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Abstract

Based on the seminal paper of Farrell (1957), researchers have developed sev-
eral methods for measuring efficiency. Nowadays, the most prominent rep-
resentatives are nonparametric data envelopment analysis (DEA) and para-
metric stochastic frontier analysis (SFA), both introduced in the late 1970s.
Since decades, researchers have been attempting to develop a method which
combines the virtues – both nonparametric and stochastic – of these ”’oldies”’.
The recently introduced Stochastic non-smooth envelopment of data (StoNED)
by Kuosmanen and Kortelainen (2010) is a promising method. This paper
compares the StoNED method with the two oldies DEA and SFA and extends
the initial Monte Carlo simulation of Kuosmanen and Kortelainen (2010) in
two directions. Firstly, we consider a wider range of conditions. Secondly,
we also consider the maximum likelihood estimator (ML) and the pseudo-
likelihood estimator (PL) for SFA and StoNED, respectively. We show that,
in scenarios without noise, the rivalry is still between the oldies, while in
noisy scenarios, the nonparametric StoNED PL now constitutes a promising
alternative to the SFA ML.
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1 Introduction

In his classic paper, Farrell (1957) stated that measuring the efficiency of productiv-

ity is important to economic theorists and economic policy makers alike. Based on

Farrell’s work, researchers have developed several methods for measuring efficiency.

Despite this progress, after more than five decades of efficiency analysis research,

there is still no single superior method (see, among others, Resti (2000), Mortimer

(2002) and Badunenko et al. (2011)).

The efficiency analysis literature can be divided into two main branches of para-

metric and nonparametric methods. Data envelopment analysis (DEA) is the most

important representative of the nonparametric methods. It is a linear program-

ming method which constructs a nonparametric envelopment frontier over the data

points. Despite the fact that previous papers also proposed mathematical pro-

gramming methods (see, for example, Afriat (1972)), DEA is generally attributed

to Charnes et al. (1978). DEA estimates efficiency without considering statistical

noise and is thus a deterministic method. This is its main disadvantage. On the

other hand, its main advantage is flexibility, due to its nonparametric nature.

In contrast, parametric methods require an assumption about the functional form

of the production function. The corrected ordinary least squares method (COLS),

originally proposed by Winsten (1957), estimates the efficient frontier by shifting the

ordinary least squares regression towards the most efficient producer. Subsequently,

it measures inefficiency as the distance to this frontier. COLS has the same disad-

vantage as DEA, since it is also deterministic. Aigner et al. (1977) and Meeusen and

van den Broeck (1977) developed a stochastic parametric model, called stochastic

frontier analysis (SFA). Its main advantage is its ability to measure efficiency while

simultaneously considering the presence of statistical noise.

The methodological differences and corresponding strengths and weaknesses lead to

DEA and SFA being the two most popular economic approaches for measuring effi-

ciency. However, in real-world applications, the problem arises that it is unknown
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which set of assumptions is closer to reality and the methods yield different effi-

ciency scores. Hence, both in the literature as well as in practical application, it

is desirable to find a way to combine the advantages of the two methods. Among

others, Banker et al. (1994) state that the “...use of more than one methodology

can help to avoid the possible occurrence of ‘methodological bias’...”. In practical

application, one common approach is to combine SFA and DEA by using, for ex-

ample, the mean value of the estimates yielded by the two methods. For instance,

Haney and Pollitt (2009) conclude that the combination approach is “best-practice”

in energy regulation. Therefore, in Andor and Hesse (2011), we analyzed SFA and

DEA, and applied combination approaches within a MC simulation, in order to eval-

uate the performance. Under our assumptions, the results confirm weakly that the

mean performs better than the elementary results of DEA and SFA. Nevertheless,

this approach is ad-hoc and lacks a theoretical foundation, raising the question of

whether any theoretical method effectively combines the virtues of DEA and SFA.

In the efficiency analysis literature, there are ongoing attempts to develop this kind

of method (cf., among others, Fan et al. (1996), Kneip and Simar (1996), Kumbhakar

et al. (2007)). The Stochastic non-smooth envelopment of data (StoNED) method,

recently introduced by Kuosmanen and Kortelainen (2010), is a promising candidate,

as it is stochastic and semi-parametric, requiring no a priori explicit assumption

about the functional form of the production function.

The aim of this present article is to evaluate the performance of StoNED in compar-

ison to the “oldies” – DEA and SFA – within a Monte Carlo Simulation (MC). MC

studies are widely used to evaluate efficiency estimation methods (see, for example,

Gong and Sickles (1992), Banker et al. (1993) and Resti (2000)). They enable re-

searchers to reveal factors influencing the performance of the various methods and

succeed in indicating a range of specific situations, in which a particular estimation

method proves superior. An MC study considering StoNED can be found in the orig-

inating paper Kuosmanen and Kortelainen (2010). Our simulation study extends

this initial one in two directions. Firstly, Kuosmanen and Kortelainen (2010) state
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that one of the most promising avenues for future research is to conduct further MC

simulations under a wider range of conditions. We respond to this call by analyzing

the influence of sample size, the production function (number of inputs, correlation

between inputs, functional form, economies of scale and elasticity of substitution)

and the error terms (distribution of the inefficiency term, ratio of inefficiency and

noise, and heteroscedasticity of the inefficiency term). Secondly, Kuosmanen and

Kortelainen (2010) restrict their study to the “simpler” method of moments esti-

mator (MoM). Nevertheless, among others, Olson et al. (1980) and Coelli (1995)

demonstrate in MC experiments, that the choice of estimation technique impacts

on the performance of the method. Hence, in this paper, we also consider the max-

imum likelihood estimator (ML) and the pseudolikelihood estimator (PL) for SFA

and StoNED, respectively. In total, we analyze the performance of the following

five methods DEA, SFA MoM, SFA ML, StoNED MoM and StoNED PL within 172

different settings.

The remainder of this paper is organized as follows. In Section 2, we explain the

methods used in this study, DEA, SFA and StoNED, and the estimation techniques

MoM, ML and PL. Section 3 describes the general simulation design of the Monte

Carlo experiment. In Section 4, we first show the aggregated results and highlights

the strengths and weaknesses of the methods. Afterwards we present the detailed

results and discuss the various influence factors. Finally in Section 5, we summarize

the most important findings and provide some directions for further research.
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2 Methods

In this section, we describe the efficiency estimation methods used in this study. Be-

fore describing the methods in detail, we first give an overview of the main differences

and the general procedure. We assume that there is cross-sectional data of n decision

making units (DMU), for example, firms or universities. Each DMUj(j = 1, ..., n)

produces a single output qj using m inputs zi,j(i = 1, ...,m). The relationship

between the inputs and the output, i.e. the deterministic production frontier, is ex-

pressed by F (zi,j). The observable, factual output qj can deviate from the optimal

output, determined via F (zi,j), by a factor εj:

qj = F (zi,j)︸ ︷︷ ︸
Production Frontier

·exp(εj) j = 1, ..., n (1)

The efficiency estimation methods can be categorized into parametric vs. nonpara-

metric, as well as deterministic vs. stochastic. The first component of efficiency

estimation methods is to estimate the underlying production function. While the

parametric SFA requires an assumption about the functional form of the produc-

tion function, DEA is nonparametric and only considers shape constraints (free

disposability, convexity and returns to scale). This is the main disadvantage of SFA

compared to DEA. The semi-parametric StoNED avoids this shortcoming by using

convex nonparametric least squares (CNLS). CNLS does not need an assumption

of a particular functional form, but chooses a function from the family of continu-

ous, monotonically increasing, concave functions that can be non-differentiable (cf.

Kuosmanen and Kortelainen (2010)). Therefore, these assumptions are comparable

with those of DEA, but are less restrictive than those of SFA.

The second important difference between the efficiency estimation methods is the

assumption about the composition of the factor εj. While the deterministic DEA

assumes that the entire deviation εj refers to inefficiency, stochastic methods – SFA

and StoNED – estimate technical efficiency, while admiting that there could be
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random noise vj in the data, for example, due to variation in weather conditions,

measurement errors or just coincidence. Adding this stochastic term to equation (1)

leads to:

qj = F (zi,j)︸ ︷︷ ︸
Production Function

· exp(εj)︸ ︷︷ ︸
Composed error term

with εj = vj − uj, (2)

where the composed error term (εj) is the combination of inefficiency uj and the

noise term vj. The challenge for stochastic models is the decomposition of the com-

posed error term into a noise term and an inefficiency term. For this purpose, the

skewness of the distribution of the error term εj is crucial. In general parlance:

“Luck”, expressed by the noise term vj, can contribute positively or negatively and

we expect by definition that, on average, it is balanced. Hence, it is plausible to

assume a symmetric distribution with a zero mean. In contrast, inefficiency uj only

affects in one direction and therefore, its distribution is skewed. In the case of a pro-

duction function, inefficiency can only impact negatively. Due to the fact that the

distribution of the composed error term εj is the combination of these two distribu-

tions, it indicates the presence of inefficiency. The likelihood of inefficiency increases

with the skewness of the distribution of εj. Using distributional assumptions for the

noise term and the inefficiency term, SFA and StoNED estimate the error term εj

as well as the ratio of noise and inefficiency, by means of the method of moments,

maximum likelihood or pseudo-maximum likelihood technique.

The second step is the determination of technical efficiency for each DMU. Indepen-

dent of the stochastic method, using the estimates of step one – the error term εj

and the ratio of noise and inefficiency – individual efficiency can be estimated. The

deterministic DEA does not consider random noise and thus the technical efficiency

is the entire deviation to the estimated frontier.

Figure 1 summarizes the main differences between the methods. In this respect, the

recently introduced StoNED is arranged in the middle of the two oldies DEA and

SFA, as it combines the flexibility of DEA with the stochastic nature of SFA, in a
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unified framework of frontier estimation.
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Figure 1: Overview of the methods procedure.

2.1 Data Envelopment Analysis (DEA)

DEA is generally attributed to Charnes et al. (1978) who introduced the term data

envelopment analysis. Their original model, also known as the CCR model, assumes

constant returns to scale (CRS) and is input orientated. Nowadays, there is a

wide range of different models which consider alternative sets of assumptions. An

overview can be found, for example, in Cook and Seiford (2009).

In our study, we use the standard BBC model (Banker et al. (1984)) which allows

for variable returns to scale (VRS). In the multiple-input multiple-output context,

each DMUj produces s outputs qr,j(r = 1, ..., s) using m inputs zi,j(i = 1, ...,m). In

order to determine the individual efficiency of the k-th DMU , the following output-

oriented two-stage BBC model (cf. Banker et al. (2004)) must be maximized
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maximizeφ,λ φk − θ

(
m∑
i=1

s−i +
s∑
r=1

s+r

)
(3)

subject to zi,k =
n∑
j=1

λjzi,j + s−i , i = 1, ...,m,

φkqr,k =
n∑
j=1

λjqr,j − s+r , r = 1, ..., s,

n∑
j=1

λj = 1,

λj, s
−
i , s

+
r ≥ 0 ∀ i, r, j,

where θ is an infinitesimal non-Archimedean constant, λj are the weightings, φk is a

scalar and 1 ≤ φk ≤ ∞.1 The output and input slacks are s+r and s−i , respectively.

In order to obtain efficiency values for all DMUs, the linear programming model

must be solved for each DMU, i.e. n times. The estimated technical efficiency (TE)

is defined by

ˆTEj = 1/φk with 0 ≤ ˆTE ≤ 1. (4)

A value of one indicates a point on the efficient frontier and thus a fully efficient

DMU, according to Farrell (1957). Until now, only a StoNED model exists for the

multiple-input single-output case (see Kuosmanen and Kortelainen (2010)). Hence,

in order to compare the methods, we restrict our analysis to the simpler multiple-

input single-output case, i.e. s = 1.

1This envelopment formulation is usually the preferred form, because it has fewer constraints than
the multiplier form (see Coelli et al. (2005)).
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2.2 Stochastic Frontier Analysis (SFA)

2.2.1 SFA maximum likelihood (SFA ML)

Aigner et al. (1977) and Meeusen and van den Broeck (1977) simultaneously devel-

oped a stochastic parametric model, the stochastic frontier analysis (SFA). A com-

prehensive treatment of SFA can be found in Kumbhakar and Knox Lovell (2003).

SFA is a parametric method and requires an assumption regarding the functional

form of the production function. Assuming a log-linear Cobb-Douglas form, we can

rewrite equation (2) as

yj = β0 +
m∑
i=1

βi · xi,j + εj with εj = vj − uj j = 1, ..., n (5)

with yj = ln(qj) and xj = ln(zj). The noise term vj and the inefficiency term uj are

assumed to be statistically independent of each other, as well as of the inputs xj.

The latter assumption implies that inefficiency and random noise are homoscedastic,

i.e. independent of the scale of the DMU.

Throughout this paper, we use the standard normal-half normal model. That is, we

assume a normally distributed noise term vj ∼ N(0, σ2
v) and a half normally dis-

tributed inefficiency term uj ∼ |N(0, σ2
u)|.2 Under these assumptions, the marginal

density function of the composed error term is defined by (cf. Kumbhakar and

Knox Lovell (2003)):

f(ε) =
2

σ
· φ
( ε
σ

)
· Φ
(
−ελ
σ

)
(6)

where σ =
√
σ2
u + σ2

v , λ = σu
σv

, and φ and Φ are the standard normal cumulative

distribution and the density function, respectively. The ratio of inefficiency and

noise is represented by λ. If λ → 0, the composed error term is dominated by the

noise term. In contrast, if λ → ∞, the inefficiency term dominates the composed

2The normal-half normal model is the most common model. There are other models which mainly
differ in the assumption with respect to the inefficiency distribution, e.g. the normal-exponential
model. For a comprehensive treatment of the different models, see Kumbhakar and Knox Lovell
(2003).
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error term.

Maximum likelihood estimation is an appropriate technique for estimating σu, σv

and εj. The corresponding likelihood function must be maximized (cf. Kumbhakar

and Knox Lovell (2003)):

L(α, β, σ, λ) = constant− n · ln(σ) +
n∑
j=1

ln Φ

(
−εjλ

σ

)
− 1

2σ2

n∑
j=1

ε2j , (7)

where εj is defined by

εj = yj − (β0 +
m∑
i=1

βi · xi,j). (8)

After this first step, the individual technical efficiency can be obtained by decom-

posing the estimated error term ε̂j into a noise term vj and an inefficiency term uj.

For the standard normal-half normal model, Jondrow et al. (1982) (JMLS) showed

that the conditional distribution of u, given the composed error term ε, is

f(u|ε) =
1√

2πσ∗
·

exp
[
− (u−µ∗)2

2σ2
∗

]
[
1− Φ

(
−µ∗
σ∗

)] , (9)

with µ∗ = −εσ2
u/σ

2 and σ2
∗ = σ2

uσ
2
v/σ

2.

Based on the maximum likelihood estimates, individual technical efficiency can be

estimated by several point estimators. In this study, we use the point estimator

proposed by Battese and Coelli (1988):

ˆTEj = Ê(exp(−uj)|ε̂j) =
Φ(µ̂∗j/σ̂∗ − σ̂∗)

Φ(µ̂∗j/σ̂∗)
· exp

(
1

2
σ̂2
∗ − µ̂∗j

)
. (10)

This estimator is optimal in the sense of minimizing the mean square error and is

mostly used in empirical and theoretical applications (cf. Bogetoft and Otto (2011)).

Because the variation associated with the distribution of (uj|εj) is independent of

each DMUj, the estimates for technical efficiency are inconsistent. Nevertheless,

using cross-sectional data, this is the best that can be achieved (cf. Kumbhakar and
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Knox Lovell (2003)).

In short, the SFA ML estimation consists of two steps. Firstly, the parameters

are estimated using the maximum likelihood method (equation (7)). Based on the

maximum likelihood estimates, the individual efficiency of each DMU is estimated

using the Battese and Coelli (1988) point estimator, equation (10).

2.2.2 SFA method of moments (SFA MoM)

An alternative to the maximum likelihood estimation is the method of moments,

which splits the first step into two parts. In the first part (A), an OLS Regression

is used to obtain estimates for the composed error term. Using OLS regression to

estimate the production function, the estimates for all slope coefficients (βi) are

consistent. However, the intercept β̂0,OLS is biased by E(uj) and therefore, the

estimated OLS residuals ε̂j,OLS does not equal the required εj (εj 6= ε̂j,OLS) (cf.

Kumbhakar and Knox Lovell (2003)).

Assuming the normal-half normal model, this bias can be corrected – in the second

part (B) – by using the fact that E(uj) is a constant and the central moments of

the composed error term εj are the same as those of ε̂j,OLS. The second and third

central moments of the distribution can be estimated from the OLS residuals ε̂j,OLS

in the following way (cf. Kuosmanen and Kortelainen (2010)):

M̂f =
1

n

n∑
j=1

(ε̂j,OLS − Ê(εj,OLS))f f = 2, 3. (11)

Consequently, we can estimate the standard deviation of the noise term σv and the

inefficiency term σu by (cf. Kumbhakar and Knox Lovell (2003)):

σ̂u = 3

√√√√ M̂3√
2
π
·
(
1− 4

π

) , (12)
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σ̂v =

√
M̂2 −

(
1− 2

π

)
σ̂2
u. (13)

Subsequently, a consistent estimate for the intercept of the production function is

given by:

β̂0 = β̂0,OLS + Ê(uj) = β̂0,OLS +

√
2

π
σ̂u. (14)

After shifting the OLS frontier upwards by the expected value of the inefficiency

term, all estimates are unbiased and consistent (see Aigner et al. (1977), Kumbhakar

and Knox Lovell (2003) and Greene (2008)) and the required composite error term

εj can be calculated by

ε̂j = ε̂j,OLS −
√

2

π
σ̂u. (15)

Analogously to the maximum likelihood technique, firm-specific efficiency is esti-

mated by means of the Battese and Coelli (1988) point estimator, equation (10), in

a second step.

2.3 Stochastic non-smooth envelopment of data (StoNED)

2.3.1 StoNED pseudolikelihood (StoNED PL)

The recently by Kuosmanen and Kortelainen (2010) introduced stochastic non-

smooth envelopment of data (StoNED) avoids the main disadvantage of SFA – its

parametric nature – by using convex nonparametric least squares (CNLS) to es-

timate the production function. CNLS does not require an assumption about the

functional form of the production function, but determines a frontier from the family

of continuous, monotonically increasing, concave functions which best fits the data

(see Kuosmanen (2008)).

Similar to the procedure for the SFA MoM, step one consists of two parts. Instead

of using OLS regression in Part A, the shape of the production function is estimated

by CNLS regression. In order to obtain the CNLS residuals εj,CNLS, the following

quadratic programming problem has to be solved (cf. Kuosmanen and Kortelainen
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(2010))

minimizeq̂,β0,βi

n∑
j=1

(ln(qj)− ln(q̂j))
2 (16)

subject to q̂j = β0,j +
m∑
i=1

βi,jzi,j,

β0,j +
m∑
i=1

βi,jzi,j ≤ β0,h +
m∑
i=1

βi,hzi,j ∀ h, j = 1, ..., n and i = 1, ...,m,

βi,j ≥ 0 ∀ j = 1, ..., n and i = 1, ...,m.

with εj,CNLS = ln(qj)− ln(q̂j).

Using CNLS, we obtain estimates ε̂j,CNLS for the deviation from the estimated pro-

duction function. However, these estimates are biased in a similar manner to the

OLS residuals εj,OLS. Therefore, in Part B, distributional assumptions on the ineffi-

ciency and noise term are required and an estimation technique – pseudolikelihood

or method of moments – has to be applied.

Assuming the normal-half normal model, the pseudolikelihood (PL) approach, sug-

gested by Fan et al. (1996), can be applied. We set σ = σu + σv, λ = σu
σv

and

maximize the following log-likelihood function:

ln L(λ) = −n ln σ̂ +
n∑
j=1

ln Φ

[
−ε̂jλ
σ̂

]
− 1

2σ̂2

n∑
j=1

ε̂2j , (17)

ε̂j = ε̂j,CNLS −
√

2λσ̂√
π (1 + λ2)

, (18)

σ̂ =

√√√√√√ 1
n

n∑
j=1

ε̂2j,CNLS

1− 2λ2

π(1+λ)

. (19)
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When the optimal solution for λ̂ is found, the estimates for ε̂j and σ̂ can be calculated

by equations (18) and (19).

In analogy to SFA, in the second step, the Battese and Coelli (1988) point estimator,

equation (10), is used to calculate the technical efficiency for each DMU.

2.3.2 StoNED method of moments (StoNED MoM)

The method of moments can be used as an alternative estimation technique to pseu-

dolikelihood. Accordingly, part A of step one is the same as described above. The

shape of the production function is estimated by CNLS regression. In accordance

with the SFA MoM, in Part B, the central moments of the CNLS residuals εj,CNLS

are calculated by using equation (11). The standard deviations of the inefficiency σ̂u

and noise σ̂v term are then estimated using equations (12) and (13), respectively. To

complete step one, ε̂j is obtained by equation (15). Again, the technical efficiency

is obtained by the Battese and Coelli (1988) point estimator, equation (10), in the

second step. Figure 2 shows the procedure of the methods in detail. The numbers
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Results 

Part B St
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Figure 2: Detailed overview of the methods procedure.

in brackets refer to the respective equations above.
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3 Simulation Design

The aim of this paper is to evaluate the presented methods within the controlled

environment of an MC simulation. Using empirical data, it is impossible to evaluate

the performance of different methods, because the “true” efficiency is not known.

Hence, MC simulations are used to avoid this problem. As stated by Perelman and

Santin (2009), MC studies are the “statistical referee” most frequently used to ver-

ify the potential strengths and weaknesses of competing estimation methods. They

enable researchers to generate their own artificial dataset under specific assump-

tions. For the data generating process (DGP), the underlying assumptions have

to be defined. A certain set of assumptions is referred to as “setting”. Within a

given setting, the DGP can be replicated several times in order to obtain reliable

results. By analyzing different settings, for instance varying the number of DMUs,

the influence of this specific factor can be measured. The difficulty is to decide how

the settings should be varied, so as to derive a wide and meaningful spectrum.

The first best optimum would be to consider all possible specifications of influencing

factors. As this approach becomes increasingly complex, an alternative has to be

used. In Andor and Hesse (2011), we defined a standard set, i.e. one specification

for all influencing factors. This standard set was used as the point of reference for

the following sensitivity analysis. Accordingly, we varied the different influencing

factors successively, while keeping the remaining factors unchanged. This kind of

analysis facilitates the use of more specifications for a single factor. However, it is

restricted in such a way that all the other parameters are kept unchanged. In this

paper, we use a compromise to avoid this limitation. We create 12 standard sets

which vary with respect to the number of decision making units, the production

function and the composite error term. This seems to be an appropriate approach

for our purpose, as our analysis is multidimensional and the conclusions are based on

a wider basis. In total, we analyze the results of 172 settings and each is replicated

50 times (R=50), so that we consider 8.600 datasets. As especially the DEA and
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CNLS regression of the StoNED are time-consuming to replicate, this represents a

reasonable compromise between accuracy and computational time.

Below, we define the DGP for the 12 standard sets. We follow Ruggiero (1999),

Jensen (2005) and others, by using two inputs, z1 and z2, which are generated from

a uniform distribution with the interval (5, 15). Furthermore, we assume that there

is no collinearity between z1 and z2 (ρ = 0) and that the inefficiency and the noise

term are homoscedastic. The endogenous variable qj, the output, is calculated by

the following equation:

ln(qj) = ln(F (zi,j))︸ ︷︷ ︸
Production Function

+ εj︸︷︷︸
Composed error term

with εj = vj − uj, (20)

where uj and vj represent the inefficiency term and the statistical noise term, re-

spectively. We assume that the inefficiency term is exponentially distributed uj ∼

Exp(µ=1/6), with parameter µ representing the expected inefficiency. This leads to

an expected (technical) efficiency of approximately 86%. The noise term is normally

distributed vj ∼ N(0, σ2
v) with σv = ρnts · µ, where ρnts represents the noise-to-signal

ratio, i.e. ρnts = σv
σu

. This DGP calibration is similar to the procedure in Kuosmanen

and Kortelainen (2010) and Simar and Zelenyuk (2011). Regarding the production

function, we use three different specifications that are also used in other MC studies.

They vary with respect to returns to scale and input substitution (see Table 1). The

combination with a varying number of DMUs (50 and 100) and two specifications

for the noise-to-signal ratio (0 and 1) results in the 12 standard settings. For the

remaining 160 settings, we describe the variation of the DGP at the beginning of

the specific analysis.

The five methods DEA, SFA MoM, SFA ML, StoNED MoM and StoNED PL are

applied with the model specifications described in section 2 using the drawn inputs

and the generated output. Olson et al. (1980) and Banker et al. (1993) identify

that there can be two problems with the method of moments approach. Type

I failure occurs when the skewness of the error term ε is positive M̂3 ≥ 0. We
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No PF (F(x)) Description Parametrization Source

I
∑m
i=1 βi · ln(zi,j) Cobb-Douglas, IRS β1 = β2 = 0.6 a

II ln( [
∑m
i=1 αi · z

−ρi
i,j ]−δ/ρ) CRESH δ=1, α1=α2=0.5, ρ=ρi=2 b

III
β0 +

∑m
i=1 βi · ln(zi,j) + 0.5 ·∑m

i=1

∑m
f=1 βi,f · ln(zi,j) · ln(zi,j) Translog

β0=1, β1= β2=0.3, β11 = β22 = β12

= β21= 0.1

c

Table 1: Standard sets: Production functions. IRS: Increasing returns to scale.
a Adler and Yazhemsky (2010) in modified form, b Yu (1998) in modified form, c

Cordero et al. (2009).

follow Kuosmanen and Kortelainen (2010) in these cases and set M̂3 = −0.0001.

Type II failure occurs when the estimated standard deviation of the noise term

(σ̂v) is negative. In accordance with Kuosmanen and Kortelainen (2010), we set

σ̂v = 0.0001 in these cases.

Finally, the evaluation of the methods requires a performance criterion. Ruggiero

(1999) and others focus on ranking accuracy, using the average rank correlation

between “true” and estimated technical efficiency. However, from our perspective,

ranking accuracy is an inferior performance criterion in real-world applications, be-

cause policy makers often have to set individual efficiency objectives. Hence, the

ability to measure individual efficiency is the most important factor. Accordingly,

we use the mean absolute deviation (MAD) between the estimated and the true

technical efficiency value, as our main performance criterion.

MAD =
1

nR

R∑
r=1

n∑
j=1

∣∣∣ ˆTEr,j − TEr,j
∣∣∣ , (21)

where ˆTEj denotes the estimated and TEj the true technical efficiency, and r is

the index for the replications for a certain setting. In order to gain additional

insight into the influence of a particular factor, we calculate the following three

additional information criteria: Mean deviation (MD), mean squared error (MSE)

and mean rank correlation (MRC). We discuss them, whenever they yield additional
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information about performance variation. The information criteria are defined by:

MD =
1

nR

R∑
r=1

n∑
j=1

( ˆTEr,j − TEr,j), (22)

MSE =
1

nR

R∑
r=1

n∑
j=1

( ˆTEr,j − TEr,j)2. (23)

The Spearman rank correlation is defined as the Pearson linear correlation of the

ranked technical efficiencies:

MRC =
1

R

R∑
r=1

∑n
j=1(t̂er,j −

¯̂ter)(ter,j − t̄er)√∑n
j=1(t̂er,j −

¯̂ter)2
∑n

j=1(ter,j − t̄er)2
, (24)

where the n technical efficiencies TEj are converted to ranks tej. The results for

these three criteria are shown in the appendix. Furthermore, we briefly review the

aggregated results in the next section.
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4 Results

In this section, we present and discuss the results of the simulation study. In total,

we have results from 172 settings. In the interests of clarity, the analysis is carried

out in two stages. Firstly, we focus on a comparison of the aggregated results of

the 172 settings and discuss some important characteristics of the methods. In

the second stage, we successively analyze the influence of specific factors on the

performance of the various methods.

Table 2 shows the mean deviation and the average of our three performance criteria

for all 172 settings. We additionally order the methods from best to worst, for each

setting under consideration, so as to calculate the mean rank for each performance

criterion. A rank of one represents the “winner” and a rank of five the “loser”.

DEA SFA MoM SFA ML StoNED MoM StoNED PL

MD -0.0661 -0.0502 -0.0182 -0.0387 0.0280

MAD 0.1044 0.0825 0.0582 0.0835 0.0678

Rank (MAD) 3.57 3.38 1.94 3.56 2.54

MSE 0.0247 0.0114 0.0088 0.0123 0.0097

Rank (MSE) 3.52 3.27 1.97 3.65 2.60

MRC 0.6824 0.7073 0.7271 0.6520

Rank (MRC) 3.17 2.02 1.39 3.42

Table 2: Overview of the performance criteria for all 172 settings.

The mean deviation (MD) is an important characteristic of the methods, as it shows

the bias of the efficiency estimation. The results highlight an interesting difference

between the StoNED PL and the other methods. While the other methods under-

estimate on average, the StoNED PL overestimates the efficiency. A second general

peculiarity is that the MoM methods, SFA MoM and StoNED MoM, achieve rela-

tively similar results with regard to the MD, MAD and MSE. In contrast, the results

of StoNED PL differ considerably from the SFA ML, as well as the StoNED MoM in

general. This conclusion can be drawn for almost all 172 settings. The average MD
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also shows, that SFA is the method with the lowest bias, whereas DEA is the method

with by far the greatest bias. The fact that DEA underestimates is not particularly

surprising, because we consider noise in approximately 53% of the settings.

The aggregated results for the MAD and MSE suggest that SFA ML is the best

method. Nevertheless, the recently introduced StoNED PL seems to be a serious

competitor. The MoM estimation techniques, SFA MoM and StoNED MoM, achieve

similar average MADs. DEA exhibits the highest MAD, but the rank(MAD) is

similar to those of the MoM methods. The MAD and MSE usually come to the

same conclusions.

The rank correlation demonstrates both a characteristic and a weakness of the

StoNED methods. The former is that both methods, StoNED MoM and StoNED

PL, have the same rank correlation. The weakness is that it has a lower average rank

correlation than the other methods. As a result, if practitioners or researchers re-

gard the rank correlation as the appropriate criterion for their purposes, our results

advise against using StoNED.

As mentioned above, the chosen settings aim to cover a wide range of assumptions,

and the aggregated results shed light on the overall performance. However, each

method has its own strengths and weaknesses. Below, we consider two specific

subsamples of the 172 settings in order to emphasize them.

DEA SFA MoM SFA ML StoNED MoM StoNED PL

MD 0.0205 -0.0558 0.0004 -0.0376 0.0202

MAD 0.0318 0.0665 0.0151 0.0677 0.0495

Rank (MAD) 2.16 4.14 1.13 4.11 3.46

MSE 0.0024 0.0067 0.0007 0.0076 0.0058

Rank (MSE) 2.14 3.89 1.20 4.28 3.50

MRC 0.8742 0.8934 0.9352 0.8184

Rank (MRC) 2.78 2.39 1.26 3.58

Table 3: Overview of the performance criteria in the subsample without
noise (ρnts = 0).

19



The underlying assumption of DEA, that there is no noise in the data, is violated

in every setting with ρnts > 0. Hence, we compare the deterministic DEA with the

stochastic methods in a nondiscriminatory subsample, i.e. we restrict the analysis to

the 80 settings without noise (ρnts = 0). Table 3 summarizes the results. In general,

all performance criteria for all methods improve considerably in the subsammple

without noise. However, it is interesting to compare the relative performance of the

methods. Even in this subsample, SFA ML is still the best method, but followed

closely by DEA. For these methods, the MD yields what is to be expected. In

the scenario without noise, the underestimation declines. This is particularly true

for the DEA, as the MD changes from -0.0712 to 0.0172. DEA overestimates in

settings without noise, whereas it underestimates in those with noise. The StoNED

PL and SFA MoM underestimate more in the scenario without noise. Although this

leads to a lower efficiency bias (MD) and MAD for the StoNED PL, its relative

performance deteriorates in comparison to DEA and SFA. A further conclusion is

that the relative performance of the MoM technique worsens considerably in the

scenario without noise. This conclusion supports the recommendation of Olson

et al. (1980) and Coelli (1995) that the SFA ML method is preferable to the SFA

MoM, when there is little noise in the data.

DEA SFA MoM SFA ML StoNED MoM StoNED PL

MD -0.1414 -0.0454 -0.0345 -0.0396 0.0348

MAD 0.1674 0.0964 0.0957 0.0973 0.0836

Rank (MAD) 4.79 2.73 2.65 3.09 1.74

MSE 0.0442 0.0156 0.0158 0.0163 0.0131

Rank (MSE) 4.72 2.73 2.64 3.10 1.83

MRC 0.5157 0.5455 0.5461 0.5073

Rank (MRC) 3.51 1.71 1.50 3.28

Table 4: Overview of the performance criteria in the subsample with noise
(ρnts > 0).

For the contrary subsample, i.e. all 92 settings with noise (ρnts > 0), all performance
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criteria deteriorate. Here, it is particularly remarkable that StoNED PL outperforms

the SFA ML (and all other methods) in terms of MAD and MSE. Consequently, we

can conclude that a great virtue of StoNED PL is its ability to measure efficiency

when there is (a lot of) noise in the data (see also section 4.2.1). In addition, the

performance of the MoM methods, especially SFA MoM, are also relatively good.

The performance is similar to that of the SFA ML. Again, this supports the conclu-

sion of Olson et al. (1980) and Coelli (1995) that the MoM estimation technique has

its comparative advantage vis-à-vis the maximum likelihood estimation technique,

when the ratio of noise to inefficiency is high. However, this conclusion seems in-

valid for the StoNED PL, because it performs considerably better than the StoNED

MoM. While the MAD and rank(MAD) are very similar for the StoNED MoM and

the SFA methods, the rank(MAD) of StoNED PL is 1.74.

In the following analysis, we focus on analyzing the influence of factors on the par-

ticular method and the corresponding relative performance. We divide this analysis

into three main categories of sample size, error term and production function. The

MAD is our main performance criterion and the results are presented in tables in

which the parameter values for the factor under inspection, as well as the five meth-

ods, are arranged vertically, while the remaining (control) variables are arranged

horizontally. As mentioned earlier, the results for the other performance criteria

can be found in the appendix.

4.1 Variation of sample size

In several MC studies, sample size has been identified as one important factor in-

fluencing the performance of efficiency estimation methods (see, for instance, Olson

et al. (1980), Banker et al. (1993), Ruggiero (1999) and Badunenko et al. (2011)).

In addition to our standard sample size assumptions of 50 and 100 DMUs, we now

consider two additional number of DMUs: 20 and 200 DMUs. In comparison to

Olson et al. (1980), these sample sizes are relatively small. However, problems with
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more than 300 observations can take several days for the StoNED method (see Kuos-

manen (2012)). Furthermore, from our perspective, these sample sizes are the most

relevant for real-world applications. Table 5 contains the resulting MAD values for

the variation of sample size.

NTS 0 1

Method PF PF I PF II PF III PF I PF II PF III

DEA DMU = 20 0.0539 0.0545 0.0551 0.1209 0.1055 0.1354

DMU = 50 0.0314 0.0357 0.0373 0.1384 0.1335 0.1544

DMU = 100 0.0206 0.0232 0.0326 0.1729 0.1648 0.1960

DMU = 200 0.0127 0.0170 0.0319 0.1985 0.1814 0.2210

SFA MOM DMU = 20 0.0569 0.0634 0.0621 0.0952 0.1004 0.0940

DMU = 50 0.0688 0.0697 0.0755 0.0917 0.1032 0.0976

DMU = 100 0.0791 0.0737 0.0811 0.0987 0.1034 0.0896

DMU = 200 0.0838 0.0832 0.0771 0.1029 0.1086 0.0997

SFA ML DMU = 20 0.0279 0.0422 0.0273 0.1135 0.1182 0.1080

DMU = 50 0.0101 0.0344 0.0130 0.0949 0.1006 0.0960

DMU = 100 0.0053 0.0332 0.0119 0.0907 0.0912 0.0894

DMU = 200 0.0024 0.0315 0.0114 0.0866 0.0939 0.0868

STONED MOM DMU = 20 0.0610 0.0665 0.0684 0.1018 0.0923 0.0951

DMU = 50 0.0676 0.0634 0.0740 0.0906 0.1029 0.1011

DMU = 100 0.0734 0.0674 0.0799 0.0980 0.1021 0.0900

DMU = 200 0.0823 0.0798 0.0774 0.0965 0.1015 0.0994

STONED PL DMU = 20 0.0658 0.0642 0.0710 0.0986 0.0930 0.0900

DMU = 50 0.0466 0.0467 0.0509 0.0809 0.0814 0.0862

DMU = 100 0.0378 0.0368 0.0414 0.0749 0.0765 0.0776

DMU = 200 0.0376 0.0644 0.0520 0.0931 0.0851 0.0950

Table 5: Variation of sample size. Performance criterion: Mean absolute
deviation (MAD). DGP: Sample size: DMU= 20, 50, 100, 200; Error term:
Noise-to-signal ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6); Heteroscedasticity: NO;
Production function: PF I (Cobb Douglas with increasing returns to scale), PF
II (CRESH), PF III (Translog); Collinearity: 0; Input distribution: zj ∼ U(5,15);
Number of inputs(z): m= 2.

DEA is affected by a variation in sample size, but the direction of the effect depends

on the underlying scenario. In the scenario without noise (NTS=0), the performance

of DEA improves with an increasing number of DMUs, while the performance dete-

riorates with a growing number of DMUs in the scenario with noise (NTS=1). This

diametral effect is not an exception, but we also find it when analyzing other influ-

encing factors. The reason is that, in general, DEA overestimates in the scenario

without noise and underestimates in the scenario with noise (see MD in Table 19 in
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the appendix). Furthermore, an increasing sample size leads to a decreasing MD, i.e.

the more observations, the more DMUs are underestimated. This can be explained

by the fact that the relative number of DMUs on the efficient frontier decrease with

the sample size. As a result, the “sample size effect” leads to a “downward shift”

of the average estimated efficiency and so partially counteracts the overestimation

in the scenario without noise. Therefore, it has a positive impact on the average

performance. In contrast, it enforces the “noise effect”, so that the underestimation

in the settings with NTS=1 and a sample size of 200 DMUs is glaringly obvious and

the performance is considerably poorer. However, the rank correlation generally

improves with a growing number of DMUs.

Regarding the variation of sample size, the MoM models are affected more in the

scenario without noise than with noise. In the former scenario, an increasing sample

size seems to worsen their performance. In contrast, the SFA ML performs bet-

ter with increasing sample size. Interestingly, the StoNED PL performance also

improves with an increasing number of DMUs, but for 200 DMUs, this relation-

ship reverses. This finding, of a nonlinear relationship between the performance

of StoNED and the number of DMUs, seems to be in line with Kuosmanen and

Kortelainen (2010).

4.2 Variation of the error term

4.2.1 Noise-to-signal ratio (NTS)

The noise-to-signal ratio represents the relationship between noise and inefficiency

and is expressed by ρnts = σv
σu

. Several studies verify that this ratio has a cru-

cial impact on efficiency estimation methods (see, Olson et al. (1980), Banker

et al. (1993), Ruggiero (1999), Ondrich and Ruggiero (2001), Jensen (2005) and

Badunenko et al. (2011)). In order to analyze the influence, we generate data with

ρnts = 0, 0.5, 1 and 2. Table 6 presents the results.
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Method
DMU 50 100

PF PF I PF II PF III PF I PF II PF III

DEA NTS = 0 0.0314 0.0357 0.0373 0.0206 0.0232 0.0326

NTS = 0.5 0.0650 0.0607 0.0815 0.0728 0.0674 0.0952

NTS = 1 0.1384 0.1335 0.1544 0.1729 0.1648 0.1960

NTS = 2 0.2908 0.3050 0.3247 0.3480 0.3331 0.3586

SFA MoM NTS = 0 0.0688 0.0697 0.0755 0.0791 0.0737 0.0811

NTS = 0.5 0.0799 0.0832 0.0883 0.0900 0.0881 0.0813

NTS = 1 0.0917 0.1032 0.0976 0.0987 0.1034 0.0896

NTS = 2 0.1240 0.1255 0.1240 0.1153 0.1260 0.1311

SFA ML NTS = 0 0.0101 0.0344 0.0130 0.0053 0.0332 0.0119

NTS = 0.5 0.0623 0.0663 0.0617 0.0587 0.0642 0.0585

NTS = 1 0.0949 0.1006 0.0960 0.0907 0.0912 0.0894

NTS = 2 0.1427 0.1516 0.1501 0.1313 0.1444 0.1400

StoNED MoM NTS = 0 0.0676 0.0634 0.0740 0.0734 0.0674 0.0799

NTS = 0.5 0.0806 0.0791 0.0885 0.0894 0.0986 0.0826

NTS = 1 0.0906 0.1029 0.1011 0.0980 0.1021 0.0900

NTS = 2 0.1289 0.1279 0.1282 0.1208 0.1258 0.1348

StoNED PL NTS = 0 0.0466 0.0467 0.0509 0.0378 0.0368 0.0414

NTS = 0.5 0.0652 0.0636 0.0649 0.0580 0.0593 0.0587

NTS = 1 0.0809 0.0814 0.0862 0.0749 0.0765 0.0776

NTS = 2 0.1050 0.1100 0.1118 0.1036 0.1048 0.1048

Table 6: Variation of noise-to-signal ratio. Performance criterion: Mean
absolute deviation (MAD). DGP: DMU= 50, 100; Error term: Noise-to-signal
ratio (NTS): 0, 0.5, 1 and 2; uj ∼ Exp(µ=1/6); Heteroscedasticity: NO; Production
function: PF I (Cobb Douglas with increasing returns to scale), PF II (CRESH),
PF III (Translog); Collinearity: 0; Input distribution: zj ∼ U(5,15); Number of
inputs(z): m= 2.

Obviously, all methods perform worse with an increasing noise-to-signal ratio, with

respect to both the MAD and the MRC. Hence, the relative comparison is of major

relevance as to which methods are influenced most. As DEA is deterministic, it is the

method which is most negatively affected by this variation. On average, the DEA

MAD is eleven times higher when noise-to-signal ratio is 2 instead of 0. However,

even in the scenario without noise, SFA ML performs better in most of the settings

and the order of methods in almost all settings, from best to worst is as follows: SFA

ML, DEA, StoNED PL, StoNED MoM and SFA MoM. In contrast, StoNED PL is

the least affected method: Its MAD also increase with an increasing noise-to-signal

ratio, but in comparison to the other methods, its “competitiveness” increases. The

ability to handle a lot of noise seems to be a comparative advantage of StoNED PL.

In the scenario with NTS=2, the order is generally the following: StoNED PL, SFA
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MoM, StoNED MoM, SFA ML and DEA. So we can conclude, that the higher the

noise-to-signal ratio, the better the StoNED PL and the MoM methods perform.

In these opposing cases (NTS=0 and NTS=2), the order of methods is compar-

atively consistent and the conclusions are relatively unambiguous. However, an

assumption somewhere between these extremes could be more realistic. Note that a

noise-to-signal ratio of two assumes that the data has twice times as much noise as

inefficiency. Would an efficiency estimation make sense in this case? Unfortunately,

the conclusions are more ambiguous for the settings between these extremes. Given

a NTS=0.5, StoNED PL and SFA ML are the best methods and DEA also delivers

comparable results in most settings. The MoM methods perform worse than the

others.

4.2.2 Distribution of the inefficiency term

In order to measure the influence of the inefficiency distribution, we vary the DGP

with respect to it (cf., among others, Jensen (2005)). Apart from our standard

exponential distribution uj ∼ Exp(µ=1/6), we use a half normal N+ (0,0.021) and a

beta distribution B (0.068,4) to generate the ineffiency term. The parametrization

is chosen in such a manner that they have the same expected inefficiency value (see

Table 7), whereupon the distributions differ with regard to the expected standard

deviation and the skewness. The skewness represents the asymmetry regarding the

inefficiency of the DMUs. The greater the skewness, the more DMUs are relatively

efficient, but some DMUs are indeed very inefficient. Note that we still assume a

half normally distributed inefficiency term for the stochastic methods.

Distribution
Expected

Mean Standard deviation Skewness

N+(0, 0.021) 0.167 0.127 1

Exp(µ = 1/6) 0.167 0.168 2

B(0.068, 4) 0.167 0.057 5.57

Table 7: Variations of the inefficiency distribution.
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In general, all methods are affected by a variation in the inefficiency distribution

(see Table 8), but the direction of the effect on the MAD differs. However, we can

see a homogeneous effect of the variation on the MD and this explains the diverg-

ing effects on the MAD. The more skewed the inefficiency distribution, the lower

the MD, that is, the underestimation of DMUs increases. As a result, the methods

which generally overestimates are positively affected. These are the StoNED PL

and the DEA in the scenario without noise. Again, DEA is negatively affected in

the scenario with noise. In this case, DEA performs very poorly when inefficiency

is drawn from the (more skewed) beta distribution.

As expected, the MoM methods achieve the best results, if they are not misspeci-

fied, i.e. inefficiency is generated by a half normal distribution. Surprisingly, this

conclusion does not apply for the performance of SFA ML and StoNED PL. In most

settings, the results are worse, when the assumptions are in accordance with the real

DGP. For the StoNED PL, we give the explanation above, while the effect on SFA

ML is surprising. However, the results suggest that a misspecification does not affect

the ML performance as much as the MoM performance. This finding is important

as, in contrast to the SFA ML, the SFA MoM estimates the slope of the production

function without an assumption about the error term distribution, which is why

one might expect a misspecified inefficiency distribution to exert a stronger impact

on the SFA ML performance. Except for a few settings, we can conclude that the

best PL and ML results are obtained when the inefficiency is drawn from a beta

distribution. Particularly in the noise scenarios, it seems that for these methods,

the skewness of the inefficiency distribution is more decisive than the specific form

of distribution.

26



Method

NTS 0 1

DMU 50 100 50 100

PF PF I PF II PF III PF I PF II PF III PF I PF II PF III PF I PF II PF III

DEA ui ∼ HN(µ = 1/6) 0.0411 0.0450 0.0407 0.0262 0.0307 0.0344 0.1404 0.1306 0.1571 0.1617 0.1472 0.1800

ui ∼ Exp(µ = 1/6) 0.0314 0.0357 0.0373 0.0206 0.0232 0.0326 0.1384 0.1335 0.1544 0.1729 0.1648 0.1960

ui ∼ Beta(µ = 1/6) 0.0058 0.0016 0.0296 0.0068 0.0008 0.0360 0.2050 0.1905 0.2106 0.2338 0.2279 0.2624

SFA MoM ui ∼ HN(µ = 1/6) 0.0309 0.0422 0.0339 0.0248 0.0385 0.0259 0.0820 0.0824 0.0814 0.0742 0.0819 0.0793

ui ∼ Exp(µ = 1/6) 0.0688 0.0697 0.0755 0.0791 0.0737 0.0811 0.0917 0.1032 0.0976 0.0987 0.1034 0.0896

ui ∼ Beta(µ = 1/6) 0.0828 0.0872 0.0769 0.0901 0.0979 0.0899 0.0891 0.1006 0.0992 0.0893 0.0976 0.0876

SFA ML ui ∼ HN(µ = 1/6) 0.0170 0.0338 0.0150 0.0084 0.0326 0.0127 0.0981 0.1002 0.1001 0.0861 0.1001 0.0967

ui ∼ Exp(µ = 1/6) 0.0101 0.0344 0.0130 0.0053 0.0332 0.0119 0.0949 0.1006 0.0960 0.0907 0.0912 0.0894

ui ∼ Beta(µ = 1/6) 0.0000 0.0400 0.0217 0.0000 0.0399 0.0248 0.0771 0.0783 0.0873 0.0764 0.0902 0.0655

StoNED MoM ui ∼ HN(µ = 1/6) 0.0396 0.0409 0.0438 0.0315 0.0303 0.0354 0.0817 0.0803 0.0789 0.0754 0.0785 0.0767

ui ∼ Exp(µ = 1/6) 0.0676 0.0634 0.0740 0.0734 0.0674 0.0799 0.0906 0.1029 0.1011 0.0980 0.1021 0.0900

ui ∼ Beta(µ = 1/6) 0.0751 0.0644 0.0698 0.0821 0.0788 0.0818 0.0980 0.1057 0.1017 0.0929 0.0975 0.0945

StoNED PL ui ∼ HN(µ = 1/6) 0.0623 0.0618 0.0579 0.0463 0.0448 0.0554 0.0952 0.0929 0.0903 0.0935 0.0925 0.0950

ui ∼ Exp(µ = 1/6) 0.0466 0.0467 0.0509 0.0378 0.0368 0.0414 0.0809 0.0814 0.0862 0.0749 0.0765 0.0776

ui ∼ Beta(µ = 1/6) 0.0279 0.0238 0.0295 0.0269 0.0255 0.0320 0.0549 0.0548 0.0547 0.0489 0.0520 0.0465

Table 8: Variation of the distribution of the inefficiency term. Performance
criterion: Mean absolute deviation (MAD). DGP: DMU= 50, 100; Error
term: Noise-to-signal ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6), N+ (0,0.021) and B
(0.068,4); Heteroscedasticity: NO; Production function: PF I (Cobb Douglas with
increasing returns to scale), PF II (CRESH), PF III (Translog); Collinearity: 0;
Input distribution: zj ∼ U(5,15); Number of inputs(z): m= 2.

4.2.3 Heteroscedasticity

In the efficiency analysis literature, the effect of heteroscedasticity has been investi-

gated by Caudill and Ford (1993), Caudill et al. (1995), Kumbhakar (1997), Hadri

(1999), Hadri et al. (2003) and others. Caudill and Ford (1993) and Caudill et al.

(1995) point out that the performance of the efficiency estimation methods are

affected by a heteroscedastic inefficiency term. Additionally, Hadri et al. (2003)

showed that inefficiency measures are also sensitive to heteroscedasticity in the

noise term. Analogously to Kuosmanen and Kortelainen (2010) and Simar and

Zelenyuk (2011), we investigate the influence of a heteroscedastic inefficiency term

and leave the influence of a heteroscedastic noise term for further research. In order

to analyze the influence of a heteroscedastic inefficiency term, we have to change

the DGP, so that inefficiency depends on the size of the DMU. Following Simar

and Zelenyuk (2011), we draw the inefficiency term from the half normal distri-
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bution uj|zj ∼ |N(0, (σu(z1,j + z2,j)/w)2|, where σu is 0.3. We set w = 28.72 to

ensure that the expected inefficiency (µ = 1/6) remains unchanged. Otherwise,

we would be mixing the effect of heteroscedasticity with that of a change in ex-

pected inefficiency. The noise term remains normally distributed, vj ∼ N(0, σ2
v),

with σv = ρnts · E(σu) ·
√

(π − 2)/π. Because the inefficiency is size-related, the

noise-to-signal ratio varies for each replication, so that the parameter ρnts should be

interpreted here as the average noise-to-signal ratio. The results are shown in Table

9.

Method

NTS 0 1

DMU 50 100 50 100

PF PF I PF II PF III PF I PF II PF III PF I PF II PF III PF I PF II PF III

DEA Homoscedastic 0.0314 0.0357 0.0373 0.0206 0.0232 0.0326 0.1384 0.1335 0.1544 0.1729 0.1648 0.1960

Heteroscedastic 0.0409 0.0453 0.0406 0.0265 0.0296 0.0325 0.0957 0.0930 0.1152 0.1115 0.1043 0.1370

SFA MoM Homoscedastic 0.0688 0.0697 0.0755 0.0791 0.0737 0.0811 0.0917 0.1032 0.0976 0.0987 0.1034 0.0896

Heteroscedastic 0.0400 0.0490 0.0390 0.0318 0.0424 0.0319 0.0700 0.0763 0.0780 0.0716 0.0680 0.0714

SFA ML Homoscedastic 0.0101 0.0344 0.0130 0.0053 0.0332 0.0119 0.0949 0.1006 0.0960 0.0907 0.0912 0.0894

Heteroscedastic 0.0170 0.0398 0.0177 0.0084 0.0329 0.0120 0.0807 0.0888 0.0948 0.0753 0.0680 0.0773

StoNED MoM Homoscedastic 0.0676 0.0634 0.0740 0.0734 0.0674 0.0799 0.0906 0.1029 0.1011 0.0980 0.1021 0.0900

Heteroscedastic 0.0486 0.0464 0.0502 0.0388 0.0357 0.0401 0.0696 0.0748 0.0798 0.0715 0.0673 0.0730

StoNED PL Homoscedastic 0.0466 0.0467 0.0509 0.0378 0.0368 0.0414 0.0809 0.0814 0.0862 0.0749 0.0765 0.0776

Heteroscedastic 0.0756 0.0704 0.0749 0.0589 0.0583 0.0640 0.0856 0.0913 0.0953 0.0897 0.0782 0.0904

Table 9: Influence of a heteroscedastic inefficiency term. Performance
criterion: Mean absolute deviation (MAD). DGP: DMU= 50, 100; Error
term: Noise-to-signal ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6); Heteroscedasticity:
YES; Production function: PF I (Cobb Douglas with increasing returns to scale), PF
II (CRESH), PF III (Translog); Collinearity: 0; Input distribution: zj ∼ U(5,15);
Number of inputs(z): m= 2.

All methods are affected by the presence of heteroscedasticity in inefficiency, but

the direction of the effect is (surprisingly) divergent. In the scenario without noise,

the DEA performance is worse with heteroscedasticity, but in the scenario with a

NTS=1 the performance is considerably better when the inefficiency term is het-

eroscedastic. Surprisingly, in all settings, SFA MoM and StoNED MoM are substan-

tially positively affected by the heteroscedastic inefficiency term. SFA ML seems to

be unaffected in the scenario without noise, but in the scenario with noise, the

performance also improves. StoNED PL is the only method which is consistently
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negatively influenced.

Again, these performance variations can be explained by the effect on the MD. A

heteroscedastic inefficiency term leads to an increasing MD for all methods. Conse-

quently, the growing overestimation causes an upward shift of the average estimated

efficiency. For methods which generally underestimate, especially the MoM meth-

ods, this precipitates a performance improvement, whereas StoNED PL and DEA

in the noise scenario are negatively affected.

4.3 Production Function

4.3.1 Functional Form of the Production Function

The influence of the production function is frequently referred to as important in the

literature, but the variation of production functions under consideration has been

limited so far (see Perelman and Santin (2009)). For example, Gong and Sickles

(1992) use three different production functions, while Banker et al. (1993) use two

very similar ones in their MC studies. We use three different production functions

within our standard settings (PF I, II and III) and extend the analysis by four

additional production functions. Accordingly, we generate the data with a total

of seven different production functions, which vary with respect to returns-to-scale

and flexibility, see Table 10. We first discuss the influence of returns to scale, then

the influence of elasticity of substitution and finally, we compare the results of all

settings.

PF Description Parametrization

I Cobb-Douglas, Increasing Return to Scale β1 = β2 = 0.6

I.B Cobb-Douglas, Constant Return to Scale β1 = β2 = 0.5

I.C Cobb-Douglas, Decreasing Return to Scale β1 = β2 = 0.4

II CRESH (Inputsubstitution=0.33) ρ = ρi = 2

II.B CRESH (Inputsubstitution=1.33) ρ = ρi = −0.25

II.C CRESH (Inputsubstitution=3) ρ = ρi = −0.67

III Translog

Table 10: Parametrization of the additional production functions.
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Method
NTS 0 1

DMU 50 100 50 100

DEA PF I Cobb-Douglas (IRS) 0.0314 0.0206 0.1384 0.1729

PF I.B Cobb-Douglas (CRS) 0.0330 0.0220 0.1273 0.1642

PF I.C Cobb-Douglas (DRS) 0.0354 0.0217 0.1326 0.1566

PF II CRESH (Inputsub. = 0.33) 0.0357 0.0232 0.1335 0.1648

PF II.B CRESH (Inputsub. = 1.33) 0.0349 0.0216 0.1317 0.1587

PF II.C CRESH (Inputsub. = 3) 0.0317 0.0201 0.1406 0.1658

PF III Translog 0.0373 0.0326 0.1544 0.1960

SFA MoM PF I Cobb-Douglas (IRS) 0.0688 0.0791 0.0917 0.0987

PF I.B Cobb-Douglas (CRS) 0.0743 0.0719 0.0990 0.0972

PF I.C Cobb-Douglas (DRS) 0.0617 0.0787 0.0933 0.0967

PF II CRESH (Inputsub. = 0.33) 0.0697 0.0737 0.1032 0.1034

PF II.B CRESH (Inputsub. = 1.33) 0.0599 0.0692 0.0996 0.1035

PF II.C CRESH (Inputsub. = 3) 0.0753 0.0761 0.1061 0.1020

PF III Translog 0.0755 0.0811 0.0976 0.0896

SFA ML PF I Cobb-Douglas (IRS) 0.0101 0.0053 0.0949 0.0907

PF I.B Cobb-Douglas (CRS) 0.0094 0.0046 0.1018 0.0902

PF I.C Cobb-Douglas (DRS) 0.0091 0.0046 0.0985 0.0905

PF II CRESH (Inputsub. = 0.33) 0.0344 0.0332 0.1006 0.0912

PF II.B CRESH (Inputsub. = 1.33) 0.0113 0.0078 0.0972 0.0950

PF II.C CRESH (Inputsub. = 3) 0.0186 0.0176 0.1024 0.0910

PF III Translog 0.0130 0.0119 0.0960 0.0894

StoNED MoM PF I Cobb-Douglas (IRS) 0.0676 0.0734 0.0906 0.0980

PF I.B Cobb-Douglas (CRS) 0.0730 0.0693 0.1139 0.0966

PF I.C Cobb-Douglas (DRS) 0.0608 0.0756 0.0941 0.0968

PF II CRESH (Inputsub. = 0.33) 0.0634 0.0674 0.1029 0.1021

PF II.B CRESH (Inputsub. = 1.33) 0.0597 0.0678 0.1019 0.1036

PF II.C CRESH (Inputsub. = 3) 0.0749 0.0735 0.1005 0.1009

PF III Translog 0.0740 0.0799 0.1011 0.0900

StoNED PL PF I Cobb-Douglas (IRS) 0.0466 0.0378 0.0809 0.0749

PF I.B Cobb-Douglas (CRS) 0.0454 0.0361 0.0883 0.0778

PF I.C Cobb-Douglas (DRS) 0.0443 0.0369 0.0788 0.0761

PF II CRESH (Inputsub. = 0.33) 0.0467 0.0368 0.0814 0.0765

PF II.B CRESH (Inputsub. = 1.33) 0.0471 0.0366 0.0831 0.0748

PF II.C CRESH (Inputsub. = 3) 0.0442 0.0355 0.0819 0.0795

PF III Translog 0.0509 0.0414 0.0862 0.0776

Table 11: Variation of the functional form of the production function. Per-
formance criterion: Mean absolute deviation (MAD). DGP: DMU= 50, 100;
Error term: Noise-to-signal ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6); Heteroscedas-
ticity: NO; Production function: See Table 10; Collinearity: 0; Input distribution:
zj ∼ U(5,15); Number of inputs(z): m= 2.

For the purpose of measuring the influence of returns to scale, we compare the re-

sults of PF I, I.B and I.C, where PF I has increasing returns to scale of 1.2, PF I.2

has constant returns to scale and PF I.3 has decreasing returns to scale of 0.8. The

results in Table 11 suggest that there is no significant influence on the methods, but
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the performance can be affected in specific settings and the direction is ambiguous.

For instance, StoNED MoM is affected in the NTS=1 and 50 DMUs scenario. This

is one of the few settings in which the performance of SFA MoM and StoNED MoM

diverge considerably. SFA ML and StoNED PL are not noticeably affected in any

scenario.

In order to measure the influence of elasticity of substitution, we use three CRESH

(II, II.B and II.C) production functions. The respective functions have an elas-

ticity of substitution of 0.33 (PF II), 1.33 (PF II.B) and 3 (PF II.C). The results

suggest that the elasticity of substitution only has an impact on SFA MoM, SFA

ML and StoNED MoM in the scenario without noise. For the SFA, we assume a

Cobb-Douglas production function which has an elasticity of substitution of one.

Presumably, this is the reason why SFA performs considerably better, especially

SFA ML, when the elasticity of substitution is close to one in the scenario without

noise.

Finally, we compare all the results in Table 11 to analyze the effect of the functional

form. Additionally to the six production functions described above, we consider

our standard translog production function (PF III). It is surprising that DEA, as

a nonparametric method, is affected, while the SFA, which is misspecified in some

settings, is not affected in most of the settings. DEA performance deteriorates when

the data are generated by the translog function. In contrast, our results confirm that

the semi-parametric StoNED PL is more “successful”, as the underlying production

function has no influence on its performance.

However, the comparison is based on the simple two-input one-output case. The use

of more than two inputs could affect the results on the impact of the functional form.

Hence, we analyze the influence of the number of inputs in the following section.
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4.3.2 Number of Inputs

The number of inputs could affect the performance of a given method, because

the estimation of the production function is more challenging with an increasing

number of inputs. Our first step is to vary the number of inputs of the Cobb-Douglas

production function (PF I) and keep the scale elasticity constant, i.e.
∑m

i βi = 1.2.

The results in Table 12 show that the performance of DEA and StoNED PL are

influenced particularly by variations in the number of inputs. The effect on DEA

is once again diametral. In the settings without noise, the performance deteriorates

with an increasing number of inputs, because the overestimation of DEA increases

(see Table 37 in the appendix). The opposite is true for the noisy scenarios. This

can also be explained by the MD, because DEA substantially underestimates the

efficiency in the scenario with noise and therefore the “upward shift” caused by the

“dimensionality effect” has a positive impact on average performance.

The positive interaction between the number of inputs and MAD is also observable

for the semi-parametric StoNED and is most pronounced for the change from three

to four inputs. In order to understand the escalating performance deterioration of

StoNED, it is helpful to take a look at MD. The MD indicates that the overestima-

tion of StoNED PL increases constantly with an increasing number of inputs. Fur-

thermore, the mean rank correlation of StoNED decreases dramatically (see Table

39). The analysis demonstrates that in particular, the consideration of four inputs

exerts a crucial impact on the performance of nonparametric and semi-parametric

methods, whereas the parametric methods are less affected.
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Method
NTS 0 1

DMU 50 100 50 100

DEA PF I.1 (1 Input) 0.0139 0.0108 0.1716 0.2087

PF I.2 (2 Inputs) 0.0314 0.0206 0.1384 0.1729

PF I.3 (3 Inputs) 0.0547 0.0406 0.1234 0.1409

PF I.4 (4 Inputs) 0.0704 0.0588 0.1065 0.1231

SFA MoM PF I.1 (1 Input) 0.0585 0.0679 0.1081 0.1103

PF I.2 (2 Inputs) 0.0688 0.0791 0.0917 0.0987

PF I.3 (3 Inputs) 0.0623 0.0674 0.0908 0.0943

PF I.4 (4 Inputs) 0.0606 0.0598 0.0962 0.1035

SFA ML PF I.1 (1 Input) 0.0066 0.0036 0.1012 0.0973

PF I.2 (2 Inputs) 0.0101 0.0053 0.0949 0.0907

PF I.3 (3 Inputs) 0.0138 0.0061 0.1050 0.0939

PF I.4 (4 Inputs) 0.0150 0.0082 0.1052 0.0958

StoNED MoM PF I.1 (1 Input) 0.0619 0.0686 0.1095 0.1107

PF I.2 (2 Inputs) 0.0676 0.0734 0.0906 0.0980

PF I.3 (3 Inputs) 0.0635 0.0674 0.0919 0.0940

PF I.4 (4 Inputs) 0.0922 0.0854 0.1019 0.1046

StoNED PL PF I.1 (1 Input) 0.0313 0.0272 0.0803 0.0755

PF I.2 (2 Inputs) 0.0466 0.0378 0.0809 0.0749

PF I.3 (3 Inputs) 0.0597 0.0517 0.0877 0.0796

PF I.4 (4 Inputs) 0.1161 0.1053 0.1219 0.1140

Table 12: Variation of the number of inputs. Performance criterion: Mean
absolute deviation (MAD). DGP: DMU= 50, 100; Error term: Noise-to-signal
ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6); Heteroscedasticity: NO; Production func-
tion: PF I (Cobb Douglas with increasing returns to scale); Collinearity: 0; Input
distribution: zj ∼ U(5,15); Number of inputs(z): m= 1, 2, 3 and 4.

Our second step is to focus on the four input case, but to consider more functional

forms to evaluate if the functional form, in conjunction with a higher number of

inputs, has an influence on the method performance. Therefore, we add a Cobb

Douglas production function with decreasing returns to scale (PF I.C.4), as well

as a CRESH (PF II.4) and a translog (PF III.4) production function. This is of

particular interest for the parametric methods, because it can be expected that

misspecification is more serious if a flexible functional form, such as translog, is

used to generate the data in a multiple-input case. The parametrization for the

production functions can be found in Table 13.
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Nr PF (F(x)) Description Parametrization

I.4
∑m
i=1 βi · ln(zi,j) Cobb-Douglas, IRS βi = 0.3 for i=1,...,4.

I.C.4
∑m
i=1 βi · ln(zi,j) Cobb-Douglas, DRS βi = 0.2 for i=1,...,4.

II.4 ln( [
∑m
i=1 αi · z

−ρi
i,j ]−δ/ρ) CRESH δ=1, αi = 0.25, ρ=ρi=2 for i=1,...,4

III.4
β0 +

∑m
i=1 βi · ln(zi,j) + 0.5 ·∑m

i=1

∑m
f=1 βi,f · ln(zi,j) · ln(zi,j) Translog

β0=1, βi = 0.15, βi,f = 0.025 for
i,f=1,...4

Table 13: Parametrization of the production functions (Four inputs).

The results in Table 14 confirm that the misspecification of the functional form can

exert a negative influence on the performance of SFA ML, for example, in the case

of a CRESH production function and the scenario without noise. However, in the

scenario without noise, SFA ML is considerably better than the semi-parametric

methods, regardless of which production function is used. Considering the noise

scenario, the performance of all methods becomes quite similar, but StoNED PL is

still the weakest method especially when the number of DMU is small. In summary,

as also stated by Kuosmanen (2008), the flexibility of the semi-parametric approach

does have a price. The performance, in particular of StoNED PL, deteriorates when

more explanatory variables are considered, keeping the number of DMUs constant.
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Method
NTS 0 1

DMU 50 100 50 100

DEA PF I.4 Cobb-Douglas (IRS) 0.0704 0.0588 0.1065 0.1231

PF I.C.4 Cobb-Douglas (DRS) 0.0714 0.0523 0.1091 0.1225

PF II.4 CRESH 0.0739 0.0618 0.1018 0.1215

PF III.4 Translog 0.0668 0.0518 0.1112 0.1348

SFA MoM PF I.4 Cobb-Douglas (IRS) 0.0606 0.0598 0.0962 0.1035

PF I.C.4 Cobb-Douglas (DRS) 0.0747 0.0726 0.0906 0.1002

PF II.4 CRESH 0.0618 0.0745 0.1000 0.1005

PF III.4 Translog 0.0663 0.0800 0.0925 0.0951

SFA ML PF I.4 Cobb-Douglas (IRS) 0.0150 0.0082 0.1052 0.0958

PF I.C.4 Cobb-Douglas (DRS) 0.0171 0.0074 0.1015 0.0995

PF II.4 CRESH 0.0368 0.0357 0.1105 0.0949

PF III.4 Translog 0.0175 0.0094 0.1023 0.0889

StoNED MoM PF I.4 Cobb-Douglas (IRS) 0.0922 0.0854 0.1019 0.1046

PF I.C.4 Cobb-Douglas (DRS) 0.0944 0.0866 0.0951 0.1017

PF II.4 CRESH 0.0867 0.0852 0.0967 0.1007

PF III.4 Translog 0.0852 0.0872 0.0973 0.0969

StoNED PL PF I.4 Cobb-Douglas (IRS) 0.1161 0.1053 0.1219 0.1140

PF I.C.4 Cobb-Douglas (DRS) 0.1119 0.0934 0.1134 0.1095

PF II.4 CRESH 0.1122 0.1010 0.1125 0.1072

PF III.4 Translog 0.1130 0.1009 0.1119 0.1052

Table 14: Variation of the functional form of the production function (Four
inputs). Performance criterion: Mean absolute deviation (MAD). DGP:
DMU= 50, 100; Error term: Noise-to-signal ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6);
Heteroscedasticity: NO; Production function: See Table 13; Collinearity: 0; Input
distribution: zj ∼ U(5,15); Number of inputs(z): m= 4.

4.3.3 Collinearity

A further factor considered in studies comparing efficiency methods is the collinear-

ity between inputs (see, for example, Jensen (2005)). In Andor and Hesse (2011), we

assumed that correlation is between 0 and 0.9. A reviewer stated that it might be

more interesting to consider cases with an even higher correlation between the inputs.

Therefore, we only use extreme values for the collinearity, namely ρcoll(z1,z2)=0.0,

0.9 and 0.99.

The results suggest that DEA is the only method which is considerably influenced

by collinearity (see Table 15). The reason is that increasing collinearity leads to a

greater underestimation of DEA. As a result, it is, once again, diametrally affected.
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For the scenario without noise (except PF III), it is positively affected, while the

opposite applies to the noise scenario. SFA MoM and StoNED MoM seem to be un-

affected. Also, SFA ML is mainly unaffected, but in the scenario without noise, the

performance improves with increasing collinearity, when the underlying production

function is PF II. StoNED PL exhibits a performance improvement with increasing

collinearity for the scenario without noise. Nevertheless, considering extreme val-

ues for the collinearity, we can conclude that the various methods – except DEA

– are not influenced substantially. These findings concur with Jensen (2005), who

concludes that collinearity has no influence on the performance of SFA ML.

Method

NTS 0 1

DMU 50 100 50 100

PF PF I PF II PF III PF I PF II PF III PF I PF II PF III PF I PF II PF III

DEA ρ=0.00 0.0314 0.0357 0.0373 0.0206 0.0232 0.0326 0.1384 0.1335 0.1544 0.1729 0.1648 0.1960

ρ=0.90 0.0219 0.0255 0.0456 0.0138 0.0160 0.0491 0.1562 0.1469 0.1892 0.1890 0.1760 0.2262

ρ=0.99 0.0174 0.0214 0.0511 0.0115 0.0126 0.0563 0.1732 0.1617 0.2170 0.1980 0.1835 0.2379

SFA MoM ρ=0.00 0.0688 0.0697 0.0755 0.0791 0.0737 0.0811 0.0917 0.1032 0.0976 0.0987 0.1034 0.0896

ρ=0.90 0.0679 0.0626 0.0704 0.0679 0.0693 0.0721 0.1048 0.0901 0.0965 0.0981 0.1050 0.0949

ρ=0.99 0.0680 0.0643 0.0754 0.0709 0.0753 0.0799 0.0980 0.0972 0.0964 0.1022 0.0927 0.0990

SFA ML ρ=0.00 0.0101 0.0344 0.0130 0.0053 0.0332 0.0119 0.0949 0.1006 0.0960 0.0907 0.0912 0.0894

ρ=0.90 0.0084 0.0107 0.0141 0.0048 0.0060 0.0125 0.1086 0.0956 0.1097 0.0939 0.0960 0.0907

ρ=0.99 0.0093 0.0093 0.0156 0.0050 0.0048 0.0142 0.0979 0.1013 0.0968 0.0931 0.0875 0.0897

StoNED MoM ρ=0.00 0.0676 0.0634 0.0740 0.0734 0.0674 0.0799 0.0906 0.1029 0.1011 0.0980 0.1021 0.0900

ρ=0.90 0.0701 0.0615 0.0741 0.0660 0.0688 0.0747 0.1055 0.0916 0.0966 0.0992 0.1053 0.0974

ρ=0.99 0.0690 0.0641 0.0816 0.0676 0.0734 0.0826 0.0987 0.0982 0.1002 0.1024 0.0932 0.1005

StoNED PL ρ=0.00 0.0466 0.0467 0.0509 0.0378 0.0368 0.0414 0.0809 0.0814 0.0862 0.0749 0.0765 0.0776

ρ=0.90 0.0417 0.0382 0.0473 0.0313 0.0302 0.0403 0.0849 0.0798 0.0887 0.0791 0.0765 0.0752

ρ=0.99 0.0360 0.0326 0.0461 0.0314 0.0299 0.0433 0.0795 0.0782 0.0835 0.0731 0.0778 0.0762

Table 15: Variation of collinearity between the inputs. Performance cri-
terion: Mean absolute deviation (MAD). DGP: DMU= 50, 100; Error term:
Noise-to-signal ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6); Heteroscedasticity: NO;
Production function: PF I (Cobb Douglas with increasing returns to scale), PF II
(CRESH), PF III (Translog); Collinearity: 0, 0.9, 0.99; Input distribution: zj ∼
U(5,15); Number of inputs(z): m= 2.

4.3.4 Input distribution

Most simulation studies use uniform or normal distributions to generate the inputs.

In fact, real-world input distributions are usually different with regard to the stan-

dard deviation and skewness of the distribution. For instance, Resti (2000) justifies
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his use of a skewed input distribution by the fact that there are usually more small

and medium-sized companies than large ones and that an unrealistic assumption

could influence the performance of the methods. However, in contrast to Resti

(2000), we vary the input distribution and are therefore able to evaluate the influ-

ence. We use normal, gamma and uniform distributions, which differ regarding the

standard deviation and the skewness (see Table 16).

Distribution Mean σ Skewness

z1,2 ∼ N(10, 1) 10 1.00 0.00

z1,2 ∼ Gamma(100, 0.1) 10 1.00 0.20

z1,2 ∼ U(5, 10) 10 2.90 0.00

z1,2 ∼ Gamma(10, 1) 10 3.15 0.62

Table 16: Variation of the input distribution and their respective moments.

In general, the results suggest that the input distribution can exert an impact on

the performance of all methods, but only in specific settings (see Table 17). For

SFA MoM and StoNED MoM, it is difficult to identify a systematic pattern. For

DEA, the performance deteriorates with an increasing standard deviation in the sce-

nario without noise. This effect is notably significant for the translog function (PF

III). For instance, the DEA MAD is more than twice as high than in comparable

settings. The same effect, increasing MAD for an increasing standard deviation, is

observable for the SFA ML in cases with a high standard deviation in combination

with a misspecification of the production function (PF II, III). The analysis of the

input distribution supports the supposition of Resti (2000) that the input distribu-

tion can have an influence on the performance of the methods, but it depends on

the specifications of the other influencing factors and has only a minor impact in

comparison to the other influencing factors.
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Method

NTS 0 1

DMU 50 100 50 100

PF PF I PF II PF III PF I PF II PF III PF I PF II PF III PF I PF II PF III

DEA z1,2 ∼ N(10, 1) 0.0212 0.0241 0.0203 0.0142 0.0151 0.0146 0.1687 0.1629 0.1665 0.1952 0.1937 0.2029

z1,2 ∼ G(100, 0.1) 0.0216 0.0229 0.0213 0.0149 0.0158 0.0139 0.1649 0.1783 0.1731 0.2100 0.1927 0.2005

z1,2 ∼ U(1, 15) 0.0314 0.0357 0.0373 0.0206 0.0232 0.0326 0.1384 0.1335 0.1544 0.1729 0.1648 0.1960

z1,2 ∼ G(10, 1) 0.0343 0.0410 0.0437 0.0229 0.0260 0.0504 0.1418 0.1290 0.1628 0.1681 0.1588 0.1987

SFA MoM z1,2 ∼ N(10, 1) 0.0598 0.0635 0.0653 0.0746 0.0712 0.0805 0.1032 0.0936 0.0982 0.0934 0.0982 0.1018

z1,2 ∼ G(100, 0.1) 0.0585 0.0841 0.0726 0.0689 0.0714 0.0770 0.1019 0.1050 0.0994 0.0896 0.0991 0.0998

z1,2 ∼ U(1, 15) 0.0688 0.0697 0.0755 0.0791 0.0737 0.0811 0.0917 0.1032 0.0976 0.0987 0.1034 0.0896

z1,2 ∼ G(10, 1) 0.0593 0.0707 0.0674 0.0725 0.0785 0.0749 0.1078 0.1030 0.0940 0.0961 0.1074 0.1008

SFA ML z1,2 ∼ N(10, 1) 0.0098 0.0121 0.0091 0.0048 0.0069 0.0052 0.0998 0.0989 0.0993 0.0891 0.0911 0.0924

z1,2 ∼ G(100, 0.1) 0.0092 0.0108 0.0094 0.0049 0.0066 0.0044 0.1026 0.1042 0.1005 0.0872 0.0967 0.0933

z1,2 ∼ U(1, 15) 0.0101 0.0344 0.0130 0.0053 0.0332 0.0119 0.0949 0.1006 0.0960 0.0907 0.0912 0.0894

z1,2 ∼ G(10, 1) 0.0099 0.0372 0.0155 0.0060 0.0360 0.0136 0.1001 0.1065 0.0964 0.0867 0.1013 0.0915

StoNED MoM z1,2 ∼ N(10, 1) 0.0608 0.0628 0.0669 0.0743 0.0696 0.0789 0.1018 0.0936 0.0991 0.0948 0.0973 0.1019

z1,2 ∼ G(100, 0.1) 0.0605 0.0806 0.0700 0.0674 0.0710 0.0765 0.1027 0.1047 0.1014 0.0909 0.1000 0.0988

z1,2 ∼ U(1, 15) 0.0676 0.0634 0.0740 0.0734 0.0674 0.0799 0.0906 0.1029 0.1011 0.0980 0.1021 0.0900

z1,2 ∼ G(10, 1) 0.0608 0.0629 0.0696 0.0718 0.0697 0.0756 0.1086 0.1033 0.0959 0.0989 0.1030 0.1033

StoNED PL z1,2 ∼ N(10, 1) 0.0356 0.0332 0.0372 0.0295 0.0298 0.0328 0.0811 0.0806 0.0809 0.0779 0.0769 0.0768

z1,2 ∼ G(100, 0.1) 0.0350 0.0385 0.0374 0.0290 0.0294 0.0300 0.0870 0.0872 0.0788 0.0767 0.0782 0.0784

z1,2 ∼ U(1, 15) 0.0466 0.0467 0.0509 0.0378 0.0368 0.0414 0.0809 0.0814 0.0862 0.0749 0.0765 0.0776

z1,2 ∼ G(10, 1) 0.0437 0.0466 0.0502 0.0348 0.0363 0.0450 0.0878 0.0812 0.0843 0.0725 0.0742 0.0759

Table 17: Variation of the input distribution. Performance criterion: Mean
absolute deviation (MAD). DGP: DMU= 50, 100; Error term: Noise-to-signal
ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6); Heteroscedasticity: NO; Production func-
tion: PF I (Cobb Douglas with increasing returns to scale), PF II (CRESH), PF III
(Translog); Collinearity: 0; Input distribution: See Table 16; Number of inputs(z):
m= 2.

4.3.5 Overview effects

Finally, Table 18 summarizes the main conclusions of the analysis of the influencing

factors. The most important part of our study is without doubt the analysis of

the recently introduced StoNED. Hence, we now focus on the influencing factors of

StoNED. StoNED MoM generally performs in a very similar manner to SFA MoM.

The noise-to-signal ratio, the sample size and the skewness of the inefficiency distri-

bution have a negative impact on it, particularly in the scenario without noise. The

comparative advantage of the MOM methods is the ability to handle a heteroscedas-

tic inefficiency term. In short, our results suggest that the StoNED MoM does not

seem to constitute a substantial advancement in efficiency estimation, as it behaves
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like a twin brother of SFA MoM, without offering any compelling advantages.

However, the StoNED PL seems to constitute progress in efficiency estimation, as it

has an important unique comparative advantage. StoNED PL is the best method,

if a high noise-to-signal ratio is assumed. In contrast, the curse of dimensionality (a

larger number of inputs) and scenarios without noise, are weaknesses of the StoNED

PL, in comparison to the other methods.

DEA SFA MoM SFA ML StoNED MoM StoNED PL

Influencing factor MAD MD MRC MAD MD MRC MAD MD MRC MAD MD MRC MAD MD MRC

Sample size - /+ - + + / o - + - - + +o/o o o o o o

Noise-to-signal ratio + - - + +o - + o - + o - + +o -

Inefficiency distribution (skewness) -/+ - o +/o - -/o o - -/o +/o+ - -/o - - -/o

Heteroscedasticity +/- + =/+ - + - / + =+/- + o/+ - + -/+ + + -/+

Number of Inputs +/- + -/o o o -/o =+/=o =+/o =o/o +o/o + - + + -

Collinearity o/+ - o =/o= o o o=/= o o =/o= o +/o -o/= o +/o

Input distribution (standard deviation) +/o o -/o o/=o o o o+/=o =o/o o =o =o/o o o/= o=/o o

Table 18: Overview of influencing factors on methods performance. Legend:
The meaning of the symbols are the following: (+) increasing, (-) decreasing, (o)
ambiguous effect and (=) no considerable effect. If the results depend on the noise-
to-signal ratio the sign in front of a slash (/) refers to the without noise scenario
(NTS=0), whereas the sign after the slash refers to the noise scenario (NTS=1). If
there are two symbols, both are valid in specific settings.
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5 Conclusions

In this simulation study, we compared the StoNED method, recently introduced by

Kuosmanen and Kortelainen (2010), with the two most popular estimation meth-

ods, or rather the two “oldies” DEA and SFA. Our research objective was a system-

atic comparison of the three methods and the two different estimation techniques

(method of moments and likelihood), using cross sectional data. Accordingly, we

analyzed the performance of DEA, SFA MoM, SFA ML, StoNED MoM and StoNED

PL in a Monte Carlo simulation. By using 172 different settings, we identified factors

influencing the performance of the particular method and derive recommendations

for practical applications.

The main findings can be summarized as follows. The likelihood estimation tech-

niques, and especially the SFA ML, perform best in our study. The StoNED PL is a

serious competitor for SFA ML and has its comparative advantage in an increasing

noise to signal ratio. Furthermore, our analysis reveals a specific characteristic of the

StoNED PL. While all other methods underestimate efficiency, StoNED PL is the

only method which overestimates on average. This finding can partly explain the

performance of StoNED and could be useful to policy makers. For instance, in the

German incentive regulation of electricity grid operators, the best-of-two-method is

applied, that is, the highest of the estimates of DEA and SFA is used as the efficiency

value, so as to avoid underestimating the efficiency of grid operators. The relatively

good performance of StoNED PL, in conjunction with a bias to overestimate the

efficiency, seems a good argument for applying StoNED PL for this purpose. A

disadvantage for the application in the real-world is the diminishing performance

of StoNED for an increasing number of inputs. Nevertheless, an evaluation of the

methods depends on the specific performance criterion. While StoNED PL and SFA

ML achieve similar performance with regard to MAD and MSE, the consideration of

rank correlation leads to a different conclusion. As StoNED is the poorest method

under the latter performance criterion in our study, the ranking accuracy seems to
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constitute a weakness of StoNED.

Using the method of moments as estimation technique, the performance of SFA and

StoNED are generally similar. The switch between SFA MoM and StoNED MoM,

namely the methodology change of the production function estimation from OLS

to CNLS, does not seem to be particularly promising. In particular, StoNED has

the disadvantage of a lower rank correlation. However, the MoM estimation tech-

nique is particularly advisable when a heteroscedastic inefficiency term has to be

considered. To cope with the deterministic of DEA, we also considered a nondis-

criminatory subsample of 80 settings without noise. Indeed, in this subsample, DEA

and SFA perform best. Summarizing, while in scenarios without noise, the “battle”

is still between the “oldies”, in noisy scenarios, the nonparametric StoNED PL is a

promising alternative to the SFA ML.

Our conclusions have, like every Monte Carlo simulation, some limitations, because

they are only valid under the considered assumptions. The results show that the

relative advantageousness of a method critically depends on the underlying assump-

tions. As a result, we would like to advice for practical applications to conduct a

Monte Carlo simulation under the concrete real-world conditions, before deciding for

an estimation method. For instance, the number of DMUs, the input distribution

as well as the number of inputs are observable, whereas one has to define adequate

assumptions about, for example, the distribution of the inefficiency as well as the

noise term. Of course, the conduction of a Monte Carlo simulation with all meth-

ods is laborious. However, at least for regulator who derives financial objectives

for regulated firms from efficiency benchmarks, the effort should be worthwhile. For

practitioners who cannot conduct their own MC study, theoretical MC studies which

consider a wide variety of assumptions can serve as a guideline. Accordingly, our

study can be seen as a first step in indicating a range of specific situations in which

one of the five considered estimation methods proves superior, but further research

is needed.

This study focused on the single-input multiple-output case. An MC study consid-
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ering the multiple-input multiple-output case could be of interest, as policy makers

in the real world often face this problem (cf. Perelman and Santin (2009)). Fur-

thermore, this is one of the main advantages of DEA. However, for this purpose, a

multiple-output model for StoNED has to be developed. Further research objectives

for StoNED can be found in Kuosmanen and Kortelainen (2010). Finally, future

research should consider how StoNED performs in comparison to other approaches,

which combine the advantages of parametric and nonparametric methods. For in-

stance, Badunenko et al. (2011) compare the nonparametric kernel SFA estimator

of Fan et al. (1996) to the nonparametric bias-corrected DEA estimator of Kneip

et al. (2008). A comparison of these methods with StoNED would surely be worth

conducting.
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6 Appendix

6.1 Number of DMUs

NTS 0 1

Method PF PF I PF II PF III PF I PF II PF III

DEA DMU = 20 0.0536 0.0545 0.0340 -0.0586 -0.0348 -0.0775

DMU = 50 0.0312 0.0357 0.0100 -0.1038 -0.0984 -0.1217

DMU = 100 0.0199 0.0232 -0.0060 -0.1564 -0.1487 -0.1799

DMU = 200 0.0107 0.0170 -0.0166 -0.1891 -0.1702 -0.2124

SFA MoM DMU = 20 -0.0203 -0.0260 -0.0223 -0.0186 -0.0003 -0.0126

DMU = 50 -0.0640 -0.0605 -0.0695 -0.0322 -0.0571 -0.0471

DMU = 100 -0.0787 -0.0693 -0.0807 -0.0609 -0.0702 -0.0389

DMU = 200 -0.0837 -0.0829 -0.0770 -0.0707 -0.0856 -0.0741

SFA ML DMU = 20 0.0248 0.0057 0.0224 -0.0087 0.0225 0.0030

DMU = 50 0.0066 -0.0154 0.0042 -0.0216 -0.0480 -0.0459

DMU = 100 0.0040 -0.0257 -0.0030 -0.0454 -0.0559 -0.0353

DMU = 200 0.0017 -0.0271 -0.0067 -0.0518 -0.0673 -0.0560

StoNED MoM DMU = 20 0.0030 -0.0187 -0.0010 -0.0216 -0.0125 -0.0303

DMU = 50 -0.0514 -0.0445 -0.0565 -0.0355 -0.0517 -0.0460

DMU = 100 -0.0659 -0.0603 -0.0734 -0.0608 -0.0632 -0.0441

DMU = 200 -0.0696 -0.0272 -0.0465 -0.0227 -0.0458 -0.0232

StoNED PL DMU = 20 0.0434 0.0354 0.0481 0.0364 0.0375 0.0208

DMU = 50 0.0098 0.0145 0.0095 0.0350 0.0315 0.0306

DMU = 100 0.0025 -0.0036 0.0022 0.0269 0.0238 0.0320

DMU = 200 0.0031 0.0353 0.0203 0.0603 0.0419 0.0632

Table 19: Variation of sample size. Performance criterion: Mean deviation
(MD). DGP: Sample size: DMU= 20, 50, 100, 200; Error term: Noise-to-signal
ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6); Heteroscedasticity: NO; Production func-
tion: PF I (Cobb Douglas with increasing returns to scale), PF II (CRESH), PF III
(Translog); Collinearity: 0; Input distribution: zj ∼ U(5,15); Number of inputs(z):
m= 2.
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NTS 0 1

Method PF PF I PF II PF III PF I PF II PF III

DEA DMU = 20 0.0051 0.0047 0.0060 0.0239 0.0184 0.0307

DMU = 50 0.0020 0.0021 0.0032 0.0298 0.0277 0.0369

DMU = 100 0.0009 0.0009 0.0026 0.0423 0.0389 0.0546

DMU = 200 0.0004 0.0005 0.0025 0.0530 0.0448 0.0651

SFA MoM DMU = 20 0.0054 0.0075 0.0067 0.0159 0.0177 0.0153

DMU = 50 0.0071 0.0084 0.0084 0.0140 0.0176 0.0164

DMU = 100 0.0082 0.0085 0.0092 0.0160 0.0175 0.0133

DMU = 200 0.0084 0.0092 0.0071 0.0171 0.0187 0.0157

SFA ML DMU = 20 0.0022 0.0036 0.0020 0.0212 0.0239 0.0198

DMU = 50 0.0002 0.0028 0.0003 0.0151 0.0164 0.0151

DMU = 100 0.0001 0.0026 0.0003 0.0133 0.0133 0.0131

DMU = 200 0.0000 0.0025 0.0002 0.0118 0.0138 0.0117

StoNED MoM DMU = 20 0.0072 0.0082 0.0092 0.0179 0.0148 0.0153

DMU = 50 0.0072 0.0069 0.0086 0.0135 0.0173 0.0175

DMU = 100 0.0077 0.0068 0.0094 0.0157 0.0170 0.0133

DMU = 200 0.0090 0.0106 0.0092 0.0165 0.0175 0.0174

StoNED PL DMU = 20 0.0092 0.0085 0.0102 0.0174 0.0158 0.0144

DMU = 50 0.0042 0.0042 0.0048 0.0119 0.0120 0.0133

DMU = 100 0.0028 0.0024 0.0029 0.0101 0.0103 0.0108

DMU = 200 0.0037 0.0118 0.0075 0.0170 0.0140 0.0180

Table 20: Variation of sample size. Performance criterion: Mean squared
error (MSE). DGP: Sample size: DMU= 20, 50, 100, 200; Error term: Noise-to-
signal ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6); Heteroscedasticity: NO; Production
function: PF I (Cobb Douglas with increasing returns to scale), PF II (CRESH),
PF III (Translog); Collinearity: 0; Input distribution: zj ∼ U(5,15); Number of
inputs(z): m= 2.
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NTS 0 1

Method PF PF I PF II PF III PF I PF II PF III

DEA DMU = 20 0.8113 0.8380 0.7710 0.5065 0.5203 0.4441

DMU = 50 0.9070 0.9057 0.8608 0.5087 0.5505 0.5109

DMU = 100 0.9470 0.9599 0.8946 0.5662 0.5699 0.5280

DMU = 200 0.9690 0.9767 0.9199 0.5634 0.5679 0.5290

SFA MOM DMU = 20 0.8922 0.7709 0.8906 0.5483 0.5269 0.5218

DMU = 50 0.9360 0.8725 0.9397 0.5409 0.5524 0.5708

DMU = 100 0.9691 0.8870 0.9659 0.5984 0.5701 0.5991

DMU = 200 0.9795 0.8964 0.9770 0.5951 0.5706 0.5931

SFA ML DMU = 20 0.9513 0.8187 0.9521 0.5542 0.5228 0.5158

DMU = 50 0.9844 0.8890 0.9758 0.5419 0.5564 0.5710

DMU = 100 0.9955 0.8944 0.9812 0.5985 0.5723 0.5994

DMU = 200 0.9992 0.9025 0.9870 0.5956 0.5705 0.5936

STONED MOM DMU = 20 0.7996 0.7586 0.7572 0.5045 0.5254 0.4652

DMU = 50 0.8656 0.8718 0.8594 0.5201 0.5261 0.5379

DMU = 100 0.9098 0.9239 0.8981 0.5812 0.5623 0.5730

DMU = 200 0.9259 0.8099 0.8430 0.5237 0.5400 0.5062

STONED PL DMU = 20 0.7996 0.7586 0.7572 0.5045 0.5254 0.4652

DMU = 50 0.8656 0.8718 0.8594 0.5201 0.5260 0.5381

DMU = 100 0.9099 0.9240 0.8982 0.5812 0.5625 0.5730

DMU = 200 0.9259 0.8099 0.8430 0.5237 0.5400 0.5062

Table 21: Variation of sample size. Performance criterion: Mean rank
correlation (MRC). DGP: Sample size: DMU= 20, 50, 100, 200; Error term:
Noise-to-signal ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6); Heteroscedasticity: NO;
Production function: PF I (Cobb Douglas with increasing returns to scale), PF
II (CRESH), PF III (Translog); Collinearity: 0; Input distribution: zj ∼ U(5,15);
Number of inputs(z): m= 2.
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6.2 Variation of the error term

6.2.1 Noise-to-signal ratio (NTS)

Method
DMU 50 100

PF PF I PF II PF III PF I PF II PF III

DEA NTS = 0 0.0312 0.0357 0.0100 0.0199 0.0232 -0.0060

NTS = 0.5 -0.0179 -0.0172 -0.0458 -0.0484 -0.0412 -0.0732

NTS = 1 -0.1038 -0.0984 -0.1217 -0.1564 -0.1487 -0.1799

NTS = 2 -0.2682 -0.2836 -0.3035 -0.3369 -0.3188 -0.3471

SFA MoM NTS = 0 -0.0640 -0.0605 -0.0695 -0.0787 -0.0693 -0.0807

NTS = 0.5 -0.0613 -0.0575 -0.0698 -0.0790 -0.0755 -0.0678

NTS = 1 -0.0322 -0.0571 -0.0471 -0.0609 -0.0702 -0.0389

NTS = 2 -0.0374 -0.0259 -0.0358 -0.0295 -0.0397 -0.0612

SFA ML NTS = 0 0.0066 -0.0154 0.0042 0.0040 -0.0257 -0.0030

NTS = 0.5 -0.0382 -0.0416 -0.0375 -0.0414 -0.0450 -0.0391

NTS = 1 -0.0216 -0.0480 -0.0459 -0.0454 -0.0559 -0.0353

NTS = 2 -0.0290 -0.0103 -0.0211 -0.0127 -0.0244 -0.0459

StoNED MoM NTS = 0 -0.0514 -0.0445 -0.0565 -0.0659 -0.0603 -0.0734

NTS = 0.5 -0.0513 -0.0437 -0.0617 -0.0743 -0.0808 -0.0624

NTS = 1 -0.0355 -0.0517 -0.0460 -0.0608 -0.0632 -0.0441

NTS = 2 -0.0581 -0.0470 -0.0441 -0.0461 -0.0501 -0.0688

StoNED PL NTS = 0 0.0098 0.0145 0.0095 0.0025 -0.0036 0.0022

NTS = 0.5 0.0180 0.0232 0.0165 0.0071 0.0141 0.0163

NTS = 1 0.0350 0.0315 0.0306 0.0269 0.0238 0.0320

NTS = 2 0.0307 0.0355 0.0380 0.0420 0.0354 0.0256

Table 22: Variation of noise-to-signal ratio. Performance criterion: Mean
deviation (MD). DGP: DMU= 50, 100; Error term: Noise-to-signal ratio (NTS):
0, 0.5, 1 and 2; uj ∼ Exp(µ=1/6); Heteroscedasticity: NO; Production function:
PF I (Cobb Douglas with increasing returns to scale), PF II (CRESH), PF III
(Translog); Collinearity: 0; Input distribution: zj ∼ U(5,15); Number of inputs(z):
m= 2.
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Method
DMU 50 100

PF PF I PF II PF III PF I PF II PF III

DEA NTS = 0 0.0020 0.0021 0.0032 0.0009 0.0009 0.0026

NTS = 0.5 0.0070 0.0060 0.0116 0.0083 0.0072 0.0150

NTS = 1 0.0298 0.0277 0.0369 0.0423 0.0389 0.0546

NTS = 2 0.1143 0.1231 0.1384 0.1523 0.1417 0.1613

SFA MoM NTS = 0 0.0071 0.0084 0.0084 0.0082 0.0085 0.0092

NTS = 0.5 0.0102 0.0115 0.0126 0.0126 0.0121 0.0105

NTS = 1 0.0140 0.0176 0.0164 0.0160 0.0175 0.0133

NTS = 2 0.0256 0.0276 0.0274 0.0228 0.0267 0.0284

SFA ML NTS = 0 0.0002 0.0028 0.0003 0.0001 0.0026 0.0003

NTS = 0.5 0.0063 0.0071 0.0061 0.0055 0.0068 0.0054

NTS = 1 0.0151 0.0164 0.0151 0.0133 0.0133 0.0131

NTS = 2 0.0330 0.0375 0.0375 0.0287 0.0331 0.0312

StoNED MoM NTS = 0 0.0072 0.0069 0.0086 0.0077 0.0068 0.0094

NTS = 0.5 0.0104 0.0105 0.0128 0.0125 0.0257 0.0110

NTS = 1 0.0135 0.0173 0.0175 0.0157 0.0170 0.0133

NTS = 2 0.0269 0.0277 0.0292 0.0245 0.0264 0.0301

StoNED PL NTS = 0 0.0042 0.0042 0.0048 0.0028 0.0024 0.0029

NTS = 0.5 0.0075 0.0074 0.0073 0.0056 0.0063 0.0059

NTS = 1 0.0119 0.0120 0.0133 0.0101 0.0103 0.0108

NTS = 2 0.0195 0.0216 0.0220 0.0194 0.0194 0.0193

Table 23: Variation of noise-to-signal ratio. Performance criterion: Mean
squared error (MSE). DGP: DMU= 50, 100; Error term: Noise-to-signal ratio
(NTS): 0, 0.5, 1 and 2; uj ∼ Exp(µ=1/6); Heteroscedasticity: NO; Production
function: PF I (Cobb Douglas with increasing returns to scale), PF II (CRESH),
PF III (Translog); Collinearity: 0; Input distribution: zj ∼ U(5,15); Number of
inputs(z): m= 2.
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Method
DMU 50 100

PF PF I PF II PF III PF I PF II PF III

DEA NTS = 0 0.9070 0.9057 0.8608 0.9470 0.9599 0.8946

NTS = 0.5 0.7029 0.7325 0.6883 0.7574 0.7536 0.7085

NTS = 1 0.5087 0.5505 0.5109 0.5662 0.5699 0.5280

NTS = 2 0.3601 0.3603 0.3066 0.3524 0.3284 0.3380

SFA MoM NTS = 0 0.9360 0.8725 0.9397 0.9691 0.8870 0.9659

NTS = 0.5 0.7562 0.7428 0.7757 0.7911 0.7463 0.7898

NTS = 1 0.5409 0.5524 0.5708 0.5984 0.5701 0.5991

NTS = 2 0.3753 0.3612 0.3196 0.3648 0.3387 0.3639

SFA ML NTS = 0 0.9844 0.8890 0.9758 0.9955 0.8944 0.9812

NTS = 0.5 0.7604 0.7453 0.7727 0.7968 0.7501 0.7935

NTS = 1 0.5419 0.5564 0.5710 0.5985 0.5723 0.5994

NTS = 2 0.3749 0.3620 0.3220 0.3653 0.3379 0.3636

StoNED MoM NTS = 0 0.8656 0.8718 0.8594 0.9098 0.9239 0.8981

NTS = 0.5 0.7057 0.7283 0.7148 0.7603 0.7373 0.7506

NTS = 1 0.5201 0.5261 0.5379 0.5812 0.5623 0.5730

NTS = 2 0.3547 0.3508 0.3099 0.3568 0.3386 0.3511

StoNED PL NTS = 0 0.8656 0.8718 0.8594 0.9099 0.9240 0.8982

NTS = 0.5 0.7058 0.7284 0.7149 0.7604 0.7375 0.7508

NTS = 1 0.5201 0.5260 0.5381 0.5812 0.5625 0.5730

NTS = 2 0.3547 0.3509 0.3098 0.3568 0.3386 0.3512

Table 24: Variation of noise-to-signal ratio. Performance criterion: Mean
rank correlation (MRC). DGP: DMU= 50, 100; Error term: Noise-to-signal
ratio (NTS): 0, 0.5, 1 and 2; uj ∼ Exp(µ=1/6); Heteroscedasticity: NO; Production
function: PF I (Cobb Douglas with increasing returns to scale), PF II (CRESH),
PF III (Translog); Collinearity: 0; Input distribution: zj ∼ U(5,15); Number of
inputs(z): m= 2.
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6.2.2 Distribution of the inefficiency term

Method

NTS 0 1

DMU 50 100 50 100

PF PF I PF II PF III PF I PF II PF III PF I PF II PF III PF I PF II PF III

DEA ui ∼ HN(µ = 1/6) 0.0408 0.0450 0.0175 0.0257 0.0307 0.0023 -0.1017 -0.0900 -0.1210 -0.1379 -0.1206 -0.1584

ui ∼ Exp(µ = 1/6) 0.0312 0.0357 0.0100 0.0199 0.0232 -0.0060 -0.1038 -0.0984 -0.1217 -0.1564 -0.1487 -0.1799

ui ∼ Beta(µ = 1/6) -0.0033 0.0016 -0.0278 -0.0056 0.0008 -0.0352 -0.2033 -0.1887 -0.2081 -0.2329 -0.2265 -0.2615

SFA MoM ui ∼ HN(µ = 1/6) 0.0161 0.0129 0.0024 0.0071 0.0030 0.0084 0.0132 0.0105 0.0153 0.0174 0.0184 0.0290

ui ∼ Exp(µ = 1/6) -0.0640 -0.0605 -0.0695 -0.0787 -0.0693 -0.0807 -0.0322 -0.0571 -0.0471 -0.0609 -0.0702 -0.0389

ui ∼ Beta(µ = 1/6) -0.0828 -0.0872 -0.0768 -0.0901 -0.0978 -0.0899 -0.0820 -0.0957 -0.0930 -0.0833 -0.0918 -0.0822

SFA ML ui ∼ HN(µ = 1/6) 0.0147 -0.0042 0.0101 0.0074 -0.0116 0.0068 0.0112 0.0181 0.0162 0.0227 0.0274 0.0398

ui ∼ Exp(µ = 1/6) 0.0066 -0.0154 0.0042 0.0040 -0.0257 -0.0030 -0.0216 -0.0480 -0.0459 -0.0454 -0.0559 -0.0353

ui ∼ Beta(µ = 1/6) 0.0000 -0.0399 -0.0213 0.0000 -0.0399 -0.0246 -0.0638 -0.0665 -0.0752 -0.0649 -0.0805 -0.0526

StoNED MoM ui ∼ HN(µ = 1/6) 0.0228 0.0247 0.0077 0.0119 0.0104 0.0108 0.0082 0.0131 0.0097 0.0157 0.0139 0.0188

ui ∼ Exp(µ = 1/6) -0.0514 -0.0445 -0.0565 -0.0659 -0.0603 -0.0734 -0.0355 -0.0517 -0.0460 -0.0608 -0.0632 -0.0441

ui ∼ Beta(µ = 1/6) -0.0740 -0.0632 -0.0684 -0.0817 -0.0777 -0.0810 -0.0919 -0.1015 -0.0958 -0.0871 -0.0919 -0.0896

StoNED PL ui ∼ HN(µ = 1/6) 0.0577 0.0562 0.0459 0.0410 0.0392 0.0499 0.0670 0.0746 0.0669 0.0755 0.0717 0.0784

ui ∼ Exp(µ = 1/6) 0.0098 0.0145 0.0095 0.0025 -0.0036 0.0022 0.0350 0.0315 0.0306 0.0269 0.0238 0.0320

ui ∼ Beta(µ = 1/6) -0.0199 -0.0152 -0.0211 -0.0199 -0.0177 -0.0248 -0.0414 -0.0440 -0.0400 -0.0355 -0.0378 -0.0331

Table 25: Variation of the distribution of the inefficiency term. Per-
formance criterion: Mean deviation (MD). DGP: DMU= 50, 100; Error
term: Noise-to-signal ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6), N+ (0,0.021) and B
(0.068,4); Heteroscedasticity: NO; Production function: PF I (Cobb Douglas with
increasing returns to scale), PF II (CRESH), PF III (Translog); Collinearity: 0;
Input distribution: zj ∼ U(5,15); Number of inputs(z): m= 2.
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Method

NTS 0 1

DMU 50 100 50 100

PF PF I PF II PF III PF I PF II PF III PF I PF II PF III PF I PF II PF III

DEA ui ∼ HN(µ = 1/6) 0.0031 0.0031 0.0037 0.0014 0.0015 0.0028 0.0296 0.0260 0.0378 0.0379 0.0319 0.0470

ui ∼ Exp(µ = 1/6) 0.0020 0.0021 0.0032 0.0009 0.0009 0.0026 0.0298 0.0277 0.0369 0.0423 0.0389 0.0546

ui ∼ Beta(µ = 1/6) 0.0001 0.0000 0.0018 0.0001 0.0000 0.0024 0.0617 0.0532 0.0660 0.0731 0.0691 0.0904

SFA MoM ui ∼ HN(µ = 1/6) 0.0017 0.0029 0.0019 0.0011 0.0025 0.0011 0.0112 0.0115 0.0112 0.0092 0.0111 0.0108

ui ∼ Exp(µ = 1/6) 0.0071 0.0084 0.0084 0.0082 0.0085 0.0092 0.0140 0.0176 0.0164 0.0160 0.0175 0.0133

ui ∼ Beta(µ = 1/6) 0.0089 0.0102 0.0075 0.0090 0.0118 0.0090 0.0123 0.0165 0.0151 0.0108 0.0132 0.0114

SFA ML ui ∼ HN(µ = 1/6) 0.0006 0.0022 0.0004 0.0001 0.0023 0.0003 0.0163 0.0171 0.0168 0.0127 0.0167 0.0161

ui ∼ Exp(µ = 1/6) 0.0002 0.0028 0.0003 0.0001 0.0026 0.0003 0.0151 0.0164 0.0151 0.0133 0.0133 0.0131

ui ∼ Beta(µ = 1/6) 0.0000 0.0037 0.0006 0.0000 0.0037 0.0007 0.0140 0.0148 0.0154 0.0113 0.0141 0.0105

StoNED MoM ui ∼ HN(µ = 1/6) 0.0031 0.0029 0.0033 0.0019 0.0018 0.0023 0.0113 0.0110 0.0105 0.0095 0.0102 0.0099

ui ∼ Exp(µ = 1/6) 0.0072 0.0069 0.0086 0.0077 0.0068 0.0094 0.0135 0.0173 0.0175 0.0157 0.0170 0.0133

ui ∼ Beta(µ = 1/6) 0.0076 0.0056 0.0065 0.0077 0.0072 0.0082 0.0142 0.0176 0.0159 0.0122 0.0129 0.0130

StoNED PL ui ∼ HN(µ = 1/6) 0.0066 0.0063 0.0059 0.0039 0.0035 0.0052 0.0152 0.0150 0.0140 0.0150 0.0148 0.0157

ui ∼ Exp(µ = 1/6) 0.0042 0.0042 0.0048 0.0028 0.0024 0.0029 0.0119 0.0120 0.0133 0.0101 0.0103 0.0108

ui ∼ Beta(µ = 1/6) 0.0012 0.0009 0.0015 0.0010 0.0010 0.0015 0.0066 0.0057 0.0061 0.0045 0.0047 0.0045

Table 26: Variation of the distribution of the inefficiency term. Perfor-
mance criterion: Mean squared error (MSE). DGP: DMU= 50, 100; Error
term: Noise-to-signal ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6), N+ (0,0.021) and B
(0.068,4); Heteroscedasticity: NO; Production function: PF I (Cobb Douglas with
increasing returns to scale), PF II (CRESH), PF III (Translog); Collinearity: 0;
Input distribution: zj ∼ U(5,15); Number of inputs(z): m= 2.
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Method

NTS 0 1

DMU 50 100 50 100

PF PF I PF II PF III PF I PF II PF III PF I PF II PF III PF I PF II PF III

DEA ui ∼ HN(µ = 1/6) 0.8830 0.9075 0.8483 0.9404 0.9519 0.8951 0.5144 0.5041 0.4684 0.5178 0.5236 0.4824

ui ∼ Exp(µ = 1/6) 0.9070 0.9057 0.8608 0.9470 0.9599 0.8946 0.5087 0.5505 0.5109 0.5662 0.5699 0.5280

ui ∼ Beta(µ = 1/6) 0.3936 0.6602 0.2612 0.4089 0.7677 0.2875 0.1231 0.1242 0.1170 0.0808 0.1118 0.0991

SFA MoM ui ∼ HN(µ = 1/6) 0.9680 0.8820 0.9625 0.9843 0.8939 0.9765 0.5530 0.5312 0.5271 0.5588 0.5308 0.5506

ui ∼ Exp(µ = 1/6) 0.9360 0.8725 0.9397 0.9691 0.8870 0.9659 0.5409 0.5524 0.5708 0.5984 0.5701 0.5991

ui ∼ Beta(µ = 1/6) 0.4544 0.2742 0.3853 0.4747 0.2508 0.4103 0.1157 0.1116 0.1221 0.0858 0.1210 0.1174

SFA ML ui ∼ HN(µ = 1/6) 0.9808 0.8951 0.9767 0.9952 0.8967 0.9870 0.5509 0.5287 0.5226 0.5593 0.5295 0.5509

ui ∼ Exp(µ = 1/6) 0.9844 0.8890 0.9758 0.9955 0.8944 0.9812 0.5419 0.5564 0.5710 0.5985 0.5723 0.5994

ui ∼ Beta(µ = 1/6) 0.9149 0.2847 0.4024 0.9286 0.2692 0.4210 0.1156 0.1129 0.1221 0.0862 0.1210 0.1174

StoNED MoM ui ∼ HN(µ = 1/6) 0.9039 0.9021 0.8716 0.9418 0.9435 0.9177 0.5211 0.5059 0.4956 0.5386 0.5312 0.5275

ui ∼ Exp(µ = 1/6) 0.8656 0.8718 0.8594 0.9098 0.9239 0.8981 0.5201 0.5261 0.5379 0.5812 0.5623 0.5730

ui ∼ Beta(µ = 1/6) 0.3619 0.3989 0.2850 0.4106 0.4102 0.3076 0.1065 0.1103 0.1104 0.0822 0.1095 0.1155

StoNED PL ui ∼ HN(µ = 1/6) 0.9039 0.9021 0.8716 0.9418 0.9435 0.9178 0.5212 0.5059 0.4956 0.5386 0.5312 0.5275

ui ∼ Exp(µ = 1/6) 0.8656 0.8718 0.8594 0.9099 0.9240 0.8982 0.5201 0.5260 0.5381 0.5812 0.5625 0.5730

ui ∼ Beta(µ = 1/6) 0.3619 0.3989 0.2848 0.4106 0.4102 0.3078 0.1066 0.1105 0.1104 0.0822 0.1095 0.1155

Table 27: Variation of the distribution of the inefficiency term. Perfor-
mance criterion: Mean rank correlation (MRC). DGP: DMU= 50, 100; Er-
ror term: Noise-to-signal ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6), N+ (0,0.021)
and B (0.068,4); Heteroscedasticity: NO; Production function: PF I (Cobb Douglas
with increasing returns to scale), PF II (CRESH), PF III (Translog); Collinearity:
0; Input distribution: zj ∼ U(5,15); Number of inputs(z): m= 2.

6.2.3 Heteroscedasticity

Method

NTS 0 1

DMU 50 100 50 100

PF PF I PF II PF III PF I PF II PF III PF I PF II PF III PF I PF II PF III

DEA Homoscedastic 0.0312 0.0357 0.0100 0.0199 0.0232 -0.0060 -0.1038 -0.0984 -0.1217 -0.1564 -0.1487 -0.1799

Heteroscedastic 0.0408 0.0453 0.0251 0.0260 0.0296 0.0046 -0.0445 -0.0441 -0.0741 -0.0842 -0.0774 -0.1117

SFA MoM Homoscedastic -0.0640 -0.0605 -0.0695 -0.0787 -0.0693 -0.0807 -0.0322 -0.0571 -0.0471 -0.0609 -0.0702 -0.0389

Heteroscedastic 0.0172 0.0086 0.0098 0.0020 -0.0033 -0.0001 0.0123 0.0161 0.0218 0.0167 -0.0070 0.0114

SFA ML Homoscedastic 0.0066 -0.0154 0.0042 0.0040 -0.0257 -0.0030 -0.0216 -0.0480 -0.0459 -0.0454 -0.0559 -0.0353

Heteroscedastic 0.0140 0.0004 0.0117 0.0060 -0.0143 0.0038 0.0028 0.0145 0.0282 0.0195 -0.0086 0.0110

StoNED MoM Homoscedastic -0.0514 -0.0445 -0.0565 -0.0659 -0.0603 -0.0734 -0.0355 -0.0517 -0.0460 -0.0608 -0.0632 -0.0441

Heteroscedastic 0.0262 0.0199 0.0222 0.0109 0.0059 0.0069 0.0150 0.0187 0.0230 0.0184 -0.0021 0.0146

StoNED PL Homoscedastic 0.0098 0.0145 0.0095 0.0025 -0.0036 0.0022 0.0350 0.0315 0.0306 0.0269 0.0238 0.0320

Heteroscedastic 0.0701 0.0622 0.0685 0.0529 0.0508 0.0575 0.0685 0.0734 0.0779 0.0742 0.0602 0.0752

Table 28: Influence of a heteroscedastic inefficiency term. Performance
criterion: Mean deviation (MD). DGP: DMU= 50, 100; Error term: Noise-to-
signal ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6); Heteroscedasticity: YES; Production
function: PF I (Cobb Douglas with increasing returns to scale), PF II (CRESH),
PF III (Translog); Collinearity: 0; Input distribution: zj ∼ U(5,15); Number of
inputs(z): m= 2.
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Method

NTS 0 1

DMU 50 100 50 100

PF PF I PF II PF III PF I PF II PF III PF I PF II PF III PF I PF II PF III

DEA Homoscedastic 0.0020 0.0021 0.0032 0.0009 0.0009 0.0026 0.0298 0.0277 0.0369 0.0423 0.0389 0.0546

Heteroscedastic 0.0029 0.0030 0.0034 0.0014 0.0013 0.0023 0.0143 0.0138 0.0219 0.0190 0.0168 0.0293

SFA MoM Homoscedastic 0.0071 0.0084 0.0084 0.0082 0.0085 0.0092 0.0140 0.0176 0.0164 0.0160 0.0175 0.0133

Heteroscedastic 0.0029 0.0041 0.0027 0.0016 0.0031 0.0017 0.0084 0.0099 0.0106 0.0088 0.0077 0.0087

SFA ML Homoscedastic 0.0002 0.0028 0.0003 0.0001 0.0026 0.0003 0.0151 0.0164 0.0151 0.0133 0.0133 0.0131

Heteroscedastic 0.0006 0.0032 0.0007 0.0001 0.0023 0.0003 0.0113 0.0139 0.0156 0.0100 0.0077 0.0105

StoNED MoM Homoscedastic 0.0072 0.0069 0.0086 0.0077 0.0068 0.0094 0.0135 0.0173 0.0175 0.0157 0.0170 0.0133

Heteroscedastic 0.0043 0.0036 0.0046 0.0026 0.0021 0.0027 0.0084 0.0094 0.0110 0.0088 0.0075 0.0091

StoNED PL Homoscedastic 0.0042 0.0042 0.0048 0.0028 0.0024 0.0029 0.0119 0.0120 0.0133 0.0101 0.0103 0.0108

Heteroscedastic 0.0096 0.0085 0.0098 0.0060 0.0056 0.0070 0.0131 0.0144 0.0162 0.0141 0.0107 0.0145

Table 29: Influence of a heteroscedastic inefficiency term. Performance
criterion: Mean squared error (MSE). DGP: DMU= 50, 100; Error term:
Noise-to-signal ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6); Heteroscedasticity: YES;
Production function: PF I (Cobb Douglas with increasing returns to scale), PF
II (CRESH), PF III (Translog); Collinearity: 0; Input distribution: zj ∼ U(5,15);
Number of inputs(z): m= 2.

Method

NTS 0 1

DMU 50 100 50 100

PF PF I PF II PF III PF I PF II PF III PF I PF II PF III PF I PF II PF III

DEA Homoscedastic 0.9070 0.9057 0.8608 0.9470 0.9599 0.8946 0.5087 0.5505 0.5109 0.5662 0.5699 0.5280

Heteroscedastic 0.8986 0.9114 0.8458 0.9386 0.9557 0.8890 0.5931 0.6112 0.5423 0.6128 0.6247 0.5265

SFA MoM Homoscedastic 0.9360 0.8725 0.9397 0.9691 0.8870 0.9659 0.5409 0.5524 0.5708 0.5984 0.5701 0.5991

Heteroscedastic 0.9188 0.8335 0.9019 0.9357 0.8532 0.9373 0.6294 0.5974 0.6365 0.6405 0.6128 0.6277

SFA ML Homoscedastic 0.9844 0.8890 0.9758 0.9955 0.8944 0.9812 0.5419 0.5564 0.5710 0.5985 0.5723 0.5994

Heteroscedastic 0.9826 0.8717 0.9715 0.9924 0.8857 0.9851 0.6367 0.6113 0.6390 0.6442 0.6176 0.6354

StoNED MoM Homoscedastic 0.8656 0.8718 0.8594 0.9098 0.9239 0.8981 0.5201 0.5261 0.5379 0.5812 0.5623 0.5730

Heteroscedastic 0.8655 0.8735 0.8286 0.8972 0.9033 0.8794 0.6058 0.6031 0.5961 0.6262 0.6159 0.5979

StoNED PL Homoscedastic 0.8656 0.8718 0.8594 0.9099 0.9240 0.8982 0.5201 0.5260 0.5381 0.5812 0.5625 0.5730

Heteroscedastic 0.8654 0.8735 0.8288 0.8973 0.9035 0.8796 0.6058 0.6034 0.5961 0.6262 0.6159 0.5979

Table 30: Influence of a heteroscedastic inefficiency term. Performance
criterion: Mean rank correlation (MRC). DGP: DMU= 50, 100; Error term:
Noise-to-signal ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6); Heteroscedasticity: YES;
Production function: PF I (Cobb Douglas with increasing returns to scale), PF
II (CRESH), PF III (Translog); Collinearity: 0; Input distribution: zj ∼ U(5,15);
Number of inputs(z): m= 2.
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6.3 Production Function

6.3.1 Functional form of the production function

Method
NTS 0 1

DMU 50 100 50 100

DEA PF I Cobb-Douglas (IRS) 0.0312 0.0199 -0.1038 -0.1564

PF I.B Cobb-Douglas (CRS) 0.0330 0.0220 -0.0884 -0.1452

PF I.C Cobb-Douglas (DRS) 0.0354 0.0217 -0.0957 -0.1352

PF II CRESH (Inputsub. = 0.33) 0.0357 0.0232 -0.0984 -0.1487

PF II.B CRESH (Inputsub. = 1.33) 0.0349 0.0216 -0.0946 -0.1399

PF II.C CRESH (Inputsub. = 3) 0.0317 0.0201 -0.1060 -0.1456

PF III Translog 0.0100 -0.0060 -0.1217 -0.1799

SFA MoM PF I Cobb-Douglas (IRS) -0.0640 -0.0787 -0.0322 -0.0609

PF I.B Cobb-Douglas (CRS) -0.0694 -0.0706 -0.0396 -0.0563

PF I.C Cobb-Douglas (DRS) -0.0566 -0.0781 -0.0430 -0.0617

PF II CRESH (Inputsub. = 0.33) -0.0605 -0.0693 -0.0571 -0.0702

PF II.B CRESH (Inputsub. = 1.33) -0.0487 -0.0675 -0.0547 -0.0693

PF II.C CRESH (Inputsub. = 3) -0.0685 -0.0753 -0.0623 -0.0566

PF III Translog -0.0695 -0.0807 -0.0471 -0.0389

SFA ML PF I Cobb-Douglas (IRS) 0.0066 0.0040 -0.0216 -0.0454

PF I.B Cobb-Douglas (CRS) 0.0071 0.0033 -0.0285 -0.0413

PF I.C Cobb-Douglas (DRS) 0.0082 0.0037 -0.0413 -0.0520

PF II CRESH (Inputsub. = 0.33) -0.0154 -0.0257 -0.0480 -0.0559

PF II.B CRESH (Inputsub. = 1.33) 0.0070 0.0008 -0.0504 -0.0565

PF II.C CRESH (Inputsub. = 3) -0.0011 -0.0088 -0.0537 -0.0346

PF III Translog 0.0042 -0.0030 -0.0459 -0.0353

StoNED MoM PF I Cobb-Douglas (IRS) -0.0514 -0.0659 -0.0355 -0.0608

PF I.B Cobb-Douglas (CRS) -0.0584 -0.0633 -0.0577 -0.0540

PF I.C Cobb-Douglas (DRS) -0.0426 -0.0693 -0.0466 -0.0612

PF II CRESH (Inputsub. = 0.33) -0.0445 -0.0603 -0.0517 -0.0632

PF II.B CRESH (Inputsub. = 1.33) -0.0357 -0.0564 -0.0516 -0.0694

PF II.C CRESH (Inputsub. = 3) -0.0587 -0.0681 -0.0503 -0.0564

PF III Translog -0.0565 -0.0734 -0.0460 -0.0441

StoNED PL PF I Cobb-Douglas (IRS) 0.0098 0.0025 0.0350 0.0269

PF I.B Cobb-Douglas (CRS) 0.0132 -0.0015 0.0293 0.0328

PF I.C Cobb-Douglas (DRS) 0.0094 0.0030 0.0285 0.0248

PF II CRESH (Inputsub. = 0.33) 0.0145 -0.0036 0.0315 0.0238

PF II.B CRESH (Inputsub. = 1.33) 0.0201 0.0026 0.0258 0.0185

PF II.C CRESH (Inputsub. = 3) 0.0085 0.0007 0.0250 0.0305

PF III Translog 0.0095 0.0022 0.0306 0.0320

Table 31: Variation of the functional form of the production function.
Performance criterion: Mean deviation (MD). DGP: DMU= 50, 100; Error
term: Noise-to-signal ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6); Heteroscedasticity:
NO; Production function: See Table 10; Collinearity: 0; Input distribution: zj ∼
U(5,15); Number of inputs(z): m= 2.
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Method
NTS 0 1

DMU 50 100 50 100

DEA PF I Cobb-Douglas (IRS) 0.0020 0.0009 0.0298 0.0423

PF I.B Cobb-Douglas (CRS) 0.0020 0.0010 0.0251 0.0381

PF I.C Cobb-Douglas (DRS) 0.0022 0.0009 0.0268 0.0354

PF II CRESH (Inputsub. = 0.33) 0.0021 0.0009 0.0277 0.0389

PF II.B CRESH (Inputsub. = 1.33) 0.0023 0.0009 0.0267 0.0363

PF II.C CRESH (Inputsub. = 3) 0.0021 0.0009 0.0301 0.0393

PF III Translog 0.0032 0.0026 0.0369 0.0546

SFA MoM PF I Cobb-Douglas (IRS) 0.0071 0.0082 0.0140 0.0160

PF I.B Cobb-Douglas (CRS) 0.0081 0.0071 0.0167 0.0153

PF I.C Cobb-Douglas (DRS) 0.0057 0.0081 0.0143 0.0152

PF II CRESH (Inputsub. = 0.33) 0.0084 0.0085 0.0176 0.0175

PF II.B CRESH (Inputsub. = 1.33) 0.0056 0.0066 0.0169 0.0173

PF II.C CRESH (Inputsub. = 3) 0.0090 0.0077 0.0184 0.0171

PF III Translog 0.0084 0.0092 0.0164 0.0133

SFA ML PF I Cobb-Douglas (IRS) 0.0002 0.0001 0.0151 0.0133

PF I.B Cobb-Douglas (CRS) 0.0002 0.0000 0.0174 0.0131

PF I.C Cobb-Douglas (DRS) 0.0001 0.0000 0.0163 0.0131

PF II CRESH (Inputsub. = 0.33) 0.0028 0.0026 0.0164 0.0133

PF II.B CRESH (Inputsub. = 1.33) 0.0002 0.0001 0.0153 0.0144

PF II.C CRESH (Inputsub. = 3) 0.0006 0.0005 0.0169 0.0134

PF III Translog 0.0003 0.0003 0.0151 0.0131

StoNED MoM PF I Cobb-Douglas (IRS) 0.0072 0.0077 0.0135 0.0157

PF I.B Cobb-Douglas (CRS) 0.0083 0.0070 0.0305 0.0150

PF I.C Cobb-Douglas (DRS) 0.0059 0.0079 0.0146 0.0151

PF II CRESH (Inputsub. = 0.33) 0.0069 0.0068 0.0173 0.0170

PF II.B CRESH (Inputsub. = 1.33) 0.0060 0.0070 0.0174 0.0174

PF II.C CRESH (Inputsub. = 3) 0.0090 0.0075 0.0170 0.0168

PF III Translog 0.0086 0.0094 0.0175 0.0133

StoNED PL PF I Cobb-Douglas (IRS) 0.0042 0.0028 0.0119 0.0101

PF I.B Cobb-Douglas (CRS) 0.0040 0.0024 0.0141 0.0109

PF I.C Cobb-Douglas (DRS) 0.0040 0.0026 0.0113 0.0102

PF II CRESH (Inputsub. = 0.33) 0.0042 0.0024 0.0120 0.0103

PF II.B CRESH (Inputsub. = 1.33) 0.0044 0.0032 0.0124 0.0096

PF II.C CRESH (Inputsub. = 3) 0.0038 0.0023 0.0125 0.0112

PF III Translog 0.0048 0.0029 0.0133 0.0108

Table 32: Variation of the functional form of the production function. Per-
formance criterion: Mean squared error (MSE). DGP: DMU= 50, 100; Error
term: Noise-to-signal ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6); Heteroscedasticity:
NO; Production function: See Table 10; Collinearity: 0; Input distribution: zj ∼
U(5,15); Number of inputs(z): m= 2.
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Method
NTS 0 1

DMU 50 100 50 100

DEA PF I Cobb-Douglas (IRS) 0.9070 0.9470 0.5087 0.5662

PF I.B Cobb-Douglas (CRS) 0.9068 0.9456 0.5284 0.5697

PF I.C Cobb-Douglas (DRS) 0.9008 0.9539 0.5330 0.5565

PF II CRESH (Inputsub. = 0.33) 0.9057 0.9599 0.5505 0.5699

PF II.B CRESH (Inputsub. = 1.33) 0.8993 0.9463 0.5395 0.5622

PF II.C CRESH (Inputsub. = 3) 0.9005 0.9461 0.5331 0.5363

PF III Translog 0.8608 0.8946 0.5109 0.5280

SFA MoM PF I Cobb-Douglas (IRS) 0.9360 0.9691 0.5409 0.5984

PF I.B Cobb-Douglas (CRS) 0.9403 0.9676 0.5642 0.5983

PF I.C Cobb-Douglas (DRS) 0.9432 0.9619 0.5658 0.5848

PF II CRESH (Inputsub. = 0.33) 0.8725 0.8870 0.5524 0.5701

PF II.B CRESH (Inputsub. = 1.33) 0.9345 0.9658 0.5614 0.5939

PF II.C CRESH (Inputsub. = 3) 0.9259 0.9572 0.5756 0.5775

PF III Translog 0.9397 0.9659 0.5708 0.5991

SFA ML PF I Cobb-Douglas (IRS) 0.9844 0.9955 0.5419 0.5985

PF I.B Cobb-Douglas (CRS) 0.9899 0.9968 0.5642 0.5991

PF I.C Cobb-Douglas (DRS) 0.9934 0.9973 0.5716 0.5842

PF II CRESH (Inputsub. = 0.33) 0.8890 0.8944 0.5564 0.5723

PF II.B CRESH (Inputsub. = 1.33) 0.9843 0.9904 0.5659 0.5937

PF II.C CRESH (Inputsub. = 3) 0.9563 0.9650 0.5746 0.5766

PF III Translog 0.9758 0.9812 0.5710 0.5994

StoNED MoM PF I Cobb-Douglas (IRS) 0.8656 0.9098 0.5201 0.5812

PF I.B Cobb-Douglas (CRS) 0.8788 0.9249 0.5413 0.5736

PF I.C Cobb-Douglas (DRS) 0.8883 0.9251 0.5431 0.5659

PF II CRESH (Inputsub. = 0.33) 0.8718 0.9239 0.5261 0.5623

PF II.B CRESH (Inputsub. = 1.33) 0.8840 0.9187 0.5290 0.5772

PF II.C CRESH (Inputsub. = 3) 0.8827 0.9322 0.5458 0.5631

PF III Translog 0.8594 0.8981 0.5379 0.5730

StoNED PL PF I Cobb-Douglas (IRS) 0.8656 0.9099 0.5201 0.5812

PF I.B Cobb-Douglas (CRS) 0.8789 0.9249 0.5413 0.5735

PF I.C Cobb-Douglas (DRS) 0.8884 0.9251 0.5431 0.5659

PF II CRESH (Inputsub. = 0.33) 0.8718 0.9240 0.5260 0.5625

PF II.B CRESH (Inputsub. = 1.33) 0.8840 0.9187 0.5290 0.5773

PF II.C CRESH (Inputsub. = 3) 0.8827 0.9323 0.5457 0.5631

PF III Translog 0.8594 0.8982 0.5381 0.5730

Table 33: Variation of the functional form of the production function. Per-
formance criterion: Mean rank correlation (MRC). DGP: DMU= 50, 100;
Error term: Noise-to-signal ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6); Heteroscedas-
ticity: NO; Production function: See Table 10; Collinearity: 0; Input distribution:
zj ∼ U(5,15); Number of inputs(z): m= 2.
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6.3.2 Number of Inputs

Method
NTS 0 1

DMU 50 100 50 100

DEA PF I.1 (1 Input) 0.0091 -0.0025 -0.1538 -0.2010

PF I.2 (2 Inputs) 0.0312 0.0199 -0.1038 -0.1564

PF I.3 (3 Inputs) 0.0545 0.0404 -0.0669 -0.1075

PF I.4 (4 Inputs) 0.0703 0.0586 -0.0289 -0.0748

SFA MoM PF I.1 (1 Input) -0.0548 -0.0672 -0.0615 -0.0781

PF I.2 (2 Inputs) -0.0640 -0.0787 -0.0322 -0.0609

PF I.3 (3 Inputs) -0.0563 -0.0660 -0.0160 -0.0397

PF I.4 (4 Inputs) -0.0493 -0.0580 -0.0293 -0.0649

SFA ML PF I.1 (1 Input) 0.0055 0.0029 -0.0472 -0.0579

PF I.2 (2 Inputs) 0.0066 0.0040 -0.0216 -0.0454

PF I.3 (3 Inputs) 0.0101 0.0050 -0.0179 -0.0325

PF I.4 (4 Inputs) 0.0114 0.0060 -0.0262 -0.0490

StoNED MoM PF I.1 (1 Input) -0.0539 -0.0655 -0.0625 -0.0765

PF I.2 (2 Inputs) -0.0514 -0.0659 -0.0355 -0.0608

PF I.3 (3 Inputs) -0.0314 -0.0450 -0.0287 -0.0414

PF I.4 (4 Inputs) 0.0453 0.0312 0.0425 0.0179

StoNED PL PF I.1 (1 Input) -0.0031 -0.0098 0.0157 0.0143

PF I.2 (2 Inputs) 0.0098 0.0025 0.0350 0.0269

PF I.3 (3 Inputs) 0.0382 0.0265 0.0437 0.0378

PF I.4 (4 Inputs) 0.1088 0.0969 0.1066 0.0954

Table 34: Variation of the number of inputs. Performance criterion: Mean
deviation (MD). DGP: DMU= 50, 100; Error term: Noise-to-signal ratio (NTS):
0 and 1; uj ∼ Exp(µ=1/6); Heteroscedasticity: NO; Production function: PF I
(Cobb Douglas with increasing returns to scale); Collinearity: 0; Input distribution:
zj ∼ U(5,15); Number of inputs(z): m= 1, 2, 3 and 4.
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Method
NTS 0 1

DMU 50 100 50 100

DEA PF I.1 (1 Input) 0.0005 0.0002 0.0418 0.0574

PF I.2 (2 Inputs) 0.0020 0.0009 0.0298 0.0423

PF I.3 (3 Inputs) 0.0049 0.0028 0.0241 0.0306

PF I.4 (4 Inputs) 0.0074 0.0054 0.0186 0.0243

SFA MoM PF I.1 (1 Input) 0.0053 0.0061 0.0192 0.0197

PF I.2 (2 Inputs) 0.0071 0.0082 0.0140 0.0160

PF I.3 (3 Inputs) 0.0062 0.0062 0.0138 0.0150

PF I.4 (4 Inputs) 0.0059 0.0049 0.0153 0.0176

SFA ML PF I.1 (1 Input) 0.0001 0.0000 0.0169 0.0151

PF I.2 (2 Inputs) 0.0002 0.0001 0.0151 0.0133

PF I.3 (3 Inputs) 0.0004 0.0001 0.0186 0.0148

PF I.4 (4 Inputs) 0.0004 0.0001 0.0184 0.0152

StoNED MoM PF I.1 (1 Input) 0.0057 0.0063 0.0197 0.0198

PF I.2 (2 Inputs) 0.0072 0.0077 0.0135 0.0157

PF I.3 (3 Inputs) 0.0072 0.0073 0.0138 0.0147

PF I.4 (4 Inputs) 0.0176 0.0149 0.0200 0.0207

StoNED PL PF I.1 (1 Input) 0.0018 0.0013 0.0115 0.0099

PF I.2 (2 Inputs) 0.0042 0.0028 0.0119 0.0101

PF I.3 (3 Inputs) 0.0073 0.0057 0.0137 0.0119

PF I.4 (4 Inputs) 0.0264 0.0226 0.0278 0.0251

Table 35: Variation of the number of inputs. Performance criterion: Mean
squared error (MSE). DGP: DMU= 50, 100; Error term: Noise-to-signal ratio
(NTS): 0 and 1; uj ∼ Exp(µ=1/6); Heteroscedasticity: NO; Production function: PF
I (Cobb Douglas with increasing returns to scale); Collinearity: 0; Input distribution:
zj ∼ U(5,15); Number of inputs(z): m= 1, 2, 3 and 4.
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Method
NTS 0 1

DMU 50 100 50 100

DEA PF I.1 (1 Input) 0.9606 0.9836 0.5254 0.5608

PF I.2 (2 Inputs) 0.9070 0.9470 0.5087 0.5662

PF I.3 (3 Inputs) 0.8196 0.8841 0.5202 0.5484

PF I.4 (4 Inputs) 0.8066 0.8374 0.5223 0.5237

SFA MoM PF I.1 (1 Input) 0.9638 0.9834 0.5381 0.5888

PF I.2 (2 Inputs) 0.9360 0.9691 0.5409 0.5984

PF I.3 (3 Inputs) 0.9255 0.9554 0.5607 0.5960

PF I.4 (4 Inputs) 0.9152 0.9524 0.5751 0.5719

SFA ML PF I.1 (1 Input) 0.9949 0.9981 0.5372 0.5882

PF I.2 (2 Inputs) 0.9844 0.9955 0.5419 0.5985

PF I.3 (3 Inputs) 0.9748 0.9961 0.5543 0.5961

PF I.4 (4 Inputs) 0.9774 0.9920 0.5745 0.5743

StoNED MoM PF I.1 (1 Input) 0.9395 0.9683 0.5320 0.5788

PF I.2 (2 Inputs) 0.8656 0.9098 0.5201 0.5812

PF I.3 (3 Inputs) 0.8273 0.8576 0.5027 0.5499

PF I.4 (4 Inputs) 0.4085 0.5179 0.3090 0.3498

StoNED PL PF I.1 (1 Input) 0.9395 0.9683 0.5320 0.5789

PF I.2 (2 Inputs) 0.8656 0.9099 0.5201 0.5812

PF I.3 (3 Inputs) 0.8275 0.8576 0.5028 0.5501

PF I.4 (4 Inputs) 0.4085 0.5179 0.3089 0.3498

Table 36: Variation of the number of inputs. Performance criterion: Mean
rank correlation (MRC). DGP: DMU= 50, 100; Error term: Noise-to-signal ratio
(NTS): 0 and 1; uj ∼ Exp(µ=1/6); Heteroscedasticity: NO; Production function: PF
I (Cobb Douglas with increasing returns to scale); Collinearity: 0; Input distribution:
zj ∼ U(5,15); Number of inputs(z): m= 1, 2, 3 and 4.
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Method
NTS 0 1

DMU 50 100 50 100

DEA PF I.4 Cobb-Douglas (IRS) 0.0703 0.0586 -0.0289 -0.0748

PF I.C.4 Cobb-Douglas (DRS) 0.0714 0.0523 -0.0373 -0.0759

PF II.4 CRESH 0.0739 0.0618 -0.0307 -0.0728

PF III.4 Translog 0.0628 0.0458 -0.0406 -0.0898

SFA MoM PF I.4 Cobb-Douglas (IRS) -0.0493 -0.0580 -0.0293 -0.0649

PF I.C.4 Cobb-Douglas (DRS) -0.0666 -0.0708 -0.0375 -0.0559

PF II.4 CRESH -0.0449 -0.0709 -0.0408 -0.0565

PF III.4 Translog -0.0581 -0.0788 -0.0401 -0.0492

SFA ML PF I.4 Cobb-Douglas (IRS) 0.0114 0.0060 -0.0262 -0.0490

PF I.C.4 Cobb-Douglas (DRS) 0.0126 0.0050 -0.0384 -0.0490

PF II.4 CRESH -0.0099 -0.0212 -0.0366 -0.0458

PF III.4 Translog 0.0121 0.0036 -0.0388 -0.0410

StoNED MoM PF I.4 Cobb-Douglas (IRS) 0.0453 0.0312 0.0425 0.0179

PF I.C.4 Cobb-Douglas (DRS) 0.0359 0.0151 0.0372 0.0148

PF II.4 CRESH 0.0415 0.0220 0.0276 0.0081

PF III.4 Translog 0.0452 0.0198 0.0225 0.0077

StoNED PL PF I.4 Cobb-Douglas (IRS) 0.1088 0.0969 0.1066 0.0954

PF I.C.4 Cobb-Douglas (DRS) 0.1035 0.0798 0.1003 0.0868

PF II.4 CRESH 0.1055 0.0901 0.0975 0.0870

PF III.4 Translog 0.1081 0.0889 0.0943 0.0848

Table 37: Variation of the functional form of the production function (Four
inputs). Performance criterion: Mean deviation (MD). DGP: DMU= 50,
100; Error term: Noise-to-signal ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6); Het-
eroscedasticity: NO; Production function: See Table 13; Collinearity: 0; Input dis-
tribution: zj ∼ U(5,15); Number of inputs(z): m= 4.
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Method
NTS 0 1

DMU 50 100 50 100

DEA PF I.4 Cobb-Douglas (IRS) 0.0074 0.0054 0.0186 0.0243

PF I.C.4 Cobb-Douglas (DRS) 0.0076 0.0042 0.0192 0.0236

PF II.4 CRESH 0.0076 0.0052 0.0170 0.0236

PF III.4 Translog 0.0070 0.0045 0.0204 0.0289

SFA MoM PF I.4 Cobb-Douglas (IRS) 0.0059 0.0049 0.0153 0.0176

PF I.C.4 Cobb-Douglas (DRS) 0.0084 0.0074 0.0139 0.0167

PF II.4 CRESH 0.0062 0.0085 0.0171 0.0166

PF III.4 Translog 0.0072 0.0091 0.0143 0.0150

SFA ML PF I.4 Cobb-Douglas (IRS) 0.0004 0.0001 0.0184 0.0152

PF I.C.4 Cobb-Douglas (DRS) 0.0005 0.0001 0.0172 0.0163

PF II.4 CRESH 0.0024 0.0024 0.0204 0.0147

PF III.4 Translog 0.0006 0.0002 0.0174 0.0130

StoNED MoM PF I.4 Cobb-Douglas (IRS) 0.0176 0.0149 0.0200 0.0207

PF I.C.4 Cobb-Douglas (DRS) 0.0191 0.0153 0.0179 0.0193

PF II.4 CRESH 0.0157 0.0149 0.0180 0.0186

PF III.4 Translog 0.0159 0.0165 0.0178 0.0177

StoNED PL PF I.4 Cobb-Douglas (IRS) 0.0264 0.0226 0.0278 0.0251

PF I.C.4 Cobb-Douglas (DRS) 0.0261 0.0202 0.0250 0.0231

PF II.4 CRESH 0.0246 0.0212 0.0241 0.0218

PF III.4 Translog 0.0251 0.0229 0.0238 0.0217

Table 38: Variation of the functional form of the production function (Four
inputs). Performance criterion: Mean squared error (MSE). DGP: DMU=
50, 100; Error term: Noise-to-signal ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6); Het-
eroscedasticity: NO; Production function: See Table 13; Collinearity: 0; Input dis-
tribution: zj ∼ U(5,15); Number of inputs(z): m= 4.
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Method
NTS 0 1

DMU 50 100 50 100

DEA PF I.4 Cobb-Douglas (IRS) 0.8066 0.8374 0.5223 0.5237

PF I.C.4 Cobb-Douglas (DRS) 0.8016 0.8537 0.4919 0.5226

PF II.4 CRESH 0.8232 0.8625 0.5254 0.5339

PF III.4 Translog 0.7734 0.8294 0.5327 0.5350

SFA MoM PF I.4 Cobb-Douglas (IRS) 0.9152 0.9524 0.5751 0.5719

PF I.C.4 Cobb-Douglas (DRS) 0.9088 0.9395 0.5683 0.5873

PF II.4 CRESH 0.8428 0.8664 0.5470 0.5718

PF III.4 Translog 0.8974 0.9409 0.5945 0.5877

SFA ML PF I.4 Cobb-Douglas (IRS) 0.9774 0.9920 0.5745 0.5743

PF I.C.4 Cobb-Douglas (DRS) 0.9718 0.9911 0.5691 0.5883

PF II.4 CRESH 0.8684 0.8811 0.5432 0.5726

PF III.4 Translog 0.9636 0.9858 0.5939 0.5909

StoNED MoM PF I.4 Cobb-Douglas (IRS) 0.4085 0.5179 0.3090 0.3498

PF I.C.4 Cobb-Douglas (DRS) 0.4706 0.5494 0.2979 0.3828

PF II.4 CRESH 0.4179 0.5329 0.3041 0.3864

PF III.4 Translog 0.4312 0.5876 0.3687 0.4060

StoNED PL PF I.4 Cobb-Douglas (IRS) 0.4085 0.5179 0.3089 0.3498

PF I.C.4 Cobb-Douglas (DRS) 0.4706 0.5494 0.2977 0.3828

PF II.4 CRESH 0.4180 0.5329 0.3038 0.3863

PF III.4 Translog 0.4312 0.5876 0.3686 0.4060

Table 39: Variation of the functional form of the production function (Four
inputs). Performance criterion: Mean rank correlation (MRC). DGP:
DMU= 50, 100; Error term: Noise-to-signal ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6);
Heteroscedasticity: NO; Production function: See Table 13; Collinearity: 0; Input
distribution: zj ∼ U(5,15); Number of inputs(z): m= 4.
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6.3.3 Collinearity

Method

NTS 0 1

DMU 50 100 50 100

PF PF I PF II PF III PF I PF II PF III PF I PF II PF III PF I PF II PF III

DEA ρ=0.00 0.0312 0.0357 0.0100 0.0199 0.0232 -0.0060 -0.1038 -0.0984 -0.1217 -0.1564 -0.1487 -0.1799

ρ=0.90 0.0206 0.0255 -0.0207 0.0115 0.0160 -0.0351 -0.1339 -0.1196 -0.1689 -0.1760 -0.1641 -0.2180

ρ=0.99 0.0156 0.0214 -0.0382 0.0070 0.0126 -0.0479 -0.1572 -0.1447 -0.2057 -0.1893 -0.1728 -0.2309

SFA MoM ρ=0.00 -0.0640 -0.0605 -0.0695 -0.0787 -0.0693 -0.0807 -0.0322 -0.0571 -0.0471 -0.0609 -0.0702 -0.0389

ρ=0.90 -0.0645 -0.0571 -0.0649 -0.0675 -0.0690 -0.0703 -0.0493 -0.0339 -0.0270 -0.0573 -0.0701 -0.0606

ρ=0.99 -0.0646 -0.0590 -0.0716 -0.0701 -0.0746 -0.0793 -0.0485 -0.0539 -0.0430 -0.0736 -0.0512 -0.0664

SFA ML ρ=0.00 0.0066 -0.0154 0.0042 0.0040 -0.0257 -0.0030 -0.0216 -0.0480 -0.0459 -0.0454 -0.0559 -0.0353

ρ=0.90 0.0071 0.0068 0.0038 0.0036 0.0012 -0.0037 -0.0422 -0.0323 -0.0232 -0.0447 -0.0565 -0.0578

ρ=0.99 0.0074 0.0073 0.0016 0.0038 0.0034 -0.0055 -0.0419 -0.0583 -0.0311 -0.0606 -0.0437 -0.0568

StoNED MoM ρ=0.00 -0.0514 -0.0445 -0.0565 -0.0659 -0.0603 -0.0734 -0.0355 -0.0517 -0.0460 -0.0608 -0.0632 -0.0441

ρ=0.90 -0.0590 -0.0486 -0.0599 -0.0627 -0.0650 -0.0674 -0.0522 -0.0365 -0.0325 -0.0548 -0.0705 -0.0606

ρ=0.99 -0.0614 -0.0549 -0.0699 -0.0640 -0.0709 -0.0773 -0.0519 -0.0578 -0.0489 -0.0721 -0.0504 -0.0637

StoNED PL ρ=0.00 0.0098 0.0145 0.0095 0.0025 -0.0036 0.0022 0.0350 0.0315 0.0306 0.0269 0.0238 0.0320

ρ=0.90 0.0052 0.0015 -0.0042 -0.0055 -0.0082 -0.0065 0.0244 0.0335 0.0356 0.0286 0.0160 0.0171

ρ=0.99 -0.0053 -0.0021 0.0001 -0.0067 -0.0082 -0.0120 0.0235 0.0145 0.0306 0.0134 0.0313 0.0197

Table 40: Variation of collinearity between the inputs. Performance crite-
rion: Mean deviation (MD). DGP: DMU= 50, 100; Error term: Noise-to-signal
ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6); Heteroscedasticity: NO; Production func-
tion: PF I (Cobb Douglas with increasing returns to scale), PF II (CRESH), PF III
(Translog); Collinearity: 0, 0.9, 0.99; Input distribution: zj ∼ U(5,15); Number of
inputs(z): m= 2.
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Method

NTS 0 1

DMU 50 100 50 100

PF PF I PF II PF III PF I PF II PF III PF I PF II PF III PF I PF II PF III

DEA ρ=0.00 0.0020 0.0021 0.0032 0.0009 0.0009 0.0026 0.0298 0.0277 0.0369 0.0423 0.0389 0.0546

ρ=0.90 0.0010 0.0012 0.0049 0.0005 0.0005 0.0053 0.0359 0.0322 0.0526 0.0492 0.0431 0.0687

ρ=0.99 0.0007 0.0009 0.0053 0.0003 0.0003 0.0058 0.0424 0.0377 0.0646 0.0518 0.0461 0.0753

SFA MoM ρ=0.00 0.0071 0.0084 0.0084 0.0082 0.0085 0.0092 0.0140 0.0176 0.0164 0.0160 0.0175 0.0133

ρ=0.90 0.0069 0.0057 0.0069 0.0062 0.0069 0.0073 0.0186 0.0136 0.0155 0.0157 0.0180 0.0146

ρ=0.99 0.0070 0.0061 0.0092 0.0068 0.0071 0.0087 0.0162 0.0158 0.0157 0.0168 0.0137 0.0159

SFA ML ρ=0.00 0.0002 0.0028 0.0003 0.0001 0.0026 0.0003 0.0151 0.0164 0.0151 0.0133 0.0133 0.0131

ρ=0.90 0.0001 0.0002 0.0004 0.0000 0.0001 0.0003 0.0198 0.0152 0.0199 0.0143 0.0148 0.0131

ρ=0.99 0.0002 0.0002 0.0004 0.0001 0.0000 0.0003 0.0160 0.0168 0.0160 0.0139 0.0122 0.0128

StoNED MoM ρ=0.00 0.0072 0.0069 0.0086 0.0077 0.0068 0.0094 0.0135 0.0173 0.0175 0.0157 0.0170 0.0133

ρ=0.90 0.0075 0.0058 0.0080 0.0062 0.0069 0.0080 0.0188 0.0140 0.0155 0.0161 0.0180 0.0155

ρ=0.99 0.0070 0.0061 0.0107 0.0064 0.0069 0.0095 0.0160 0.0159 0.0168 0.0169 0.0140 0.0164

StoNED PL ρ=0.00 0.0042 0.0042 0.0048 0.0028 0.0024 0.0029 0.0119 0.0120 0.0133 0.0101 0.0103 0.0108

ρ=0.90 0.0032 0.0028 0.0038 0.0017 0.0016 0.0026 0.0135 0.0115 0.0141 0.0114 0.0103 0.0098

ρ=0.99 0.0023 0.0020 0.0037 0.0018 0.0016 0.0030 0.0112 0.0109 0.0126 0.0094 0.0108 0.0104

Table 41: Variation of collinearity between the inputs. Performance crite-
rion: Mean squared error (MSE). DGP: DMU= 50, 100; Error term: Noise-to-
signal ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6); Heteroscedasticity: NO; Production
function: PF I (Cobb Douglas with increasing returns to scale), PF II (CRESH), PF
III (Translog); Collinearity: 0, 0.9, 0.99; Input distribution: zj ∼ U(5,15); Number
of inputs(z): m= 2.
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Method

NTS 0 1

DMU 50 100 50 100

PF PF I PF II PF III PF I PF II PF III PF I PF II PF III PF I PF II PF III

DEA ρ=0.00 0.9070 0.9057 0.8608 0.9470 0.9599 0.8946 0.5087 0.5505 0.5109 0.5662 0.5699 0.5280

ρ=0.90 0.9392 0.9426 0.8592 0.9619 0.9736 0.8735 0.5713 0.5551 0.5074 0.5824 0.5828 0.5219

ρ=0.99 0.9543 0.9543 0.8856 0.9751 0.9798 0.8907 0.5677 0.5979 0.5489 0.5671 0.5667 0.5246

SFA MoM ρ=0.00 0.9360 0.8725 0.9397 0.9691 0.8870 0.9659 0.5409 0.5524 0.5708 0.5984 0.5701 0.5991

ρ=0.90 0.9481 0.9430 0.9411 0.9685 0.9715 0.9652 0.5752 0.5746 0.5704 0.5973 0.5985 0.5798

ρ=0.99 0.9498 0.9601 0.9501 0.9701 0.9724 0.9598 0.5830 0.6126 0.5983 0.5809 0.5872 0.5813

SFA ML ρ=0.00 0.9844 0.8890 0.9758 0.9955 0.8944 0.9812 0.5419 0.5564 0.5710 0.5985 0.5723 0.5994

ρ=0.90 0.9921 0.9867 0.9704 0.9965 0.9942 0.9815 0.5770 0.5779 0.5724 0.5987 0.5970 0.5806

ρ=0.99 0.9902 0.9883 0.9703 0.9962 0.9969 0.9767 0.5816 0.6093 0.5995 0.5813 0.5864 0.5819

StoNED MoM ρ=0.00 0.8656 0.8718 0.8594 0.9098 0.9239 0.8981 0.5201 0.5261 0.5379 0.5812 0.5623 0.5730

ρ=0.90 0.9110 0.9070 0.8707 0.9400 0.9467 0.8943 0.5598 0.5583 0.5330 0.5831 0.5893 0.5645

ρ=0.99 0.9308 0.9334 0.8806 0.9448 0.9592 0.8916 0.5629 0.6021 0.5790 0.5726 0.5760 0.5630

StoNED PL ρ=0.00 0.8656 0.8718 0.8594 0.9099 0.9240 0.8982 0.5201 0.5260 0.5381 0.5812 0.5625 0.5730

ρ=0.90 0.9111 0.9070 0.8707 0.9400 0.9467 0.8943 0.5599 0.5583 0.5329 0.5832 0.5894 0.5647

ρ=0.99 0.9308 0.9334 0.8806 0.9448 0.9592 0.8916 0.5628 0.6021 0.5790 0.5727 0.5761 0.5629

Table 42: Variation of collinearity between the inputs. Performance cri-
terion: Mean rank correlation (MRC). DGP: DMU= 50, 100; Error term:
Noise-to-signal ratio (NTS): 0 and 1; uj ∼ Exp(µ=1/6); Heteroscedasticity: NO;
Production function: PF I (Cobb Douglas with increasing returns to scale), PF II
(CRESH), PF III (Translog); Collinearity: 0, 0.9, 0.99; Input distribution: zj ∼
U(5,15); Number of inputs(z): m= 2.
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6.3.4 Input distribution

Method

NTS 0 1

DMU 50 100 50 100

PF PF I PF II PF III PF I PF II PF III PF I PF II PF III PF I PF II PF III

DEA z1,2 ∼ N(10, 1) 0.0209 0.0241 0.0155 0.0141 0.0151 0.0109 -0.1514 -0.1466 -0.1477 -0.1860 -0.1846 -0.1958

z1,2 ∼ G(100, 0.1) 0.0214 0.0229 0.0180 0.0147 0.0158 0.0105 -0.1474 -0.1653 -0.1577 -0.2014 -0.1838 -0.1910

z1,2 ∼ U(1, 15) 0.0312 0.0357 0.0100 0.0199 0.0232 -0.0060 -0.1038 -0.0984 -0.1217 -0.1564 -0.1487 -0.1799

z1,2 ∼ G(10, 1) 0.0337 0.0410 0.0020 0.0215 0.0260 -0.0287 -0.1044 -0.0938 -0.1300 -0.1476 -0.1368 -0.1816

SFA MoM z1,2 ∼ N(10, 1) -0.0549 -0.0564 -0.0567 -0.0744 -0.0703 -0.0800 -0.0563 -0.0361 -0.0405 -0.0496 -0.0547 -0.0600

z1,2 ∼ G(100, 0.1) -0.0515 -0.0819 -0.0672 -0.0685 -0.0711 -0.0767 -0.0456 -0.0466 -0.0591 -0.0433 -0.0617 -0.0577

z1,2 ∼ U(1, 15) -0.0640 -0.0605 -0.0695 -0.0787 -0.0693 -0.0807 -0.0322 -0.0571 -0.0471 -0.0609 -0.0702 -0.0389

z1,2 ∼ G(10, 1) -0.0519 -0.0599 -0.0575 -0.0715 -0.0761 -0.0732 -0.0539 -0.0629 -0.0410 -0.0623 -0.0651 -0.0665

SFA ML z1,2 ∼ N(10, 1) 0.0075 0.0056 0.0070 0.0036 0.0014 0.0038 -0.0458 -0.0312 -0.0331 -0.0393 -0.0417 -0.0401

z1,2 ∼ G(100, 0.1) 0.0072 0.0061 0.0075 0.0034 0.0011 0.0035 -0.0383 -0.0270 -0.0501 -0.0401 -0.0537 -0.0484

z1,2 ∼ U(1, 15) 0.0066 -0.0154 0.0042 0.0040 -0.0257 -0.0030 -0.0216 -0.0480 -0.0459 -0.0454 -0.0559 -0.0353

z1,2 ∼ G(10, 1) 0.0077 -0.0193 0.0036 0.0043 -0.0267 -0.0045 -0.0319 -0.0609 -0.0447 -0.0525 -0.0541 -0.0523

StoNED MoM z1,2 ∼ N(10, 1) -0.0503 -0.0518 -0.0533 -0.0711 -0.0658 -0.0741 -0.0583 -0.0415 -0.0481 -0.0480 -0.0576 -0.0608

z1,2 ∼ G(100, 0.1) -0.0484 -0.0709 -0.0567 -0.0642 -0.0682 -0.0734 -0.0455 -0.0442 -0.0623 -0.0466 -0.0603 -0.0567

z1,2 ∼ U(1, 15) -0.0514 -0.0445 -0.0565 -0.0659 -0.0603 -0.0734 -0.0355 -0.0517 -0.0460 -0.0608 -0.0632 -0.0441

z1,2 ∼ G(10, 1) -0.0425 -0.0417 -0.0490 -0.0656 -0.0633 -0.0661 -0.0560 -0.0576 -0.0337 -0.0648 -0.0656 -0.0677

StoNED PL z1,2 ∼ N(10, 1) 0.0037 -0.0006 0.0018 -0.0081 -0.0073 -0.0051 0.0254 0.0262 0.0255 0.0309 0.0232 0.0273

z1,2 ∼ G(100, 0.1) 0.0013 -0.0027 0.0057 -0.0059 -0.0112 -0.0097 0.0258 0.0353 0.0166 0.0302 0.0198 0.0250

z1,2 ∼ U(1, 15) 0.0098 0.0145 0.0095 0.0025 -0.0036 0.0022 0.0350 0.0315 0.0306 0.0269 0.0238 0.0320

z1,2 ∼ G(10, 1) 0.0159 0.0126 0.0179 0.0002 0.0018 0.0114 0.0246 0.0223 0.0348 0.0218 0.0210 0.0214

Table 43: Variation of the input distribution. Performance criterion: Mean
deviation (MD). DGP: DMU= 50, 100; Error term: Noise-to-signal ratio (NTS):
0 and 1; uj ∼ Exp(µ=1/6); Heteroscedasticity: NO; Production function: PF I
(Cobb Douglas with increasing returns to scale), PF II (CRESH), PF III (Translog);
Collinearity: 0; Input distribution: See Table 16; Number of inputs(z): m= 2.
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Method

NTS 0 1

DMU 50 100 50 100

PF PF I PF II PF III PF I PF II PF III PF I PF II PF III PF I PF II PF III

DEA z1,2 ∼ N(10, 1) 0.0009 0.0010 0.0009 0.0005 0.0005 0.0006 0.0400 0.0377 0.0392 0.0504 0.0502 0.0545

z1,2 ∼ G(100, 0.1) 0.0009 0.0009 0.0010 0.0006 0.0005 0.0005 0.0394 0.0441 0.0424 0.0585 0.0498 0.0535

z1,2 ∼ U(1, 15) 0.0020 0.0021 0.0032 0.0009 0.0009 0.0026 0.0298 0.0277 0.0369 0.0423 0.0389 0.0546

z1,2 ∼ G(10, 1) 0.0028 0.0030 0.0045 0.0015 0.0013 0.0049 0.0306 0.0259 0.0410 0.0406 0.0365 0.0558

SFA MoM z1,2 ∼ N(10, 1) 0.0055 0.0061 0.0063 0.0070 0.0067 0.0084 0.0174 0.0153 0.0160 0.0142 0.0158 0.0171

z1,2 ∼ G(100, 0.1) 0.0061 0.0111 0.0082 0.0060 0.0067 0.0077 0.0182 0.0187 0.0158 0.0132 0.0160 0.0162

z1,2 ∼ U(1, 15) 0.0071 0.0084 0.0084 0.0082 0.0085 0.0092 0.0140 0.0176 0.0164 0.0160 0.0175 0.0133

z1,2 ∼ G(10, 1) 0.0058 0.0092 0.0064 0.0069 0.0099 0.0075 0.0197 0.0179 0.0146 0.0150 0.0187 0.0163

SFA ML z1,2 ∼ N(10, 1) 0.0002 0.0003 0.0002 0.0000 0.0001 0.0001 0.0162 0.0166 0.0162 0.0128 0.0136 0.0140

z1,2 ∼ G(100, 0.1) 0.0002 0.0002 0.0002 0.0001 0.0001 0.0000 0.0176 0.0181 0.0161 0.0123 0.0151 0.0140

z1,2 ∼ U(1, 15) 0.0002 0.0028 0.0003 0.0001 0.0026 0.0003 0.0151 0.0164 0.0151 0.0133 0.0133 0.0131

z1,2 ∼ G(10, 1) 0.0002 0.0033 0.0005 0.0001 0.0035 0.0003 0.0165 0.0187 0.0155 0.0119 0.0165 0.0133

StoNED MoM z1,2 ∼ N(10, 1) 0.0058 0.0062 0.0068 0.0071 0.0065 0.0083 0.0167 0.0151 0.0161 0.0146 0.0154 0.0172

z1,2 ∼ G(100, 0.1) 0.0065 0.0105 0.0073 0.0058 0.0067 0.0079 0.0185 0.0190 0.0163 0.0137 0.0163 0.0158

z1,2 ∼ U(1, 15) 0.0072 0.0069 0.0086 0.0077 0.0068 0.0094 0.0135 0.0173 0.0175 0.0157 0.0170 0.0133

z1,2 ∼ G(10, 1) 0.0062 0.0072 0.0072 0.0071 0.0071 0.0081 0.0198 0.0177 0.0153 0.0157 0.0170 0.0171

StoNED PL z1,2 ∼ N(10, 1) 0.0025 0.0023 0.0027 0.0016 0.0016 0.0020 0.0117 0.0119 0.0116 0.0111 0.0104 0.0108

z1,2 ∼ G(100, 0.1) 0.0024 0.0030 0.0029 0.0015 0.0015 0.0016 0.0138 0.0142 0.0108 0.0109 0.0110 0.0112

z1,2 ∼ U(1, 15) 0.0042 0.0042 0.0048 0.0028 0.0024 0.0029 0.0119 0.0120 0.0133 0.0101 0.0103 0.0108

z1,2 ∼ G(10, 1) 0.0039 0.0042 0.0046 0.0023 0.0025 0.0037 0.0139 0.0115 0.0131 0.0092 0.0097 0.0102

Table 44: Variation of the input distribution. Performance criterion: Mean
squared error (MSE). DGP: DMU= 50, 100; Error term: Noise-to-signal ratio
(NTS): 0 and 1; uj ∼ Exp(µ=1/6); Heteroscedasticity: NO; Production function:
PF I (Cobb Douglas with increasing returns to scale), PF II (CRESH), PF III
(Translog); Collinearity: 0; Input distribution: See Table 16; Number of inputs(z):
m= 2.
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Method

NTS 0 1

DMU 50 100 50 100

PF PF I PF II PF III PF I PF II PF III PF I PF II PF III PF I PF II PF III

DEA z1,2 ∼ N(10, 1) 0.9492 0.9468 0.9480 0.9687 0.9715 0.9610 0.5726 0.5674 0.5872 0.5782 0.5860 0.5760

z1,2 ∼ G(100, 0.1) 0.9457 0.9527 0.9362 0.9636 0.9707 0.9637 0.5731 0.5793 0.5642 0.5644 0.5804 0.5582

z1,2 ∼ U(1, 15) 0.9070 0.9057 0.8608 0.9470 0.9599 0.8946 0.5087 0.5505 0.5109 0.5662 0.5699 0.5280

z1,2 ∼ G(10, 1) 0.8604 0.8791 0.8128 0.9018 0.9340 0.8402 0.5442 0.5518 0.4989 0.5598 0.5551 0.5198

SFA MoM z1,2 ∼ N(10, 1) 0.9549 0.9438 0.9535 0.9694 0.9662 0.9653 0.5829 0.5761 0.5918 0.5915 0.5871 0.5940

z1,2 ∼ G(100, 0.1) 0.9546 0.9471 0.9456 0.9685 0.9674 0.9749 0.5773 0.5752 0.5743 0.5817 0.5877 0.5740

z1,2 ∼ U(1, 15) 0.9360 0.8725 0.9397 0.9691 0.8870 0.9659 0.5409 0.5524 0.5708 0.5984 0.5701 0.5991

z1,2 ∼ G(10, 1) 0.9441 0.8352 0.9392 0.9646 0.8563 0.9573 0.5872 0.5555 0.5658 0.6028 0.5608 0.5878

SFA ML z1,2 ∼ N(10, 1) 0.9894 0.9768 0.9895 0.9964 0.9905 0.9955 0.5779 0.5756 0.5922 0.5913 0.5877 0.5940

z1,2 ∼ G(100, 0.1) 0.9902 0.9835 0.9899 0.9952 0.9920 0.9973 0.5744 0.5735 0.5757 0.5824 0.5881 0.5743

z1,2 ∼ U(1, 15) 0.9844 0.8890 0.9758 0.9955 0.8944 0.9812 0.5419 0.5564 0.5710 0.5985 0.5723 0.5994

z1,2 ∼ G(10, 1) 0.9904 0.8532 0.9654 0.9954 0.8689 0.9785 0.5877 0.5526 0.5624 0.6040 0.5615 0.5888

StoNED MoM z1,2 ∼ N(10, 1) 0.9319 0.9347 0.9289 0.9536 0.9521 0.9393 0.5632 0.5623 0.5646 0.5837 0.5811 0.5851

z1,2 ∼ G(100, 0.1) 0.9308 0.9277 0.9099 0.9484 0.9559 0.9513 0.5636 0.5493 0.5654 0.5685 0.5807 0.5606

z1,2 ∼ U(1, 15) 0.8656 0.8718 0.8594 0.9098 0.9239 0.8981 0.5201 0.5261 0.5379 0.5812 0.5623 0.5730

z1,2 ∼ G(10, 1) 0.8826 0.8626 0.8491 0.9244 0.9200 0.8876 0.5593 0.5526 0.5366 0.5852 0.5702 0.5633

StoNED PL z1,2 ∼ N(10, 1) 0.9320 0.9347 0.9290 0.9536 0.9521 0.9393 0.5632 0.5623 0.5646 0.5837 0.5812 0.5852

z1,2 ∼ G(100, 0.1) 0.9308 0.9277 0.9099 0.9484 0.9559 0.9513 0.5636 0.5493 0.5654 0.5686 0.5807 0.5605

z1,2 ∼ U(1, 15) 0.8656 0.8718 0.8594 0.9099 0.9240 0.8982 0.5201 0.5260 0.5381 0.5812 0.5625 0.5730

z1,2 ∼ G(10, 1) 0.8827 0.8626 0.8492 0.9244 0.9201 0.8877 0.5593 0.5524 0.5366 0.5852 0.5704 0.5633

Table 45: Variation of the input distribution. Performance criterion: Mean
rank correlation (MRC). DGP: DMU= 50, 100; Error term: Noise-to-signal ratio
(NTS): 0 and 1; uj ∼ Exp(µ=1/6); Heteroscedasticity: NO; Production function:
PF I (Cobb Douglas with increasing returns to scale), PF II (CRESH), PF III
(Translog); Collinearity: 0; Input distribution: See Table 16; Number of inputs(z):
m= 2.
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