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Abstract

While the limiting null distributions of cointegration tests are invariant to a certain
amount of conditional heteroskedasticity as long as global homoskedasticity condi-
tions are fulfilled, they are certainly affected when the innovations exhibit time-
varying volatility. Worse yet, distortions from single units accumulate in panels,
where one must anyway pay special attention to dependence among cross-sectional
units, be it time-dependent or not. To obtain a panel cointegration test robust to
both global heteroskedasticity and cross-unit dependence, we start by adapting the
nonlinear instruments method proposed for the Dickey-Fuller test by Chang (2002, J
Econometrics 110, 261–292) to an error-correction testing framework. We show that
IV-based testing of the null of no error-correction in individual equations results in
asymptotic standard normality of the test statistic as long as the t-type statistics are
computed with White heteroskedasticity-consistent standard errors. Remarkably, the
result holds even in the presence of endogenous regressors, irrespective of the number
of integrated covariates, and for any variance profile. Furthermore, a test for the null
of no cointegration—in effect, a joint test against no error correction in any equation
of each unit—retains the nice properties of the univariate tests. In panels with fixed
cross-sectional dimension, both types of test statistics from individual units are shown
to be asymptotically independent even in the presence of correlation or cointegration
across units, leading to a panel test statistic robust to cross-unit dependence and un-
conditional heteroskedasticity. The tests perform well in panels of usual dimensions
with innovations exhibiting variance breaks and a factor structure.
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1 Motivation

Two particular aspects distinguish cointegration in (macroeconomic) panels from “usual”

time series cointegration. On the one hand, cross-unit correlation is not as easily taken into

account as the correlation between the innovations of a unit: even for a relatively small

number of units, the number of e.g. covariances involved can be quite large, so estimating

all of them in panels is usually infeasible. And ignoring cross-unit correlation can have

disastrous consequences, as first pointed out by O’Connell (1998) for panel unit root tests.

On the other hand, the null and alternative hypotheses have a particular structure, since

one is interested in cointegration within the units, irrespective of cointegration across the

units. Cross-unit cointegration is indeed an issue, see also Banerjee, Marcellino and Osbat

(2004); but, roughly speaking, one is interested in “marginal” cointegration of panel units,

irrespective of “joint” long-run dynamics. Along these lines, Gengenbach, Palm and Urbain

(2006) study the asymptotics of the first-generation panel cointegration tests due to Kao

(1999) and Pedroni (1999, 2004) under several forms of cross-sectional dependence and

highlight the extent of the resulting distortions.

But taking cross-unit dependence into account is not straightforward due to the non-

standard asymptotic null distributions of the involved tests. Moreover, the distributions

are not invariant to unconditional heteroskedasticity in the time dimension: Cavaliere,

Rahbek and Taylor (2010) show that the usual trace statistic for the cointegration rank

is only unaffected by time-varying variance (nonstationary volatility) when a so-called

global homoskedasticity condition is fulfilled.1 Hanck (2009) points out that the distortions

resulting from such non-stationary volatility increase for panel unit root tests with the

number of cross-sectional units; we find similar behavior for panel cointegration tests. And,

with macroeconomic data, global homoskedasticity assumptions are not easily justified.

Thus, with integrated panel data, applied research should rely on inferential procedures

that are robust to both cross-sectional dependence and time-varying volatility. In deal-

ing with cross-sectional dependence, approximate factor models—used with the PANIC

methodology of Bai and Ng (2004)—are well-suited to deal with cross-unit dependence.

E.g. Banerjee and Carrion-i-Silvestre (2006) allow too for a factor structure of the errors

and consider models with structural breaks, while Gengenbach, Palm and Urbain (2006)

work with factor models allowing for cross-unit cointegration; see also Westerlund and

Larsson (2009) and Wang et al. (2010). Combining the significance of tests from individual

units with a correction for cross-unit dependence (e.g. as in Hartung, 1999 and Demetrescu,

Hassler and Tarcolea, 2006, or in Hanck, 2011) is also able to deal (to some extent) with

the issue of cross-unit dependence. But neither factor models nor significance-based panel

methods are automatically robust to global heteroskedasticity. Alternatively, one could

1See Cavaliere and Taylor (2009) and their references for the intimately related case of unit root tests.
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panel-bootstrap the respective test statistics to account for cross-unit correlation; this was

first proposed by Maddala and Wu (1999) for the so-called Fisher test for panel unit roots,

and adopted for panel cointegration testing by Fachin (2005), Westerlund (2007) or West-

erlund and Edgerton (2007). This does come at a cost, as bootstrap hypothesis tests are

not always trivial to implement.2 But a particular bootstrapping scheme, the wild boot-

strap, was shown by Cavaliere, Rahbek and Taylor (2010) to be able to deal with global

heteroskedasticity. We are not aware though of a bootstrap scheme for panel cointegration

tests capable of accounting for both cross-sectional dependence and time-varying variance

or covariance.

We therefore discuss a different approach to panel cointegration testing in this paper,

one capable of handling both dependence across units and unconditional heteroskedasticity.

Following the elegant treatment of cross-sectional dependence proposed by Chang (2002)

for panel unit root testing, we use nonlinear instrumental variables [NIV] to test the null

of no cointegration in the single equation framework advocated by Kremers, Ericsson and

Dolado (1992) and Banerjee, Dolado and Mestre (1998). Single-equation testing in the

panel framework is also discussed by Westerlund (2007), who considers an independent-

units setup for asymptotic results, and then uses the bootstrap as a way to deal with

cross-unit dependence.

The testing methodology discussed here has several remarkable asymptotic properties.

For individual units, we show the NIV test for no error correction to have an asymptotic

standard normal distribution, even when regressors are not weakly exogenous, irrespective

of the number of integrated covariates, and notwithstanding unconditional heteroskedas-

ticity. We show that the main ingredient for our result is the use of White standard errors,

whereas usual standard errors, as originally proposed by Chang (2002) in a homoskedastic

framework, lead to distorted tests. This is in sharp contrast to the OLS case, where White

standard errors do not help with heteroskedasticity (cf. Demetrescu, 2010). The discussion

is made possible by the recent results of Wang and Phillips (2009) who discuss conver-

gence to local time of arbitrary continuous-time Gaussian processes, including the time-

transformed Wiener processes involved in the asymptotics of the globally heteroskedastic

case.

Moreover, a test statistic for the null of no cointegration can be built by combining evi-

dence against no error-correction from all equations of the system in a very simple manner.

In cross-dependent panels, test statistics from individual units (be they for no error cor-

rection or or no cointegration) are shown to be asymptotically independent in the presence

of cross-unit correlation or cross-unit cointegration. This leads to a no-cointegration panel

2Rigorous asymptotic justification of sieve panel bootstrap schemes is provided for the case of panel
unit root testing by Chang (2004). See Palm, Smeekes and Urbain (2011) for a block-bootstrap panel unit
root test.
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test statistic which is not affected by either cross-unit dependence or nonstationary volatil-

ity asymptotically. Furthermore, standard limiting distributions result without so-called

N asymptotics, and unbalanced panels are allowed for. Chang and Nguyen (2011) discuss

a nonlinear IV procedure for residual-based panel cointegration testing, having properties

similar to those of our tests, and Miller (2010) adapts the NIV procedure to a trace-type test

following Johansen (1995). Neither of the two tests is robust to global heteroskedasticity.

After describing our model in Section 2, we provide in Section 3 the analysis of the NIV

cointegration test under time-varying volatility and its extension to panels exhibiting cross-

unit dependence. The small-sample properties of the NIV test are discussed in Section 4.

Section 5 concludes, and the proofs have been gathered in the Appendix.

2 Assumptions and test procedure

Denote by wit = (w1,it, . . . , wK,it)
′ , i = 1, . . . , N, t = 1, . . . , Ti, the observations the possibly

unbalanced panel consists of. We start with the simpler model allowing only for cross-unit

correlation and proceed to the more general case later. Thus, we assume the data for each

unit to be generated by an integrated vector autoregressive process [VAR] of order p + 1

with K components, K ≥ 2:

Assumption 1. Let the model for each unit i be as follows:

∆wit = Πiwit−1 +

p∑
j=1

Aij∆wit−j + εit, t = 1, . . . , T,

where the p+ 1 starting values are set to zero.

We shall model the shocks as being unconditionally heteroskedastic. When discussing

the dynamics of such systems, the question arises of what cointegration actually stands

for. The issue is that linear combinations of wit cannot be examined for strict or weak

stationary, since they would only have stationary volatility in particular cases. This is

easily avoided, though, when understanding cointegration as mean reversion; see Cavaliere,

Rahbek and Taylor (2010). Cointegration is then characterized as usual by the parameter

matrices Πi and Aij, j = 1, . . . , p.

The process wit is possibly cointegrated; let the rank of Πi be denoted ri. Under no

cointegration, it holds that Πi = 0, or ri = 0. If wit is cointegrated, one has 0 < ri < K.

Also, the known factorization of Πi, Πi = αiβ
′
i, as the product of two K × ri matrices of

adjustment speed coefficients and of parameters of the long-run relations, holds for ri > 0.

Under the alternative hypothesis of cointegration, we assume ri = 1 for the units vi-

olating the null: the assumption is needed to motivate the test statistic, see Banerjee,
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Dolado and Mestre (1998), but the test has power against higher cointegrating rank as

well, so the restriction is not substantial. The following technical assumption guarantees

that the process wit either follows a stable vector autoregressive process in differences (no

cointegration), or, when Πi 6= 0, I(2) processes are avoided.

Assumption 2. Let the roots of the characteristic polynomial associated to wit defined in

Assumption 1 be either 1 or have absolute values larger than 1. Further, if Πi 6= 0, let

det
(
α′i⊥

(
I −

∑p
j=1Aij

)
βi⊥

)
6= 0, where αi⊥ and βi⊥ are the orthogonal complements of

αi and βi w.r.t. RK.

Let us examine a single equation; without loss of generality assume it is the first of the

VAR system. Let we,it = (w2,it, . . . , wK,it)
′. In the single equation framework, the error

correction representation can be then written as follows:

∆w1,it = αi (w1,it−1 + θ′iwe,it−1) + δi (L) ∆w1,it−1 + γ ′i(L)∆we,it−1 + εit, (1)

∆we,it = αei (w1,it−1 + θ′iwe,it−1) + δei(L)∆w1,it−1 + Γi(L)∆we,it−1 + νit, (2)

for t = 1, 2, . . . , Ti, where αi ∈ R, αei ∈ RK−1, θ ∈ RK−1, the respective lag polynomials,

and the innovations εit and νit ∈ RK−1 are defined implicitly from Assumption 1. Not

including contemporaneous differences ∆we,it in Equation (1), as Banerjee, Dolado and

Mestre (1998) do, is compensated for by having allowed for correlated innovations, see

Assumption 3. We aim to test either no error correction in a single equation (αi = 0) or no

cointegration (αi = 0); see below for a more detailed discussion of the panel hypotheses.

The issue of panel cross-member cointegration can be discussed more easily in the single-

equation framework. Namely, it may well happen that regressors, or regressands, from (1)

cointegrate across units (as could easily be the case with the same variable in neighboring

countries of multi-country studies). This implies a (co-)integrated VAR model for the

whole panel with certain restrictions on the cointegrating vectors. Section 3.3 examines

such situations as well.

The innovations εit = (εit,ν
′
it)
′ are allowed to correlate both within and across units;

the correlation, just like the variance, is allowed to be time-dependent as specified by the

following assumption.

Assumption 3. Denote εNt = (ε′1t, . . . , ε
′
Nt)
′ and let εNt = Σ0.5 (t/T ) εNt where εNt ∼

iid (0, IKN) having finite kurtosis, and Σ (s) is a NK ×NK matrix of piecewise Lipschitz

functions, positive definite at any s ∈ [0, 1]. Furthermore, assume εNt to have a character-

istic function φ(λ) such that
∫
‖λ‖3 |φ(λ)| dλ <∞.

With the variance of the innovations depending on the sample size T , Assumption 3

implies them to actually be a triangular array. To simplify the notation, we drop the

additional subscript T .
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Under Assumption 3, an invariance principle holds for the cumulated sums of εNt even

under time-varying variance. The weak limit, however, is not the usual multivariate Brow-

nian motion, but rather the process described by the stochastic integral
∫ s

0
Σ0.5(r)dW(r),

where W(s) is a vector of NK independent standard Wiener processes. See Lemma 2

of Cavaliere, Rahbek and Taylor (2010). It is still a Gaussian process, but with a co-

variance kernel different from the one of the multivariate Brownian motion, implying a

quadratic variation depending nonlinearly on time (or a nonlinear variance profile). The

homoskedastic case is recovered when Σ is constant and the variance profile is linear as a

consequence.

Assumptions 2 and 3 together allow for lack of exogeneity. As will be shown in Section

3.1, this does not affect the asymptotics of the test under the null of no cointegration. This

is a nice feature, since the (often encountered) weak exogeneity assumption is one impor-

tant source of criticism to the single equation approach. The conditions in Assumption

3 are stronger than the typical sets of assumptions under which an invariance principle

for cumulated innovations holds, but are needed to establish the asymptotic behavior of

the integrable transformations of integrated processes involved in the proofs; see Park and

Phillips (1999, 2001), Chang, Park and Phillips (2001), Phillips, Park and Chang (2004),

de Jong and Wang (2005) and Wang and Phillips (2009).

Deterministic components (such as non-zero means or linear time trends) can be in-

corporated in the usual way into cointegrated VARs; see Lütkepohl (2005, Section 6.4) for

details. Section 3.2 gives arguments in favor of recursive removal of deterministic compo-

nents from the levels and shows how it can be implemented for NIV cointegration testing.

In the single-equation case, our test builds on instrumental estimation estimation of the

test equation (1) using integrable transformations. More precisely, Fi (w1,it−1) is used as

instrument for w1,it−1, where the function Fi (·) is restricted as follows:

Assumption 4. Let Fi(x) be continuous on R such that
∫∞
−∞ |xFi(x)| dx is finite and non-

zero.

In what concerns the other integrated regressors, two possibilities arise. First, we may

take them as instruments for themselves. Second, we may take integrable transformations

as instruments. We shall call the first case “partial instrumentalization,” and the second

will be denoted as “complete instrumentalization.” The completely instrumentalized test

is similar in spirit to the trace test of Miller (2010). The derivations of the paper, however,

are given only for the case of partial instrumentalization. They are similar in the case of

complete instrumentalization so we do not provide the latter to save space.

For individual units, the null hypothesis in the single equation framework is αi = 0;

when assuming weak exogeneity, αei = 0 is implied. Note that, when allowing for error

correction to affect the other components of wt, the null of the test is actually absence
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of error correction in the studied equation and not lack of cointegration between w1,it and

we,it.
3 We will show in the following section that the NIV test for αi = 0 is not directly

affected by the presence of error-correction terms in any of the K − 1 equations in (2). We

are hence able to directly test the following hypothesis:

Null hypothesis (no single-equation error correction): αi = 0.

Under the alternative, αi needs to be negative if error-correction is present only in Equation

(1). Otherwise, αi may also be positive (for an example see Johansen, 1995, p. 54). Thus,

we test against

Alternative hypothesis: αi 6= 0.

Since, as shall be seen in Section 3, there is a simple way to combine evidence from K

single-equation tests in the NIV framework, we are able to consider a test for cointegration

as well:

Null hypothesis (no cointegration): αi = 0

with the corresponding

Alternative hypothesis: αi 6= 0.

In the panel case, these null hypotheses should hold for all units,

Null hypothesis (no panel error correction): αi = 0 ∀i = 1, . . . , N,

Null hypothesis (no panel cointegration): αi = 0 ∀i = 1, . . . , N,

whereas, under the alternative, they are violated for at least one unit:

Alternative hypothesis: ∃i such that αi 6= 0

Alternative hypothesis: ∃i such that αi 6= 0.

3 Asymptotic results

We begin by addressing the behavior of individual-unit NIV tests: not only do panel

results build on individual-unit results, but their properties are interesting in their own

right. Deterministic components are dealt with in Subsection 3.2, and the panel case is

discussed in Subsection 3.3. To ease the exposition, we drop the index i for Sections 3.1

and 3.2.

3This attribute is common to all approaches based on a single equation and not specific to our test.
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3.1 Single unit tests

Let us first reformulate the test regression (1) to match the usual notation of the single

equation framework. Defining

x′t−1 =
(
∆w1,t−1, . . . ,∆w1,t−p,∆w′e,t−1, . . . ,∆w′e,t−p,w

′
e,t−1

)
=

(
x′t−1,0,x

′
t−1,1

)
,

the I(1) variables xt−1,1 = we,t−1 are separated from the I(0) ones, xt−1,0. The single-

equation model becomes, with yt = w1,t,

∆yt = αyt−1 + β′xt−1 + εt, t = 1, . . . , T, (3)

and we assume the p starting values for t = −p + 1, . . . , 0 to be zero for the case without

deterministics. The new parameter vector β is given by

β′ =
(
δ1, . . . , δp,γ

′
1, . . . ,γ

′
p, αθ

′) ,
where δj and γj, j = 1, 2, . . . , p, are the respective coefficients of the lag polynomials from

Equation (1). It is convenient to write β′ = (β′0,β
′
1), with β′0 =

(
δ1, . . . , δp,γ

′
1, . . . ,γ

′
p

)
and β′1 = αθ′, in accordance with the partition x′t−1 =

(
x′t−1,0,x

′
t−1,1

)
.

The t-type statistic of the estimated parameter α̂ remains the natural choice as a test

statistic for the null α = 0, even with IV estimation. For the case of partial instrumental-

ization, one obtains with the help of standard regression algebra that

α̂− α = Q−1M,

where

M =
T∑
t=1

F (yt−1) εt −
T∑
t=1

F (yt−1) x′t−1

(
T∑
t=1

xt−1x
′
t−1

)−1 T∑
t=1

xt−1εt

and

Q =
T∑
t=1

F (yt−1) yt−1 −
T∑
t=1

F (yt−1) x′t−1

(
T∑
t=1

xt−1x
′
t−1

)−1 T∑
t=1

xt−1yt−1.

For the t statistic, it holds under the null hypothesis α = 0

tα̂ =
α̂

σ̂α̂
,

with σ̂α̂ the estimated standard deviation of α̂. Assuming homoskedasticity, σ̂α̂ is given by

σ̂2
α̂ = σ̂2

εQ
−2P,
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where

P =
T∑
t=1

F (yt−1)2 −
T∑
t=1

F (yt−1) x′t−1

(
T∑
t=1

xt−1x
′
t−1

)−1 T∑
t=1

xt−1F (yt−1) ,

and σ̂2
ε is a consistent estimator of the residual variance.

We shall prove in the following that a limiting null distribution not depending on nui-

sance parameters such as the variance profile arises in the globally heteroskedastic case,

provided that White heteroskedasticity-robust variance estimators are employed:

σ̂2
α̂,W = Q−2PW ,

where PW is given by

T∑
t=1

F (yt−1)2 ε̂2
t − 2

T∑
t=1

F (yt−1) x′t−1

(
T∑
t=1

xt−1x
′
t−1

)−1 T∑
t=1

xt−1F (yt−1) ε̂2
t

+
T∑
t=1

F (yt−1) x′t−1

(
T∑
t=1

xt−1x
′
t−1

)−1 T∑
t=1

xt−1x
′
t−1ε̂

2
t

(
T∑
t=1

xt−1x
′
t−1

)−1 T∑
t=1

xt−1F (yt−1) ,

and ε̂t are the regression residuals,

ε̂t = ∆yt − α̂yt−1 − β̂1xt−1,1 − β̂0xt−1,0. (4)

In order for ε̂t to be consistently estimated, certain minimal convergence rates for the

estimators associated to the integrated regressors xt−1,1 are required, beyond consistency.

They are, however, not always given in the NIV framework; see Proposition 1 below and

also Demetrescu (2009) for the univariate case.

Moreover, it is argued in the proof of Proposition 2 analyzing the t-type statistic of α

that usual standard errors do not lead to a robust statistic. So the remainder of the paper

employs White standard errors.4

Under the null α = 0, using White standard errors leads to

tα̂ =
M√
PW

.

In order to establish its asymptotic behavior under the null and the alternative, it will be

4White standard errors are also shown by Boswijk (2010) to robustify inference on cointegration pa-
rameters against breaks in the variance.
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more convenient to study the pivotal quantity

t∗ =
α̂− α
σ̂α̂,W

,

irrespective of the value of α. Under the null α = 0, we obviously have that tα̂ = t∗ = M√
PW

;

under the alternative, it holds that tα̂ = t∗ + α/σ̂α̂,W .

The following proposition establishes convergence properties of the NIV estimators.

They are needed to establish the (lack of) consistency of the residuals ε̂t.

Proposition 1. For partially instrumentalized NIV estimation of test equation (3), it holds

as T →∞ under Assumptions 1 through 4 and α = 0 that

a) if αe = 0

α̂− α = Op

(
T−0.75

)
, (5)

β̂0 − β0 = Op

(
T−0.25

)
(6)

and

β̂1 − β1 = Op

(
T−0.75

)
(7)

b) if αe 6= 0,

β̂0 − β0 = Op

(
T−0.25

)
.

However, the convergence rates of α̂ or β̂1 to the true values α and β1 can be of

an order as low as T−0.25 (instead of T−0.75), depending on the cointegrating vector

(1,θ′)
′
.

Proof: See the Appendix.

The direct consequence of Proposition 1 is that one should not use NIV residuals to

compute σ̂α̂,W , since the convergence rate of β̂1 may not be high enough to ensure consistent

residuals, given that the regressors corresponding to β̂1 are integrated. A simple solution is

to use the OLS estimators of α and β1 for computing residuals; their convergence rates are

known to be high enough to meet the requirements of Lemma 1 establishing the behavior

of the pivotal quantity t∗.

Lemma 1. If using ε̂t from (4) with α̂−α = op(1), β̂1−β1 = op(T
−0.5) and β̂0−β0 = op(1),

it holds as T →∞ under Assumptions 1 through 4 that

t∗ =
T−0.25

∑T
t=1 F (yt−1) εt√

T−0.5
∑T

t=1 F (yt−1)2 ε2
t

+ op (1) ,

for any α, regardless of whether αe = 0 or αe 6= 0.
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Proof: See the Appendix.

It now becomes clear why no restrictive weak exogeneity assumptions have to be made:

Lemma 1 shows that no regressor except for the lagged dependent variable yt−1 influences

the test statistic in the limit. In contrast to that, OLS estimation of the test equation

requires either weak exogeneity or inclusion of leads to account for second-order bias (see

Banerjee, Dolado and Mestre, 1998, for details); and OLS estimation leads to test statistics

affected by nonstationary volatility.

The following proposition summarizes the asymptotic behavior of the proposed test

statistic for the null α = 0 under both null and alternative hypotheses.

Proposition 2. Under the assumptions of Lemma 1, it holds as T →∞:

a) if α = 0, then

tα̂
d→ N (0, 1) ;

b) if α 6= 0, then

|tα̂|
p→∞.

Proof: See the Appendix.

Remark 1. Confidence intervals for the parameter α are straightforward to build, since

the pivotal statistic t∗ has asymptotic standard normal distribution whatever the true value

of α is, as long as consistent residuals are available.

Loosely speaking, the transformed variable F (yt−1) does not quite behave like an in-

tegrated process (e.g. it has uniformly bounded variance for any t), which eases the ap-

plication of a central limit theorem with random normalization. This leads to asymptotic

normality of the statistic t∗ (and thus of tα̂ under the null). Integrable instruments are

actually not the only instruments leading to asymptotic normality. For panel unit root

testing, Shin and Kang (2006) use so-called Huber instruments instead of Chang’s (2002)

integrable instruments; but they do not lead to asymptotic independence of individual test

statistics, while integrable ones do, see Chang (2002). Still, (panel) unit root tests based

on Huber-type instruments are robust to unconditional heteroskedasticity; see Demetrescu

and Hanck (2011a,b).

The asymptotic independence derived by Chang (2002) in the panel unit root case yields

a test for no cointegration, i.e. for the null α = 0. Namely, if individual test statistics for no

error correction are asymptotically independent across units in the presence of cross-unit

correlation (see Proposition 5 below), why would they not be so for the K equations within

one unit? Denoting tα̂k, k = 1, . . . , K, the test statistics for no error-correction in each of

11



the K equations of a given unit, the test statistic for no cointegration would then be

Qα =
K∑
k=1

t2α̂k, (8)

which would follow a chi-square distribution with K degrees of freedom asymptotically.

The intuition is indeed true, as stated in the following proposition.

Proposition 3. Under the assumptions of Lemma 1, it holds as T →∞:

a) if α = 0, then

Qα
d→ χ2 (K) ;

b) if α 6= 0, then

Qα
p→∞.

Proof: See the Appendix.

Hence, a test statistic against the null of no cointegration is simply built by summing the

squared t statistics for each of the K equations; reject for (too) large values with critical

values from the χ2 (K) distribution. The proof builds on the asymptotics employed by

Chang (2002) and Chang and Nguyen (2011) too, but has to take into account the time

varying volatility of the data generating process.

Remark 2. In the case of a no cointegration test, one could use the null restrictions α = 0

and β1 = 0 to compute the residuals ε̂t from the regression of ∆yt on lags of ∆yt and of

∆we,t.

Remark 3. Propositions 2 and 3 could also be established for the case where ∆wt is

a general linear process with coefficients satisfying a weak summability condition, if an

autoregressive approximation of order growing to infinity, but slower than T , is used. See

Saikkonen and Lütkepohl (1996) for the analysis of (co-)integrated VAR(∞) processes and

Demetrescu (2009) for the discussion of the NIV panel unit root test with autoregressive

approximations. Moreover, Demetrescu (2011) shows that Chang’s unit root test retains

its asymptotic properties if using F
(
yt−1

T η

)
as instrument, as long as 0 ≤ η < 0.5. Extending

this paper’s results in these direction is tedious, yet straightforward and we omit the details.

3.2 Accounting for deterministic components

When accounting for deterministic components such as nonzero starting values or linear

deterministic trends, the lagged differences are either not affected by a constant non-zero

mean in levels, or can be easily demeaned. For the levels yt−1, one must make sure that the
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product of instrument and innovation possesses the martingale property after removing the

deterministic component, purpose to which we follow Chang (2002) and resort to recursive

(adaptive) schemes of demeaning or detrending of yt−1. See Born and Demetrescu (2011)

for the LR trace test for the cointegration rank with recursive adjustment for deterministics.

For a non-zero mean, this means that the NIV cointegration test has to be carried out

in following test equation:

∆yt = αyµt−1 + β′xµt−1 + εt, (9)

where the recursively demeaned lagged level yµt−1 is given for t ≥ 2 by

yµt−1 = yt−1 −
1

t− 1

t−1∑
j=1

yj.

The stationary regressors, being differences, need no adjustment, but the integrated regres-

sors xt−1,1 may also require demeaning, hence the notation xµt−1 in (9). Usual projection

on a constant is allowed for the integrated regressors, in contrast to the case of the lagged

dependent variable. Moreover, it can be shown that xt−1,1 themselves may be recursively

demeaned without affecting the asymptotics.

For a linear trend, one correspondingly uses as test equation

∆yt −∆y = αyτt−1 + β′xτt−1 + εt, (10)

where the recursively detrended lagged level yτt−1 is given for t ≥ 2 by

yτt−1 = yt−1 +
2

t− 1

t−1∑
j=1

yj −
6

t(t− 1)

t−1∑
j=1

j yj,

and the integrated regressors may be detrended the usual way. The stationary regressors

xt−1,0 and the regressand ∆yt only require usual demeaning. Being under the null of no

cointegration, deterministic components orthogonal to the cointegrating vectors are not an

issue.

Then, one uses as instruments F (yµt−1) or F (yτt−1). For the case of the test equations

(9) and (10), the results analogous to Proposition 1, Lemma 1 and Proposition 2 can be

shown to hold true.

Proposition 4. Under the assumptions of Lemma 1 and recursive demeaning or detrend-

ing, it holds for the t statistics from test equations (9) or (10) as T →∞:

a) if α = 0, then

tα̂
d→ N (0, 1) ;
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b) if α 6= 0, then

|tα̂|
p→∞.

Proof: See the Appendix.

The extension of Proposition 3 to the case of recursive demeaning and detrending holds

as well.

3.3 Panel test

We now turn our attention to the panel case and assume the number of cross-sections

to be finite. For macroeconomic panels, this is not a shortcoming, but an advantage: N -

asymptotics are usually used to get an approximation for the finite-N distribution of (panel

unit root or panel cointegration) test statistics. Here, the test statistics are asymptotically

normal and asymptotically independent as T → ∞ (cf. Propositions 2 and 3) without

requiring N to be large, as is for instance needed for approximate factor models.

Chang’s (2002) work, together with Lemma 1, suggests that panels may be unbalanced

in the sense of her Assumption 4.1:

Assumption 5. Let Tmin be the smallest and Tmax the largest of the unit lengths Ti, and

assume that

T−1
min + T−0.75

min T 0.25
max log Tmax → 0.

The panel test statistic for the null of no error-correction is built the same way as the

individual statistic for no cointegration. Namely, add (this time across the panel) individual

test statistics, which, by the same mechanism exploited by the proof of Proposition 3, will

be asymptotically independent:

X̃ =
N∑
i=1

t2α̂i. (11)

The single test statistics tα̂i may be computed with recursive demeaning or detrending. In

building t̃, there’s the issue of which of the K equations in each unit should be examined for

error-correction, unless economic theory dictates which the dependent variable should be.

If there are no prior arguments in favor of a certain choice, one might be better off using

the no cointegration test (i.e. sum the squared t statistics over K and N); see Proposition

6 below.

The asymptotic properties of the panel test statistic (11) are stated in the following

proposition.

Proposition 5. Under the assumptions of Proposition 2 together with Assumption 5, it

holds for X̃ from (11) as T →∞
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a) if αi = 0 ∀i ∈ {1, 2, . . . , N}
X̃

d→ χ2 (N) ,

b) if ∃i such that αi 6= 0

X̃
p→∞.

Proof: Follows with the arguments used in the proof of Proposition 3 above and in the

proof of Chang’s Lemma 4.2 (2002).

Note that the proof of Proposition 3 (and thus the proof of Proposition 5) holds for

any time-varying covariance matrix of the innovations; the panel test is robust to cross-

unit correlation. Moreover, although we do not consider cross-unit dynamics to ease the

exposition, it is easily seen from the proof of Proposition 3 that augmenting the test regres-

sions with lagged differences from other cross-sectional units can be allowed for without

affecting the asymptotic distributions. The augmentation might even be desirable, since,

if ignoring cross-unit dynamics when they are present, each unit ∆wit follows (marginally)

an ARMA process, which requires approximation by means of an autoregressive process of

order growing to infinity; see also Remark 3.

In what concerns cross-member cointegration, Lemma 1 shows that the terms contain-

ing integrated regressors and lagged differences are asymptotically negligible. Thus, the

elements of we,it−1 may cointegrate across units. Should the lagged dependent variables

yit−1 cointegrate across units, or cointegrate with we,jt−1, i 6= j, asymptotic independence

is no longer guaranteed. But Chang and Song (2009) show that independence of single

test statistics holds, if the instrument generating functions Fi satisfy certain orthogonality

conditions. They suggest the use of Hermite polynomials, and point out that these need

rescaling before using them as instrument generating functions (see Chang and Song, 2009,

for a complete discussion). Clearly, the Hermite-based instrument generating functions can

be used in our case as well.

Remark 4. If one knows the adjustment coefficients to be, for instance, negative under

the alternative, one-sided testing would lead to more powerful procedures. A simple way

to build the one-sided panel test is to take the standardized sum of single test statistics,

t̃− =
1√
N

N∑
i=1

tα̂i
d→ N (0, 1). (12)

For the case of the panel test of no cointegration, the discussion is analogous: sum the
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N individual no cointegration statistics Qαi ,

Q̃ =
N∑
i=1

Qαi . (13)

A chi-square distribution with KN degrees of freedom results asymptotically for Q̃, and

the test is consistent against alternatives exhibiting at least one cointegrated unit; see the

following proposition.

Proposition 6. Under the assumptions of Proposition 2 together with Assumption 5, it

holds for Q̃ from (13) as T →∞

a) if αi = 0 ∀i ∈ {1, 2, . . . , N}
Q̃

d→ χ2 (KN) ,

b) if ∃i such that αi 6= 0

Q̃
p→∞.

Proof: Obvious and omitted.

Remark 5. As N increases, one can make use of the standard normal approximation for

chi-squared distributions with a large number of degrees of freedom, leading to

Q̃−NK√
2NK

approx∼ N (0, 1).

4 Small-sample behavior

4.1 Time series evidence

We now present some simulation evidence of the behavior of the tests suggested here relative

to other popular procedures. In order to motivate the need for robust tests we investigate

if nonstationary volatility is actually detrimental in practice to the performance of some

widely used non-robust tests. All existing panel cointegration tests are in some way or

another suitable combinations of underlying time series cointegration tests. Hence, it is

without loss of generality, but helpful to sharpen the focus on nonstationary volatility, if

we initially consider time series cointegration tests. Section 4.2 below provides results for

the panel case.

Concretely, we compare tα̂ and Qα to the trace test of Johansen (1995) (λtr), the

residual-based test of Engle and Granger (1987) (EG) and to the nonlinear IV-based test

16



τ̃i of Chang and Nguyen (2011) (see their Equation (16)). (The statistic tα̂ is computed for

each of the K = 2 equations of the system.)

The heteroskedastic cointegration DGP is taken from Cavaliere, Rahbek and Taylor

(2010):

∆wt = αβ′wt−1 + εt, t = 1, . . . , T,

where εt = Σ0.5
t εt and εt ∼ iidN (0, IK), with Σ0.5

t a time-varying K ×K diagonal matrix

initialized at Σ0.5
0 = IK . Furthermore, Σ0.5

t = δIK for t = bτT c, bτT c + 1, . . . , T and

T = {100, 200, 500}. We take K = 2 and consider ‘early’ to ‘late’ break fractions τ ∈
{1/5, 1/3, 2/3, 4/5} and large negative to large positive variance shifts δ ∈ {1/5, 1/3, 1, 3, 5}.
The case δ = 1 covers the benchmark homoskedastic scenario. The experiments use 5,000

replications, and all results are for a nominal 5% level.

As our aim is to demonstrate that traditional time series cointegration tests are not

level-α under nonstationary volatility, we set α = 0.

A constant is removed for all tests. We purposely avoid additional complications such

as short-run dynamics and corresponding lag-length determination in order to isolate the

effect of nonstationary volatility. All qualitative findings remain intact if we augment the

DGP to also take these features into account.5 For the implementation of tα̂ and Qα, the

instrument generating function [IGF] is picked as in Chang (2002), F (x) = x exp (−|x|).
We follow her suggestion to improve the finite-sample performance of the tests by taking

x = Cyt−1. Concretely, we take C = 4/σ̂∆y; and also do so for τ̃i.
6

Results are reported in Table 1. As expected, all traditional tests effectively handle the

homoskedastic case δ = 1 (which we only report once to avoid redundancies). We observe

however, in line with Cavaliere, Rahbek and Taylor (2010), that the Johansen (1995) test

often exhibits large upward size distortions when δ 6= 1. Concretely, early negative and

late positive breaks lead to severe rates of overrejection. Table 1 reveals a similar, although

slightly less extreme, picture for the Engle and Granger (1987) test. In line with the

inappropriateness of the standard limiting distributions under nonstationary volatility, the

distortions also do not vanish as T increases; and hence are, as expected, not a finite-sample

issue. In turn, the nonlinear IV test of Chang and Nguyen (2011) surprisingly often controls

size reasonably well even under δ 6= 1. Yet, that it is not a robust test is evidenced by its

strong undersizedness for large positive breaks, see in particular δ = 5. In fact, it seems

that rejection rates tend to zero as T grows.

The performance of the tests proposed here, in turn, is robust over all configurations

of τ and δ. This is true for both the error-correction tests, tα̂,1 and tα̂,2, as well as for the

5We have moreover experimented with additional features of the DGP of Cavaliere, Rahbek and Taylor
(2010), such as variance breaks in only a subset of the K series, or time-varying correlations. Again, the
qualitative conclusions are entirely unaffected.

6Unreported, but available, results show that this has a minor effect on tα̂ and Qα in the time series
case and does not affect the conclusions about τ̃i’s lack of robustness under time-varying volatility.
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Table 1: Size of Time Series Cointegration Tests under Nonstationary Volatility

δ T tα̂,1 tα̂,2 Qα EG τ̃i λtr tα̂,1 tα̂,2 Qα EG τ̃i λtr

τ = 1/5 τ = 2/3
1 100 .048 .043 .041 .045 .054 .056

200 .047 .048 .046 .048 .054 .056
500 .049 .046 .048 .045 .053 .059

0.2 100 .029 .034 .029 .407 .067 .745 .042 .040 .039 .132 .069 .206
200 .038 .034 .028 .413 .061 .730 .049 .043 .042 .137 .064 .203
500 .042 .042 .037 .432 .074 .755 .045 .047 .041 .136 .066 .201

0.33 100 .035 .040 .033 .225 .073 .477 .041 .046 .038 .107 .074 .178
200 .039 .042 .037 .230 .070 .477 .049 .048 .042 .110 .056 .162
500 .045 .045 .040 .238 .076 .472 .046 .050 .047 .117 .064 .176

3 100 .050 .049 .047 .036 .033 .036 .044 .049 .043 .079 .022 .131
200 .049 .047 .047 .033 .023 .032 .048 .047 .045 .078 .016 .129
500 .045 .049 .045 .033 .016 .030 .045 .046 .042 .079 .012 .130

5 100 .052 .044 .044 .039 .032 .033 .043 .047 .042 .141 .013 .240
200 .042 .045 .038 .033 .018 .037 .054 .048 .051 .152 .010 .245
500 .049 .052 .047 .037 .011 .035 .047 .051 .048 .145 .004 .245

τ = 1/3 τ = 4/5
0.2 100 .030 .036 .030 .345 .072 .637 .050 .047 .048 .084 .064 .118

200 .038 .040 .035 .333 .072 .615 .048 .046 .044 .087 .063 .120
500 .043 .045 .039 .347 .065 .612 .052 .051 .050 .089 .059 .116

0.33 100 .039 .041 .034 .201 .074 .429 .044 .040 .037 .081 .060 .106
200 .040 .041 .037 .186 .065 .410 .053 .045 .042 .082 .058 .110
500 .045 .050 .043 .208 .075 .402 .050 .051 .048 .083 .057 .104

3 100 .048 .045 .042 .049 .027 .049 .041 .050 .043 .083 .026 .164
200 .050 .049 .047 .048 .016 .051 .051 .049 .047 .080 .018 .155
500 .048 .051 .046 .050 .016 .048 .044 .045 .043 .079 .016 .151

5 100 .046 .050 .046 .053 .017 .063 .048 .048 .046 .154 .012 .340
200 .044 .047 .040 .050 .010 .055 .047 .046 .044 .166 .006 .353
500 .046 .053 .047 .051 .007 .056 .051 .049 .046 .170 .007 .343

Note: δ gives the break direction of the errors, τ the break fraction. tα̂,i is defined in Prop. 2,

Qα in Prop. 3. EG is by Engle and Granger (1987), τ̃i by Chang and Nguyen (2011) and λtr is

by Johansen (1995). 5,000 replications, 5% nominal size.

cointegration test Qα. There are some mild upward distortions under negative breaks for

T = 100 that however vanish as T increases. The tests also handle the benchmark case

δ = 1. We conclude that only tα̂ and Qα are promising candidates to construct a panel

cointegration statistic under time-varying volatility, and therefore waive to consider panel

offsprings of the other tests considered above such as Pedroni (2004), Larsson, Lyhagen

and Löthgren (2001) or Chang and Nguyen (2011) in what follows.
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4.2 Panel Evidence

We augment the time series DGP as follows to investigate the performance of the new tests:

∆wit = αiβ
′
iwit−1 + εit, t = 1, . . . , T, i = 1, . . . , N.

In order to investigate the effect of cross-sectional dependence on the tests, we consider

the following factor structure for the disturbances: εk,it = λiνt + ε̃k,it, k = 1, . . . , K, where

ε̃it = Σ0.5
it εt and εit ∼ iidN (0, IK). Here, Σ0.5

it is a time-varying K ×K diagonal matrix as

in Section 4.1. The λi are drawn from a Uniform[−1, 2] distribution, while νt ∼ N (0, 1).

We again take K = 2 and consider early and late break fractions τ ∈ {1/3, 2/3} and large

negative to large positive variance shifts δ ∈ {1/5, 1/3, 1, 3, 5}. The case δ = 1 again covers

the homoskedastic scenario. Size results obtain for αi = 0, i = 1, . . . , N . The power study

uses and β′i = (1 0) and αi = (−.2 0)′. The panel dimensions are T = {100, 200, 500}
and N = {20, 50, 100}. The experiments use 5,000 replications, and all results are for a

nominal 5% level.

Table 2: Size of the Robust Panel Cointegration Test Q̃ under Nonstationary Volatility

τ 0.2 0.33 0.66 0.8
δ T N 20 50 100 20 50 100 20 50 100 20 50 100

100 .066 .096 .137 .054 .078 .117 .054 .071 .087 .049 .062 .088
0.2 200 .049 .066 .089 .046 .063 .080 .048 .055 .068 .045 .053 .068

500 .042 .056 .056 .044 .051 .060 .047 .051 .054 .046 .047 .056

100 .057 .080 .109 .055 .071 .103 .046 .071 .084 .050 .064 .088
0.33 200 .049 .058 .078 .045 .052 .073 .049 .047 .061 .043 .052 .068

500 .050 .049 .055 .050 .052 .057 .049 .043 .053 .042 .049 .056

100 .044 .064 .088 .053 .060 .085 .051 .070 .090 .051 .064 .084
1 200 .049 .055 .066 .052 .058 .067 .048 .055 .066 .048 .049 .068

500 .047 .054 .055 .045 .047 .056 .043 .048 .058 .044 .052 .054

100 .056 .071 .090 .061 .066 .096 .053 .073 .101 .058 .066 .091
3 200 .055 .063 .079 .050 .059 .083 .048 .061 .072 .045 .059 .078

500 .047 .058 .069 .047 .057 .057 .045 .047 .065 .046 .053 .059

100 .052 .074 .092 .061 .080 .106 .058 .076 .109 .053 .084 .094
5 200 .052 .060 .080 .059 .065 .082 .049 .057 .082 .051 .059 .079

500 .047 .056 .064 .048 .060 .071 .049 .056 .067 .050 .059 .060

Note: δ gives the break direction of the errors, τ the break fraction. Q̃ is defined in Prop. 6. 5,000

replications, 5% nominal size.

Table 2 reports size results for Q̃. In general, the empirical size using the asymptotic

critical values is close to the nominal size. Size is somewhat less accurate in short, but

wide (N = 100) panels. This is expected as the time series size distortions then tend to

accumulate in the panel statistic. These distortions however vanish as T →∞. There seems
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Table 3: Power of the Robust Panel Cointegration Test Q̃ under Nonstationary Volatility

τ 0.2 0.33 0.66 0.8
δ T N 20 50 100 20 50 100 20 50 100 20 50 100

100 .191 .283 .365 .201 .300 .395 .211 .342 .479 .224 .369 .519
0.2 200 .392 .536 .644 .406 .585 .705 .429 .674 .813 .466 .711 .855

500 .855 .954 .988 .883 .972 .996 .922 .986 .999 .931 .993 .999

100 .192 .313 .409 .190 .314 .445 .211 .358 .530 .230 .375 .555
0.33 200 .392 .604 .746 .443 .647 .787 .450 .719 .865 .479 .741 .892

500 .899 .983 .998 .918 .991 .999 .938 .995 1.00 .947 .998 1.00

100 .222 .420 .609 .240 .406 .599 .229 .402 .592 .235 .401 .587
1 200 .482 .777 .921 .476 .756 .932 .484 .770 .931 .479 .766 .920

500 .948 .999 1.00 .948 .998 1.00 .951 .999 1.00 .953 .999 1.00

100 .314 .541 .772 .334 .581 .784 .375 .615 .816 .339 .585 .780
3 200 .606 .889 .987 .645 .912 .989 .715 .944 .993 .701 .938 .991

500 .982 1.00 1.00 .990 1.00 1.00 .996 1.00 1.00 .996 1.00 1.00

100 .302 .536 .764 .335 .577 .797 .466 .744 .899 .468 .759 .908
5 200 .595 .890 .990 .668 .926 .993 .842 .983 .999 .874 .990 .999

500 .982 1.00 1.00 .994 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Note: See notes to Table 2.

to be no discernible pattern to describe the distortions as functions of δ or τ , suggesting

that the type of break (early vs. late and downward vs. upward) matters comparatively

little.

Table 3 reports power results. As expected from Proposition 6b, power grows in T . It

also grows quite quickly in N , justifying the use of panel data. The rejection rate of Q̃

also increases in δ and (moderately) in τ , so that Q̃ is most effective in detecting panel

cointegration under late upward breaks in the variance.

5 Concluding remarks

We proposed single-unit and panel tests for no error correction and for no cointegration

robust to unconditional heteroskedasticity in the time dimension as well as to cross-unit

correlation or cross-unit cointegration.

Our tests are based on the error correction representation of Banerjee, Dolado and

Mestre (1998), to which the nonlinear instrumental variable method of Chang (2002) was

applied. The proposed test statistics were shown to follow standard distributions asymp-

totically and to require no exogeneity assumptions. Moreover, the asymptotic null distri-

butions are not affected by nonstationary volatility if White standard errors are used. We

found, however, that the residuals should not be computed using nonlinear IV estimators of

the parameters, since the IV estimators may not converge fast enough to ensure the consis-
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tency of the residuals. Instead, one should estimate the residuals under the null hypothesis

or use OLS estimators.

In cross-correlated as well as in cross-cointegrated panels with unconditional heteroskedas-

ticity in the time dimension, individual test statistics were shown to be asymptotically

independent; thus, panel tests for error-correction or panel cointegration robust to cross-

dependence can be built. Panels may also be unbalanced up to a certain degree, and

no N asymptotics are required. The appeal of using the nonlinear IV methodology for

panel cointegration testing is that no correction for cross-unit dependence and global het-

eroskedasticity is required. The tests performed reliably in finite-dimensional panels with

time-varying volatility and factor-driven shocks.

Appendix

Assume throughout the appendix that enough initial values are available so that all sums

run from t = 1 to T . The proofs of the propositions stated in the paper require the following

lemma.

Lemma A Let X (s) be some continuous Gaussian process, and denote by LX (s, x) the

chronological local time of X,

LX(s, x) = lim
ε→0

1

2ε

∫ s

0

1 (|X(r)− x| < ε) dr

and by and L̃gX (s, x) a weighted version of the local time,

L̃gX(s, x) = lim
ε→0

1

2ε

∫ s

0

1 (|X(r)− x| < ε) dg(r),

with g a piecewise continuous function and 1(·) the usual indicator function, 1(A) = 1, if

proposition A is true, and 0, otherwise.7

Denote by ω2
i (s) the first diagonal element of the K ×K matrix

Ωi =

(
IK −

p∑
j=1

Aij

)−1 ∫ s

0

Σi(r)dr

(
IK −

p∑
j=1

A′ij

)−1

where Σi(·) is the ith of the N K ×K diagonal blocks of Σ(·) and by η2
i (s) the (unscaled)

variance profile

η2
i (s) =

∫ s

0

σ2
i (r)dr

7If g(s) is the quadratic variation of X, g(s) =
∫ s
0

(dX(r))2, L̃gX (s, x) is the local time given in terms of
its quadratic variation.
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with σ2
i (·) the (N(i− 1) + 1)st diagonal element of Σ(·).

Finally, let W (s) and W̃ (s) be two independent copies of the standard Wiener pro-

cesses. Under the assumptions of Proposition 1, it holds as T →∞ that:

A.0

t0.5E |F (yt−1)| < C <∞ ∀t > 0;

A.1
1

T 0.5

T∑
t=1

F 2 (yt−1)
d→ LW (ω(·)) (1, 0)

∫ ∞
−∞

F 2 (x) dx ;

1

T 0.5

T∑
t=1

yt−1F (yt−1)
d→ LW (ω(·)) (1, 0)

∫ ∞
−∞

xF (x) dx ;

A.2
1

T 0.5

T∑
t=1

F 2 (yt−1) ε̂2
t

d→ L̃η
2

W (ω(·)) (1, 0)

∫ ∞
−∞

F 2 (x) dx ;

A.3
1

T 0.25

T∑
t=1

F (yt−1) εt
d→

√
L̃η2W (ω(·)) (1, 0)

∫ ∞
−∞

F 2 (x) dx · W̃ (1) ;

A.4
1

T 0.5

T∑
t=1

F (yt−1) x′t−1,0 = Op (1) ;

A.5
1

T 0.75

T∑
t=1

ε̂2
tF (yt−1) x′t−1,0 = Op (1) ;

A.6
1

T

T∑
t=1

xt−1,0x
′
t−1,0ε̂

2
t = Op (1) ;

A.7
1

T

T∑
t=1

xt−1,0x
′
t−1,1ε̂

2
t = Op (1) ;

A.8
1

T 2

T∑
t=1

xt−1,1x
′
t−1,1ε̂

2
t = Op (1) ;

If, additionally, αe = 0, it holds that
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A.9
1

T

T∑
t=1

F (yt−1) x′t−1,1 = Op (1) ;

1

T 1.25

T∑
t=1

ε̂2
tF (yt−1) x′t−1,1 = Op (1) ;

if αe 6= 0, a different behavior of this sample cross-moment can emerge, depending on θ:

A.9∗

1

T

T∑
t=1

F (yt−1) x′t−1,1 = Op

(
T−0.5

)
.

1

T 0.75

T∑
t=1

ε̂2
tF (yt−1) x′t−1,1 = Op (1) .

Proof of Lemma A

A.0 Follows from Jeganathan (2008, Lemma 8), his assumption on the characteristic

function being fulfilled, and we assume stronger moment conditions.

A.1 Follows directly from Wang and Phillips (2009), Corollary 2.2(ii), since finiteness of∫
xF (x)dx together with continuity of F (·) implies finiteness of

∫
F (x)dx and thus

of
∫
F 2(x)dx (recall that continuity implies that F (·) has no poles).

A.2 We first show that

1

T 0.5

T∑
t=1

F 2 (yt−1) ε̂2
t =

1

T 0.5

T∑
t=1

F 2 (yt−1) ε2
t + op (1) (14)

as follows. From (4), we have that

1

T 0.5

T∑
t=1

F 2 (yt−1) ε̂2
t =

1

T 0.5

T∑
t=1

F 2 (yt−1) ε2
t

− 2

T 0.5

T∑
t=1

F 2 (yt−1)
(

(α̂− α) yt−1 +
(
β̂0 − β0

)
xt−1,0 +

(
β̂1 − β1

)
xt−1,1

)
+

1

T 0.5

T∑
t=1

F 2 (yt−1)
(

(α̂− α) yt−1 +
(
β̂0 − β0

)
xt−1,0 +

(
β̂1 − β1

)
xt−1,1

)2

.

The second term on the r.h.s. is given by

2 (α̂− α)

T 0.5

T∑
t=1

F 2 (yt−1) yt−1+
2
(
β̂0 − β0

)
T 0.5

T∑
t=1

F 2 (yt−1) xt−1,0+
2
(
β̂1 − β1

)
T 0.5

T∑
t=1

F 2 (yt−1) xt−1,1
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and is thus op (1) thanks to A.1, A.4 and A.9 (or A.9∗) and to noting that the

odd function xF 2(x) satisfies the conditions of Wang and Phillips (2011). Similar

arguments apply for the third term and (14) is established.

Second, we show that

1

T 0.5

T∑
t=1

F 2 (yt−1) ε2
t =

1

T 0.5

T∑
t=1

F 2 (yt−1)σ2
t + op (1)

with σ2
t = Var (ε2

t ). Since F 2 (yt−1) (ε2
t − σ2

t ) is a martingale difference sequence and

εt an independent sequence,

Var

(
1

T 0.5

T∑
t=1

F 2 (yt−1)
(
ε2
t − σ2

t

))
=

1

T

T∑
t=1

Var
(
F 2 (yt−1)

)
Var

((
ε2
t − σ2

t

))
,

and the result follows with A.0. It remains to be proved that

1

T 0.5

T∑
t=1

F 2 (yt−1)σ2
t

d→ L̃η
2

W (ω2(·)) (1, 0) ,

which follows with a tedious, yet straightforward adaptation of the arguments of

Wang and Phillips (2009).

A.3 The key result required for the indicated mixed Gaussian distribution to arise in the

limit is the independence of the Wiener process W̃ and the mixing variable given in

terms of the weighted local time of a time-transformed Wiener process. It has been

extensively studied for the homoskedastic case, see e.g. Phillips, Park and Chang

(2004) or Jeganathan (2008). But the time transformation is only a scaling operation

which does not affect independence and the result follows thanks to A.2.

A.4 is a direct consequence of Lemma 1, item c), in Demetrescu (2009), his assumptions

being fulfilled under ours.

A.5 The arguments used in the proof of A.2 indicate that

1

T 0.75

T∑
t=1

ε̂2
tF (yt−1) x′t−1,0 =

1

T 0.75

T∑
t=1

ε2
tF (yt−1) x′t−1,0 + op(1);

the result follows with an application of the Cauchy-Schwarz inequality and the finite-

ness of 4th order moments of εt.

A.6 Obvious and omitted.
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A.7 Follows with arguments similar to those used in the proof of Proposition 1 in Deme-

trescu (2010).

A.8 Follows with the same arguments used to establish A.7.

A.9 The first relation is shown to hold true under no cointegration (i.e. α = 0 and αe = 0)

by Chang, Park and Phillips (2001, Lemma 5), and is easily shown to hold under our

moment restrictions. The second relation follows with arguments similar to A.5.

A.9∗ Under cointegration of yt−1 and xt−1,1 (as implied by αe 6= 0), each element of xt−1,1

can be expressed as a linear combination of I(1) variables that are either cointegrated

with yt−1 or not. When at least one of the I(1) variables that are not cointegrated

with yt−1 is present in the linear combinations, the cross-moment is of magnitude

Op(1) due to A.9; otherwise, when elements of xt−1,1 equal yt−1 plus I(0) noise, the

Op(T
−0.5) magnitude order emerges due to A.1, second relation, and A.4.

The second relation follows along the lines of the proof of A.9 and is omitted.

Proof of Proposition 1

a) Recall, α̂ − α = Q−1M , with M and Q defined in the text. Let us now examine the

behavior of M . The second term on the right-hand side of the equation defining M can be

written as (
T∑
t=1

F (yt−1) x′t−1

)
D−1
T DT

(
T∑
t=1

xt−1x
′
t−1

)−1

DTD
−1
T

(
T∑
t=1

xt−1εt

)

with DT a K (p+ 1) ×K (p+ 1) diagonal matrix partitioned according to the stationary

and integrated components of xt−1:

DT =

(
T 0.5IKp 0

0 TIK

)
, D−1

T =

(
T−0.5 0

0 T−1

)
.

It follows from A.4 and A.9 that(
T∑
t=1

F (yt−1) x′t−1

)(
T−0.5 0

0 T−1

)

=

(
T−0.5

T∑
t=1

F (yt−1) x′t−1,0, T
−1

T∑
t=1

F (yt−1) x′t−1,1

)
= (Op (1) , Op (1))
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and (
T−0.5 0

0 T−1

)(
T∑
t=1

xt−1εt

)
=

(
T−0.5

∑T
t=1 xt−1,0εt

T−1
∑T

t=1 xt−1,1εt

)
=

(
Op (1)

Op (1)

)
,

Then,

DT

(
T∑
t=1

xt−1x
′
t−1

)−1

DT =

(
D−1
T

(
T∑
t=1

xt−1x
′
t−1

)
D−1
T

)−1

which equals((
T−0.5 0

0 T−1

)( ∑
xt−1,0x

′
t−1,0

∑
xt−1,0x

′
t−1,1∑

xt−1,1x
′
t−1,0

∑
xt−1,1x

′
t−1,1

)(
T−0.5 0

0 T−1

))−1

=

(
T−1

∑
xt−1,0x

′
t−1,0 T−1.5

∑
xt−1,0x

′
t−1,1

T−1.5
∑

xt−1,1x
′
t−1,0 T−2

∑
xt−1,1x

′
t−1,1

)−1

=

(
Op (1) Op (T−0.5)

Op (T−0.5) Op (1)

)−1

=

(
Op (1) Op (T−0.5)

Op (T−0.5) Op (1)

)
,

due to continuity of matrix inversion and nonsingularity. Hence,

M =
T∑
t=1

F (yt−1) εt − (Op (1) , Op (1))

(
Op (1) Op (T−0.5)

Op (T−0.5) Op (1)

)(
Op (1)

Op (1)

)

=
T∑
t=1

F (yt−1) εt −Op (1) = Op

(
T 0.25

)
.

For Q, we only need to examine(
T−0.5 0

0 T−1

)(
T∑
t=1

xt−1yt−1

)
=

 T 0.5
(
T−1

∑T
t=1 xt−1,0yt−1

)
T
(
T−2

∑T
t=1 xt−1,1yt−1

)  =

(
Op (T 0.5)

Op (T )

)
,

which, under no cointegration, leads to

Q =
T∑
t=1

F (yt−1) yt−1 − (Op (1) , Op (1))

(
Op (1) Op (T−0.5)

Op (T−0.5) Op (1)

)(
Op (T 0.5)

Op (T )

)
= Op (T ) ;

note that it is an exact order of magnitude. The convergence rate for α̂ follows directly,

α̂− α = Op

(
T−1

)
Op

(
T 0.25

)
= Op

(
T−0.75

)
.

For β, we have

β̂ − β = J−1R
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with R a column vector:

R =
T∑
t=1

xt−1εt −
T∑
t=1

xt−1yt−1

(
T∑
t=1

F (yt−1) yt−1

)−1 T∑
t=1

F (yt−1) εt

and J a matrix

J =
T∑
t=1

xt−1x
′
t−1 −

T∑
t=1

xt−1yt−1

(
T∑
t=1

F (yt−1) yt−1

)−1 T∑
t=1

F (yt−1) x′t−1.

Partition R and J corresponding to the stationary and integrated regressors. Then, it is

straightforward to check that for R = (R′0, R
′
1)′ it holds

R0 = Op

(
T 0.75

)
and R1 = Op

(
T 1.75

)
.

Then, for

J =

(
A B

C D

)
,

it holds due to Lemma A that A = Op (T ), B = Op (T 1.5), C = Op (T 2) and D = Op (T 2.5).

Using formulae for inverting partitioned matrices (see Lütkepohl, 1996, p. 147), one obtains,

after some algebra,

J−1 =

(
Op (T−1) Op (T−2)

Op (T−1.5) Op (T−2.5)

)
,

from which the desired convergence rates follow.

b) The result follows along the same lines, but now A.9∗ could hold instead of A.9 (see

the proof of Lemma A for details). While M remains in any case of order Op (T 0.25), Q

can be of exact order Op (T 0.5) instead of Op (T ), resulting in a convergence order for α̂

of Op (T 0.25). In what concerns β̂, B may be Op(T ) and D may be Op(T
2), if A.9∗ holds.

Thus, a behavior similar to that of α̂ emerges for β̂1, while the behavior of β̂0 is unaffected.

Proof of Lemma 1 From the proof of Proposition 1, it follows that

M =
1

T 0.25

T∑
t=1

F (yt−1) εt + op (1) .

By using arguments similar to those employed in the proofs of Proposition 1 and of Lemma

A.2, we further have that

1

T 0.5
PW =

1

T 0.5

T∑
t=1

F (yt−1)2 ε2
t + op (1) ,
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which leads to the desired result, the numerator of the t statistic being different from zero

with probability 1. Note that the result holds irrespective of whether A.9 or A.9∗ holds

true.

Proof of Proposition 2 The result follows for a) directly from Lemma 1 by setting α = 0

and employing A.2 and A.3.

If using the usual standard errors, PW reduces to σ̂2
εP = σ̂2

ε

∑T
t=1 F

2 (yt−1) + op (T 0.5)

which (properly normalized) has the wrong weak limit (see lemma A.1), and the resulting

t statistic is not pivotal in the presence of time-varying volatility.

For b), note that

tα̂ =
α +Q−1M√
Q−2PW

;

from the proof of Proposition 1 we know the exact order of magnitude of Q to be either

T or T 0.5; with α 6= 0, its numerator is non-zero w.p.1 and Op (1), hence the t statistic

diverges at a rate of at least T 0.25.

Proof of Proposition 3 For a), let the number of equations be w.l.o.g. K = 2. Dealing

with all K equations at the same time, it is more convenient to revert to the notation of

Assumption 1, i.e. to use wt instead of (yt, xt)
′. Note that, under Assumptions 1 through

3, the normalized levels converge weakly to a Gaussian process with a time-dependent

quadratic variation,
1√
T

w[sT ] ⇒ B (s) ,

where the covariance kernel of B (s) = (B1 (s) , B2 (s))′ depends on Σ (s) and the short-

run dynamics of wt. Marginally, but not jointly, B1 and B2 are time-transformed Wiener

processes.

Given the (mixed) Gaussianity from Proposition 2, we only need to prove that the ratios∑T
t=1 F1 (w1t−1) ε1t√∑T
t=1 F

2
1 (w1t−1) ε21t

and

∑T
t=1 F2 (w2t−1) ε2t√∑T
t=1 F

2
2 (w2t−1) ε22t

(15)

are asymptotically independent. Following Chang (2002) or Chang and Nguyen (2011),

asymptotic independence of the two t statistics in (15) follows if∫ 1

0

F1

(√
TB1 (s)

)
F2

(√
TB2 (s)

)
σ12 (s) ds = op

(
T−0.5

)
,

where σ12 (s) is the off-diagonal element of Σ (s) . Chang’s derivation of this magnitude order

does not apply directly because B (s) , while it is a Gaussian process, it is not necessarily

a bivariate non-degenerate Brownian motion.
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To adapt Chang’s argument to our situation, note that there exist a positive definite

lower triangular matrix function A (s) and a vector of independent standard Wiener pro-

cesses W (s) such that

B (s)
d
= B̃ (s) = A (s) W (s) ;

the elements of A (s) are piecewise Lipschitz and bounded, properties inherited from Σ (s) .

Since, as pointed out e.g. by de Jong and Wang (2005), there exists a positive, integrable,

continuous and symmetric function F̃ (s) > |F (s)| monotonically increasing (decreasing)

for s < 0 (s > 0), with F̃ fulfilling Assumption 4 as well, we have that∣∣∣∣∫ 1

0

F1

(√
TB̃1 (s)

)
F2

(√
TB̃2 (s)

)
σ12 (s) ds

∣∣∣∣
≤ max

s∈[0,1]
|σ12 (s)|

∫ 1

0

F̃
(√

T
∣∣∣B̃1 (s)

∣∣∣) F̃ (√T ∣∣∣B̃2 (s)
∣∣∣) ds.

Now,

F̃
(√

T
∣∣∣B̃1 (s)

∣∣∣) = F̃
(√

T |a11 (s)| |W1 (s)|
)

≤ F̃

(√
T |W1 (s)| min

s∈[0,1]
|a11 (s)|

)
= G̃1

(√
T |W1 (s)|

)
since

√
T |a11 (s)| |W1 (s)| ≥ |W1 (s)|mins∈[0,1] |a11 (s)| for all s ∈ [0, 1] . The r.h.s. of the last

equality only depends on W1. Also,∣∣∣√Ta21 (s)W1 (s) +
√
Ta22 (s)W2 (s)

∣∣∣ ≥ √T ||a21 (s)| |W1 (s)| − |a22 (s)| |W2 (s)|| ,

where the r.h.s. is in turn bounded from below by

•
√
T
∣∣|W1 (s)|mins∈[0,1] |a21 (s)| − |W2 (s)|maxs∈[0,1] |a22 (s)|

∣∣
if |W2 (s)| < |W1 (s)| mins∈[0,1]|a21(s)|

maxs∈[0,1]|a22(s)| ,

• 0 if |W1 (s)| mins∈[0,1]|a21(s)|
maxs∈[0,1]|a22(s)| ≤ |W2 (s)| ≤ |W1 (s)| maxs∈[0,1]|a21(s)|

mins∈[0,1]|a22(s)| , and

•
√
T
∣∣|W1 (s)|maxs∈[0,1] |a21 (s)| − |W2 (s)|mins∈[0,1] |a22 (s)|

∣∣
if |W2 (s)| > |W1 (s)| maxs∈[0,1]|a21(s)|

mins∈[0,1]|a22(s)| .

It follows that F̃
(√

T ||a21 (s)| |W1 (s)| − |a22 (s)| |W2 (s)||
)

is bounded (from above) by the

function G̃2

(√
T |W1 (s)| ,

√
T |W2 (s)|

)
given by

• F̃
(√

T
∣∣|W1 (s)|mins∈[0,1] |a21 (s)| − |W2 (s)|maxs∈[0,1] |a22 (s)|

∣∣)
if |W2 (s)| < |W1 (s)| mins∈[0,1]|a21(s)|

maxs∈[0,1]|a22(s)| ,
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• F̃ (0) if |W1 (s)| mins∈[0,1]|a21(s)|
maxs∈[0,1]|a22(s)| ≤ |W2 (s)| ≤ |W1 (s)| maxs∈[0,1]|a21(s)|

mins∈[0,1]|a22(s)| , and

• F̃
(√

T
∣∣|W1 (s)|maxs∈[0,1] |a21 (s)| − |W2 (s)|mins∈[0,1] |a22 (s)|

∣∣)
if |W2 (s)| > |W1 (s)| maxs∈[0,1]|a21(s)|

mins∈[0,1]|a22(s)| .

Thus, for some generic constant C,∣∣∣∣∫ 1

0

F1

(√
TB̃1 (s)

)
F2

(√
TB̃2 (s)

)
σ12 (s) ds

∣∣∣∣
≤ C

∫ 1

0

G̃1

(√
T |W1 (s)|

)
G̃2

(√
T |W1 (s)| ,

√
T |W2 (s)|

)
ds.

We know from Kallianpur and Robbins (1953) that the r.h.s. of the inequality is of order

Op (T−1 log T ) if (W1,W2)′ is a nondegenerate Brownian motion and G̃1 (x) G̃2 (x, y) is a

Borel function which is bounded and integrable in R2; see also Kasahara and Kotani (1979).

We only have to check that
∫∞
−∞

∫∞
−∞ G̃1 (x) G̃2 (x, y) dxdy < ∞. Due to the continuity of

G̃1 (x) and G̃2 (x, y), we have that∫ ∞
−∞

∫ ∞
−∞

G̃1 (x) G̃2 (x, y) dxdy =

∫ ∞
−∞

G̃1 (x)

(∫ ∞
−∞

G̃2 (x, y) dy

)
dx;

let I (x) =
∫∞
−∞ G̃2 (x, y) dy and recall that G̃1 (x) and G̃2 (x, y) are nonnegative. Obviously,

I (x) is not uniformly bounded; but it is easily shown that I (x) ≤ C |x| implying that∫ ∞
−∞

∫ ∞
−∞

G̃1 (x) G̃2 (x, y) dxdy ≤ C

∫ ∞
−∞
|x| G̃1 (x) dx.

Recall now that G̃1 (x) = F̃
(
xmins∈[0,1] |a11 (s)|

)
with mins∈[0,1] |a11 (s)| being positive since

A(s) is positive definite for any s, so the r.h.s. is bounded as required for using the result

of Kallianpur and Robbins (1953) given that
∫∞
−∞ |x| F̃ (x) dx <∞.

Given the distributional equivalence of B̃ (s) and B (s) , it follows that∫ 1

0

F1

(√
TB1 (s)

)
F2

(√
TB2 (s)

)
σ12 (s) ds = Op

(
log T

T

)
as required for the result.

For b), consistency of the test is obvious given Proposition 1, item b).

Proof of Proposition 4 The result is established by noting that Lemma A holds for these

instruments as well, but in terms of recursively demeaned (detrended) time-transformed

Brownian motions, which are Gaussian processes with continuous paths and the arguments

of Wang and Phillips (2009, Proposition 2.1) apply. The results analog to Propositions 1,

2, and 3 follow.
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Larsson, R., J. Lyhagen and M. Löthgren (2001), Likelihood-Based Cointegration Tests in
Heterogeneous Panels. The Econometrics Journal 4, 109-142.

32



Lütkepohl, H. (1996), Handbook of Matrices. John Wiley and Sons, Chichester.

Lütkepohl, H. (2005), New Introduction to Multiple Time Series Analysis. Springer-Verlag,
Berlin.

Maddala, G.S. and S. Wu (1999), A Comparative Study of Unit Root Tests with Panel
Data and a New Simple Test. Oxford Bulletin of Economics and Statistics, Special Issue,
631-652.

Miller, J.I. (2010), A Nonlinear IV Likelihood-Based Rank Test for Multivariate Time
Series and Long Panels. Journal of Time Series Econometrics 2 (1), article 5.

O’Connell, P.G.J. (1998), The Overvaluation of Purchasing Power Parity. Journal of In-
ternational Economics 44, 1-19.

Palm, F.C., S. Smeekes and J.-P. Urbain (2011) Cross-Sectional Dependence Robust Block
Bootstrap Panel Unit Root Tests. Journal of Econometrics 163, 85-104.

Park, J.Y. and P.C.B. Phillips (1999), Asymptotics for Nonlinear Transformations of Inte-
grated Time Series. Econometric Theory 15, 269-298.

Park, J.Y. and P.C.B. Phillips (2001), Nonlinear Regressions with Integrated Time Series.
Econometrica 69, 117-162.

Pedroni, P. (1999), Critical Values for Cointegration Tests in Heterogeneous Panels with
Multiple Regressors. Oxford Bulletin of Economics and Statistics 61, 653-670.

Pedroni, P. (2004), Panel Cointegration: Asymptotic and Finite Sample Properties of
Pooled Time Series Tests with an Application to the PPP Hypothesis. Econometric
Theory 20, 597-625.

Phillips, P.C.B., J.Y. Park and Y. Chang (2004) Nonlinear Instrumental Variable Estima-
tion of an Autoregression. Journal of Econometrics 118, 219-246.

Saikkonen, P. and H. Lütkepohl (1996), Infinite-Order Cointegrated Vector Autoregressive
Processes: Estimation and Inference. Econometric Theory 12, 814-844.

Shin, D.W. and S. Kang (2006), An Instrumental Variable Approach for Panel Unit Root
Tests under Cross-Sectional Dependence. Journal of Econometrics 134, 215-234.

Wang, Q. and Phillips, P.C.B. (2009), Asymptotic Theory for Local Time Density Estima-
tion and Nonparametric Cointegrating Regression. Econometric Theory 25, 710-738.

Wang, Q. and Phillips, P.C.B. (2011), Asymptotic Theory for Zero Energy Functionals
with Nonparametric Regression Applications. Econometric Theory 27, 235-259.

Wang, S., P. Wang, J. Yang and Z. Li (2010), A Generalized Nonlinear IV Unit Root Test
for Panel Data with Cross-Sectional Dependence. Journal of Econometrics 157, 101-109.

Westerlund, J. and R. Larsson (2009), A Note on the Pooling of Individual PANIC Unit
Root Tests. Econometric Theory 25, 1851-1868.

33



Westerlund, J. (2007), Testing for Error Correction in Panel Data. Oxford Bulletin of
Economics and Statistics 69, 709–748.

Westerlund, J. and D.L. Edgerton (2007), A Panel Bootstrap Cointegration Test. Eco-
nomics Letters 97, 185–190.

34


