly and 

monthly data. 

(Table 1 about here) 

 The results are given in Table 1. We see that in practically all the cases, the finite-sample 

critical values are higher than those given by the 2
3χ  distribution. Thus, when testing Ho (11), the 

tests based on the asymptotic results will reject the null more often than those based on the finite-

sample critical values. We also see that these values increase with r, i.e., with the number of 

periods per cycle, indicating that, for a given value of the test statistic,  shorter the cycles are, 

more often the null will be rejected. Finally, and as we should expect, increasing the sample size, 

the values approximate to the 2
3χ  distribution. 

(Tables 2 and 3 about here) 

 Tables 2 and 3 report the sizes of the tests based on both, the asymptotic and the finite-

sample critical values, with nominal sizes respectively of 5% and 1%. In both tables we see that 

using the finite-sample critical values, the sizes are very close to the nominal values for all 

sample sizes. However, using the asymptotic critical values given by the 2
3χ  distribution, the 

sizes are in all the cases too large, though they improve considerably with T. The power of the 

tests was also examined against different fractional alternatives and, though we do not report the 

results here, higher rejection frequencies were obtained with the asymptotic tests which should 
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be clearly associated with the higher sizes of the tests when the asymptotic critical values are 

used. 

 

4. An empirical application 

In this section, the version of the tests of Robinson (1994) described in Section 3 is applied to the 

UK consumption and income. The time series data are the logs of the UK consumption 

expenditure on non-durables and the personal disposable income, quarterly, from 1955q1 to 

1984q4. These two series were also analysed in Hylleberg et al. (1990) and in Gil-Alana and 

Robinson (2000), studying respectively the cases of seasonal integration and seasonal fractional 

integration. 

(Figure 1 about here) 

Plots of the two series are given in Figure 1. We see that both may include a trend, a seasonal 

and a cyclical  component, with a possible changing pattern across time. Tables 4 and 5 report 

values of R~  in (15), testing Ho (11) in a model given by (9) and (14) with s = 4 and r = T/4, T/6, 

T/12 and T/24. We employ throughout the null model, 

,)cos21()1()1( 321 24
tt

d
r

dd XLLwLL ε=+−−−   

with white noise εt and values of d1, d2 and d3 equal to 0, 0.50 and 1. Thus, we test for a simple 

random walk (d1 = 1, and d2 = d3  = 0); for a seasonal unit root model (d2 = 1 and d1 = d3 = 0); for 

cyclic I(1) models (d3 = 1 and d1 = d2 = 0); and also for fractional alternatives involving all of 

these components. The FORTRAN code used in this application is available from the author 

upon request. 

 Table 4 gives the results for consumption. We see that, imposing d3 = 0, (i.e., without a 

cyclical component), Ho (11) always result rejected except when d2 = 0 and d1 = 1. In other 

words, a random walk model appears as a plausible way of modelling this series. The fact that Ho 

(11) cannot be rejected in this case for any value of r is consistent with the fact that the cyclical 

component is not required in this context. Supposing however that d3 = 0.50, Ho (11) cannot be 
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rejected if r = T/6 and T/24, whether the values of d1 and d2 are 0, 0.50 or 1. This suggests that, 

when modelling the cyclical component in terms of a fractionally integrated process, (with d3 = 

0.50), the cycles appear important, and they seem to occur every 6 or 24 periods. Note that, in 

general, we observe lower statistics when r = T/24 than when r = T/6, suggesting that the cycles 

may occur approximately each six years.  Finally, imposing a unit root cycle (i.e., d3  = 1), all the 

models result rejected. 

(Tables 4 and 5 about here) 

A very similar picture is observed in Table 5 when modelling the UK personal disposable 

income. The null hypothesis (11) cannot be rejected when d1  =  1 and d2  =  d3  = 0, implying 

that the random walk model also appears as a plausible alternative for this series. Surprisingly, 

all the non-rejection values occur at exactly the same (d, r) combination as in Table 4. Thus, 

apart from the random walk model, all the remaining non-rejection values take place when d3 = 

0.50, independently of the values of d1 and  d2, with cycles occurring every 6 or 24 periods. 

We finally observe that in both tables, the lowest statistics are obtained when d1 = d2 = 1 and d3 = 

0.50, suggesting that a plausible model for both series would be 

,)cos21()1()1( 50.02
4

4
ttXLLwLL ε=+−−−   

implying nonstationarities for the three components of the series. Hylleberg et al. (1990) and Gil-

Alana and Robinson (2000) also studied these series. They concentrated on the seasonal 

component and did not take into account the trend and the cyclical components, finding evidence 

of four seasonal unit roots. In this article, we also find evidence of four seasonal unit roots, along 

with another (unit) root corresponding to the trend component and with a fractional process for 

the cyclical term. 

 

5. Concluding comments 

We have proposed in this article the use of a version of the tests of Robinson (1994) for testing 

the order of integration of each of the components in a given raw time series. Modelling the 



 9

trend, the seasonal and the cyclical component in terms of fractionally integrated processes 

allows us to consider a richer structure in the dynamics of each of these components, and permit 

us to consider the unit root models as particular cases of interest. The tests have standard null and 

local limit distributions given by a χ2 distribution. However, we also computed finite-sample 

critical values, observing that they were in practically all cases higher than those given by the 

asymptotic distribution. 

The tests of Robinson (1994) were applied to the UK consumption and income series, and the 

results indicate that, though a random walk model could be appropriate, fractional cyclical 

models may also be adequate, with cycles occurring approximately each six years. Thus, a model 

with unit roots for the trend and the seasonal components, along with a cyclic I(0.5) component 

cannot be rejected in this context. Extensions based on autoregressive disturbances could also 

have been performed. However, and as a preliminary step, the results in this paper suggest that 

fractionally cyclical models may be adequate when modelling macroeconomic time series. 

It would be worthwhile proceeding to get point estimates of the orders of integration of each of 

the components of the series. However, not only would this be computationally more expensive, 

but it is then in any case confidence intervals rather than point estimates which should be 

stressed. The approach used in this article simply generates computed diagnostic for departures 

from real orders of integration and thus, it is not surprising that different models may result non-

rejected. Ooms (1997) suggests Wald tests based on Robinson’s (1994) model in (8) – (10), 

using for the estimation a modified periodogram regression procedure of Hassler (1994), whose 

distribution is evaluated under simulation. Similar methods based on this and other semi-

parametric estimation procedures of the fractional differencing parameters (eg. Robinson, 1995a, 

b) can also be implemented in these and other macroeconomic time series. 

 

 

 



 10

References 

Ahtola, J. and G.C. Tiao, 1987, Distributions of least squares estimators of autoregressive 

parameters for a process with complex roots on the unit circle, Journal of Time Series Analysis 

8, 1 - 14. 

Baillie, R.T., 1996, Long memory processes and fractional integration in econometrics, Journal 

of Econometrics 73, 5 - 59. 

Diebold, F.X. and G. Rudebusch, 1989, Long memory and persistence in aggregate output, 

Journal of Monetary Economics 24, 189 - 209. 

Diebold, F.X. and G. Rudebusch, 1991, Is consumption too smooth? Long memory and the 

Deaton paradox, Review of Economics and Statistics 74, 1 - 9. 

Gil-Alana, L.A., 2000, Testing stochastic cycles in macroeconomic time series, Preprint. 

Gil-Alana, L.A. and P.M. Robinson, 1997, Testing of unit roots and other nonstationary 

hypotheses in macroeconomic time series, Journal of Econometrics 80, 241 - 268. 

Gil-Alana, L.A. and P.M. Robinson, 2000, Testing of seasonal fractional integration in UK and 

Japanese consumption and income, forthcoming in Journal of Applied Econometrics. 

Granger, C.W.J., 1980 Long memory relationships and the aggregation of dynamic models, 

Journal of Econometrics 14, 227 - 238. 

Granger, C.W.J. and. R. Joyeux, 1980, An introduction to long memory time series models and 

fractional differencing, Journal of Time Series Analysis 1, 15 - 30. 

Gray, H.L., N. Zhang. and W.A. Woodward, 1989, On generalized fractional processes, Journal 

of Time Series Analysis 10, 233 - 257. 

Gray, H.L., N. Zhang. and W.A. Woodward, 1994, On generalized fractional processes. A 

correction, Journal of Time Series Analysis 15, 561 - 562. 

Harvey, A.C., 1985, Trends and cycles in macroeconomic time series, Journal of Business 

Economics and Statistics, 3, 216 - 227. 



 11

Hassler, U., 1994, Misspecification of long memory seasonal time series, Journal of Time Series 

Analysis, 15, 19 - 30. 

Hylleberg, S., R.F. Engle, C.W.J. Granger and B.S. Yoo, 1990, Seasonal integration and 

cointegration, Journal of Econometrics 44, 215 - 238. 

Hosking, J.R.M., 1981, Fractional differencing, Biometrika 68, 165 - 176. 

Hosking, J.R.M., 1984, Modelling persistence in hydrological time series using fractional 

differencing, Water Resources Research 20, 1898 - 1908. 

Ooms, M., 1997, Flexible seasonal long memory and economic time series, Preprint. 

Porter-Hudak, S., 1990, An application of the seasonal fractional differenced model to the 

monetary aggregates, Journal of the American Statistical Association 85, 338 - 344. 

Press, W.H., B.P. Flannery, S.A. Teukolsky and W.T. Wetterling, 1986, Numerical recipes. The 

art of scientific computing, Cambridge University Press, Cambridge. 

Ray, B.K., 1991, Fractionally differenced ARMA process: Seasonality and forecasting issues, 

Ph.D. thesis, Graduate School of Arts and Sciences, Columbia University, U.S.A. 

Robinson, P.M., 1978, Statistical inference for a random coefficient autoregressive model, 

Scandinavian Journal of Statistics 5, 163 - 168. 

Robinson, P.M., 1994, Efficient tests of nonstationary hypotheses, Journal of the American 

Statistical Association 89, 1420 -1437. 

Robinson, P.M., 1995a, Log-periodogram regression of time series with long range dependence, 

Annals of Statistics 23, 1048 - 1072. 

Robinson, P.M., 1995b, Gaussian semi-parametric estimation of long-range dependence, Annals 

of Statistics 23, 1630 - 1661. 

 

 

 

 



 12

 
 
 
 
 

FIGURE 1 
Log of the UK consumption and income 
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TABLE 1 

Finite-sample critical values of R~ in (15) in a model given by (9) and (14) with  
s = 4 

T  =  48 Values of r  

Percentiles T/4 T/6 T/12 T/24 2
3χ  

10% 8.99 9.64 10.03 10.24 6.25 
5% 10.56 11.34 11.81 12.24 7.81 

2.5% 12.10 13.02 13.51 14.34 9.35 
2% 12.56 13.54 14.03 15.13 11.30 
1% 14.21 15.21 15.93 17.56 12.80 

0.5% 16.12 17.12 18.16 20.34 16.30 
0.1% 

 

19.73 20.70 24.22 29.78 

 

17.60 
T  =  96 Values of r  

Percentiles T/4 T/6 T/12 T/24 2
3χ  

10% 7.50 8.39 8.65 8.64 6.25 
5% 8.90 9.96 10.34 10.46 7.81 

2.5% 10.41 11.61 12.08 12.44 9.35 
2% 10.95 12.04 12.60 12.92 11.30 
1% 12.45 13.55 14.47 14.73 12.80 

0.5% 14.14 15.09 16.08 17.18 16.30 
0.1% 

 

18.19 18.89 21.03 24.08 

 

17.60 
T  =  144 Values of r  

Percentiles T/4 T/6 T/12 T/24 2
3χ  

10% 6.87 7.81 8.04 7.88 6.25 
5% 8.31 9.34 9.82 9.67 7.81 

2.5% 9.78 11.06 11.63 11.51 9.35 
2% 10.36 11.62 12.20 12.14 11.30 
1% 11.91 13.09 14.08 14.36 12.80 

0.5% 13.83 14.68 15.89 16.06 16.30 
0.1% 

 

17.10 19.06 20.39 21.71 

 

17.60 
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TABLE 2 

Sizes of R~  in (15 using both, the asymptotic and the finite-sample critical values 
and a nominal size of 5%. 

Values of r Sample size Critical values 
T/4 T/6 T/12 T/24 

Finite-sample 0.051 0.051 0.050 0.051 T  =  48 
Asymptotic 0.163 0.210 0.234 0.234 

Finite-sample 0.051 0.050 0.050 0.051 T  =  96 
Asymptotic 0.085 0.126 0.140 0.139 

Finite-sample 0.051 0.050 0.050 0.050 T  =  144 
Asymptotic 

 

0.065 0.100 0.110 0.103 

TABLE 3 

Sizes of R~  in (15) using both, the asymptotic and the finite-sample critical values 
and a nominal size of 1%. 

Values of r Sample size Critical values 
T/4 T/6 T/12 T/24 

Finite-sample 0.011 0.010 0.011 0.011 T  =  48 
Asymptotic 0.018 0.027 0.034 0.041 

Finite-sample 0.010 0.010 0.011 0.010 T  =  96 
Asymptotic 0.008 0.014 0.019 0.021 

Finite-sample 0.010 0.010 0.010 0.010 T  =  144 
Asymptotic 

 

0.008 0.011 0.015 0.015 
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    *: Non-rejection values of the null hypothesis at the 95% significance level, using the 
    finite-sample critical values obtained in Table 1. 

 
 
 
 
 
 

TABLE 4 

R~ in (15) in a model given by (9) and (14) with s = 4 for the log of U.K. 
consumption expenditure on non-durables* 

Integration orders Values of r 
d3 d2 d1 T/4 T/6 T/12 T/24 

0.00 0.00 0.00 66.00 56.99 217.91 1193.19 
0.00 0.00 0.50 44.06 40.44 58.25 281.27 
0.00 0.00 1.00 1.29’ 1.41’ 1.49’ 1.48’ 
0.00 0.50 0.00 66.20 60.54 85.28 403.46 
0.00 0.50 0.50 35.65 35.46 36.49 36.32 
0.00 0.50 1.00 11.26 11.65 11.52 11.33 
0.00 1.00 0.00 91.81 91.61 92.40 93.64 
0.00 1.00 0.50 24.70 28.03 35.42 27.02 
0.00 1.00 1.00 18.38 19.52 19.35 18.42 

0.50 0.00 0.00 12.09 2.12’ 19.03 2.06’ 
0.50 0.00 0.50 15.74 3.60’ 21.58 0.76’ 
0.50 0.00 1.00 14.21 4.39’ 28.86 0.24’ 
0.50 0.50 0.00 11.96 2.84’ 17.92 2.37’ 
0.50 0.50 0.50 15.36 3.38’ 20.08 0.74’ 
0.50 0.50 1.00 13.41 4.14’ 26.87 0.23’ 
0.50 1.00 0.00 11.81 1.68’ 16.88 2.37’ 
0.50 1.00 0.50 14.96 3.18’ 18.65 0.73’ 
0.50 1.00 1.00 12.72 3.96’ 24.91 0.21’ 

1.00 0.00 0.00 65.42 56.16 15.43 63.54 
1.00 0.00 0.50 63.74 28.15 41.52 38.87 
1.00 0.00 1.00 28.28 63.50 56.20 45.24 
1.00 0.50 0.00 70.08 51.52 27.13 40.41 
1.00 0.50 0.50 80.30 41.12 62.82 51.82 
1.00 0.50 1.00 25.17 74.70 20.41 57.83 
1.00 1.00 0.00 13.53 62.38 57.84 50.25 
1.00 1.00 0.50 44.89 54.42 72.07 59.23 
1.00 1.00 1.00 27.29 80.58 78.09 64.89 
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    *: Non-rejection values of the null hypothesis at the 95% significance level, using the 
    finite-sample critical values obtained in Table 1 

 
 
 
 
 
 
 
 
 
 

TABLE 5 

R~ in (15) in a model given by (9) and (14) with s = 4 for the log of U.K. 
personal disposable income* 

Integration orders Values of r 
d3 d2 d1 T/4 T/6 T/12 T/24 

0.00 0.00 0.00 65.98 56.97 217.81 1192.81 
0.00 0.00 0.50 43.67 40.03 58.59 285.53 
0.00 0.00 1.00 1.32’ 1.44’ 1.53’ 1.52’ 
0.00 0.50 0.00 65.67 59.92 85.75 409.27 
0.00 0.50 0.50 35.81 35.63 36.67 36.50 
0.00 0.50 1.00 11.10 11.53 11.38 11.17 
0.00 1.00 0.00 91.93 91.73 92.51 93.76 
0.00 1.00 0.50 24.82 28.19 35.52 27.12 
0.00 1.00 1.00 18.27 19.47 19.28 18.30 
0.50 0.00 0.00 12.13 2.05’ 19.04 2.37’ 
0.50 0.00 0.50 15.79 3.62’ 21.54 0.76’ 
0.50 0.00 1.00 14.28 4.42’ 28.77 0.24’ 
0.50 0.50 0.00 12.01 1.86’ 17.94 2.37’ 
0.50 0.50 0.50 15.42 3.41’ 20.05 0.75’ 
0.50 0.50 1.00 13.49 4.16’ 26.78 0.23’ 
0.50 1.00 0.00 11.86 1.70’ 16.90 2.38’ 
0.50 1.00 0.50 15.20 3.20’ 18.63 0.73’ 
0.50 1.00 1.00 12.79 3.98’ 24.83 0.21’ 
1.00 0.00 0.00 65.40 56.15 15.98 64.71 
1.00 0.00 0.50 63.32 28.29 41.54 38.92 
1.00 0.00 1.00 28.33 63.64 56.40 45.40 
1.00 0.50 0.00 69.45 51.14 26.78 40.10 
1.00 0.50 0.50 80.58 40.92 62.55 51.59 
1.00 0.50 1.00 25.12 74.52 70.23 57.66 
1.00 1.00 0.00 13.64 62.74 57.58 50.06 
1.00 1.00 0.50 45.14 54.19 71.92 59.10 
1.00 1.00 1.00 27.20 80.48 77.99 64.79 
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