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Abstract

The matching of likes is a frequently observed phenomenon. However, for

such assortative matching to arise in a search model, often implausibly strong

conditions are required. This paper shows that, once signals are introduced,

a search model can generate even perfect assortative matching under weak

conditions: supermodularity of the match production function is a necessary

and sufficient condition. It simultaneously drives sorting and functions as a

single-crossing property ensuring that agents choose truthful signals. The in-

formation from signals allows agents to avoid all unnecessary search, so that

this search model exhibits nearly unconstrained efficiency.
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1 Introduction

A number of important markets, notably the labour market, bring agents together in

pairs that form durable matches. The dominant approach in the analysis of decentralised

interaction on such matching markets is the search and matching model (see e.g. the sur-

vey by Rogerson et al. (2005)): agents engage in sequential search for match partners,

and frictions in the search process make this costly. In recent years, it has been intensely

debated whether the model can replicate important empirical regularities. Alongside

volatility over the business cycle and price or wage dispersion, the literature has sought

to explain the pattern of sorting among heterogeneous agents. Indeed, that likes tend

to match with likes is a pervasive empirical phenomenon, known as positive assortative

matching (PAM). For example, more productive workers tend to be hired by more pro-

ductive firms and more educated women tend to marry more educated men.1 Can the

search and matching model generate this phenomenon under plausible conditions?

For a decade, the answer appeared to be No. In their influential contribution, Shimer

and Smith (2000) identified three conditions that have to hold simultaneously for PAM to

arise in their search and matching model. One of these conditions requires that the match

production function, which specifies how matched agents’ inputs translate into output,

be supermodular. It holds when one input’s marginal effect on output is increasing in the

other input. This mild and intuitive condition suffices in Becker’s (1973) seminal model

without frictions where it even generates perfect PAM: only equal types match.

The presence of frictions in Shimer and Smith (2000), however, seems to necessitate

two additional (and less intuitive) conditions: in addition to the match production func-

tion, the logarithm of its first derivative and the logarithm of its cross-partial derivative

also have to be supermodular for PAM to arise. In a comparable search and matching

model analysed by Smith (2006), the logarithm of the match production function has to

be supermodular, so that one input’s marginal effect on output is also as a proportion

increasing in the other input. Eeckhout and Kircher (2010) show that the conditions in

Shimer and Smith (2000) are jointly at least as strong as in Smith (2006) (provided match

production is non-decreasing in inputs). At the same time, both these strong conditions

generate PAM only in the sense that the lowest and highest types an agent would match

with are non-decreasing in her own type.

The combination of three conditions in Shimer and Smith (2000) is criticised by Atakan

(2006) as “quite restrictive”; Goldmanis et al. (2009) find it “quite troubling” that the

mild condition from Becker (1973) does not suffice to generate PAM in Smith (2006).2

Goldmanis et al. (2009) also point out that situations in which there is hardly any or

no sorting at all satisfy the formal criterion for PAM that Shimer and Smith (2000) and

also Smith (2006) employ. In short, there is a paradox here: agents in many real-world

1As an exemplary reference for these stylised facts, see Mare (1991).
2See Atakan (2006), p. 667 and Goldmanis et al. (2009), p. 8 and p. 12.
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markets sort into PAM, but theoretical models of these markets require improbably strong

conditions to generate even a weak form of PAM.

This paper offers a solution to the paradox by appealing to another pervasive phe-

nomenon: the use of signals to transmit information. For example, job advertisements

and applications might serve as signals on the labour market. Provided they do transmit

information, such signals reduce the effect of frictions: search with better information

takes less time and can avoid costly but unsuccessful meetings. What we have in mind is

a website where it takes but a click to view the next signal, and meetings happen only in

case of mutual interest. Whenever signals make search essentially costless, the situation

approaches the frictionless model in which mild conditions suffice for PAM to arise.

In this spirit, the paper introduces signals into a search and matching model close

to that in Shimer and Smith (2000). The necessary and sufficient condition for PAM in

our model is supermodularity of the match production function. Under this condition,

the model generates even perfect PAM. Hence we obtain exactly the same mild condition

as in Becker’s (1973) frictionless model and the same extreme form of sorting, despite

the presence of frictions in our model. This paper therefore reconciles the search and

matching model with potentially very many decentralised markets that exhibit PAM in

practice but do not meet the strong theoretical conditions required in Shimer and Smith

(2000).

For the signals in our analysis, we cannot assume a single-crossing property as in

Spence (1973), in the sense that some types can send a certain signal at lower cost than

other types. After all, when agents use applications or advertisements, writing a forged

CV is as costly as writing a truthful CV, and painting an advertised job in unduly bright

colours is as costly as honestly laying out its dull nature. Hence, the costs of signals in

this paper are normalised to zero. As shown by Menzio (2007) for a directed search model

with strategic bargaining, signals can still be informative in such an environment of cheap

talk. The model in this paper also features strategic bargaining, but in contrast to Menzio

(2007) it even achieves full information transmission. Supermodularity is central to this

result because it introduces a single-crossing property into agents’ marginal productivity,

rather than into the cost of signals as in Spence (1973). Hence the conditions for PAM

and for truthful signals exactly coincide in our model.

To obtain truthful signals, one has to show in particular that low types do not want

to imitate high types. If a low type in our model signals like a high type, meets a high

type, and then reneges, bargaining will fail because bargaining strategies are based on

signals when types are only privately observable, as in Menzio (2007). The high type

then prefers meeting another agent to a second round of bargaining with the low type.

When reneging is therefore not an option, the low type has to conceal the difference

between expected and actual match production by reducing her share accordingly. If the

match production function is supermodular, this reduction will outweigh the gain from

higher match production with a high type. Hence no-one deviates from truthful signals
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and perfect PAM is to be expected: with fully informative signals, agents can replace

(almost all) costly search via meetings by costless search via signals and can therefore

behave like in a frictionless setting.

The separating equilibrium we can thus identify is the unique separating equilibrium

in the model, and it has a number of desirable efficiency properties. Above all, agents

match at the very first opportunity, so that no time (or money) is wasted on unsuccessful

search. In labour market terms, this would mean that frictional unemployment is reduced

to a minimum. The signals allow agents to first locate their best feasible match partner

at no cost, so that the only costs are created by the meeting with this agent. The source

of mismatch in random search models, the incentive to accept less than the best feasible

match so as to avoid further search costs, is therefore absent here. As there is no mismatch,

the equilibrium matching is stable and maximises aggregate output.

Unconstrained efficiency is nearly achieved here because the frictions are in effect

overcome. Only the costs associated with the single meeting that precedes each match

distinguish the separating equilibrium from the first-best outcome that could be centrally

imposed by a benevolent social planner. Intuitively, search is only necessitated by a lack

of information. Where signals provide full information, search frictions cease to matter.

As it happens, the condition for signals to provide full information also ensures that the

sorting under full information is efficient.

The paper proceeds as follows. After further related literature has been discussed in

section 2, section 3 specifies a frictional matching market and the procedures of search.

Section 4 defines equilibrium in the model and proposes a separating equilibrium in which

supermodularity suffices for perfect PAM. Its existence is proven step by step through a

series of lemmas in section 5. The separating equilibrium is found to be unique as well as

efficient in section 6. Section 7 discusses the role of key model elements as well as some

practical implications before section 8 concludes.

2 Related literature

There is first evidence that models with more information in the search process only

require weaker conditions for PAM. In a recent contribution, Eeckhout and Kircher (2010)

investigate PAM in a model of directed search: sellers post offers and commit to them;

having observed the offers, buyers then simultaneously choose which seller to visit. For

common meeting technologies, PAM will arise in this context if the square root of the

match production function is supermodular. This condition is weaker than in Shimer and

Smith (2000) and Smith (2006), but still stronger than in Becker (1973) and this paper.

In a related analysis, Shimer (2005) discusses PAM in a directed search model of the

labour market. He finds, at least for the case of only two worker types, that there will be

some stochastic form of PAM as long as workers of low type do not have a comparative

advantage when working for employers of high type.
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For a number of reasons, however, a directed search model is not easily comparable

to the search and matching model in Shimer and Smith (2000). Above all, the frictions

differ. The only way frictions are introduced in Eeckhout and Kircher (2010) and Shimer

(2005) is through congestion: buyers cannot coordinate, so that queues result and only

some buyers can buy. In Shimer and Smith (2000) and also in Smith (2006), the frictions

are instead due to agents’ discounting. Directed search also differs from Shimer and Smith

(2000) in how agents split output. The literature refers to non-transferable utility (NTU)

whenever agents divide output according to a pre-imposed split. In cases of transferable

utility (TU), there is no pre-imposed split and agents have to bargain. Shimer and Smith

(2000) and Becker (1973) feature TU. Smith (2006) employs NTU, as does directed search:

by committing to a price (wage), the sellers (employers) impose a split ex ante.

Because of such differences, it is not clear whether directed search can be regarded as

a solution to the paradox we have outlined. Similar conclusions apply to Morgan (1998)

and Atakan (2006): while supermodularity as such gives rise to PAM in both models,3

the only frictions in these models are explicit costs that agents pay out of pocket for each

meeting (as opposed to implicit costs from discounting). Yet limiting oneself to explicit

costs cannot resolve the paradox, since real-world agents do discount. By contrast, the

model in this paper remains very close to Shimer and Smith (2000): it notably features

TU and discounting, while allowing in addition for explicit costs. This set-up corresponds

in particular to many labour market contexts.

The key difference between Shimer and Smith (2000) and this paper is that we allow

for ex ante information transmitted through signals, so that search becomes non-random.

The focus in our analysis is on links between complementarities in match production and

agents’ incentives to signal truthfully. Eeckhout and Kircher (2010) instead focus on links

between these complementarities and agents’ individual matching rates. By assuming

commitment to posted offers (which is crucial for their analysis), they abstract from the

issue of truthful signals; in turn, we abstract in effect from differences in matching rates

by allowing for any number of marketplaces with constant returns to scale.

Some more papers consider sorting in the context of a matching market with signals.

Hoppe et al. (2009) and Hopkins (2012) build two similar models of a matching tournament

with signalling: match partners are essentially prizes for ex-ante choices of costly signals.

In both models, agents first select a costly signal of their privately observed type like in

Spence (1973) and then match roughly like in Becker (1973). Hopkins (2012) assumes a

single-crossing property and Hoppe et al. (2009) assume a specific multiplicative match

production function that satisfies log-supermodularity. In the symmetric equilibrium,

agents’ signals are then strictly increasing in their types. This leads to perfect PAM at

the matching stage - just as one would have expected, given Becker’s (1973) findings.

However, since search frictions do not exist in matching tournaments, neither of the two

papers helps us resolve the paradox in Shimer and Smith (2000).

3In Atakan (2006), this result crucially depends on search costs being identical for all agents.
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A search model built by Chade (2006) features discounting and noisy signals uncon-

trolled by the agents. Yet these signals are not observed before agents meet. Rather,

when agents do meet, they do not observe each others’ true types but only the noisy

signal. Hence search is still random in this model, and the noisy signals in fact add in-

formation frictions to search frictions. Assuming that the noisy signals exogenously carry

some information, matching is shown to exhibit PAM in a very weak sense: the distri-

bution of types that a high type might match with first-order stochastically dominates

this distribution for a low type.4 This paper primarily differs from Chade (2006) in that

signals are observed before meetings and allow agents to avoid search costs, thereby tend-

ing to reduce the effect of frictions. Moreover, signals in our model are not informative

by assumption but are deliberately and strategically chosen by agents. We would argue

that real-world agents will exert as much control over the signals as possible, given how

important they can be for their payoffs.

Our model is finally related to Jacquet and Tan (2007). They consider an environment

with discounting, NTU, and a particular log-supermodular match production function.

For such an environment, Burdett and Coles (1997) found that types segregate into classes

and match exclusively within these classes. Building on this, Jacquet and Tan (2007) let

agents establish any number of marketplaces and show that each marketplace is populated

by only one class in equilibrium. By going to the appropriate marketplace, for example

a website, each agent can thus avoid meetings that do not lead to a match and can

instead match after the first meeting. Agents can do the same in our model if signals

are informative: they can use the signals to create any number of marketplaces. While

it is left open in Jacquet and Tan (2007) how marketplaces are established, in this paper

they are established simply by requiring certain signals. However, perfect PAM cannot

be achieved in Jacquet and Tan (2007) because agents still have an incentive to invade

the marketplaces of slightly higher types. As we explain in section 7, this incentive

disappears in our model due to the combination of privately observed types and TU (and

hence bargaining): to meet higher types, agents have to send exaggerated signals of their

own type. The higher types they meet judge them by their signal, so that bargaining fails

whenever a misleading signal was sent.

3 Model

The market in our model consists of heterogeneous agents who match among themselves.

Agents are indexed by a discrete productivity type x ∈ Θ, where Θ = {x, . . . , x̄} with

x > 0. For each discrete type, there is a continuum of agents and the overall mass of agents

4The same form of sorting results in a contribution by Lentz (2010) that does not feature any signals
but allows for search on the job (more generally, search while matched), while search is also random here.
Agents in Lentz (2010) and in the related model in Goldmanis et al. (2009) sort only over time. By
contrast, the fundamentally different sorting mechanism in our model can explain PAM already among
graduates in their first job, without invoking stronger conditions.
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is normalised to 1. The measure of agents with types weakly below x ∈ Θ is denoted

L(x), where L(·) is a cumulative distribution function with probability mass function l(·).
The mass of agents of type x is thus given by l(x), and we require l(x) > 0, ∀x.

Time is continuous with an infinite horizon. Each agent is always in one of four

states: matched, searching (that is, unmatched but participating), waiting (for continued

bargaining, as explained below), and not participating. We denote the mass of waiting

agents of type x by κ(x) ≤ l(x) and that of non-participating agents by ν(x) ≤ l(x).

Searching agents can create marketplaces to meet on. We index the N marketplaces agents

use by n, and N may be countably infinite. Agents cannot be on several marketplaces

simultaneously (i.e. their search activity is indivisible), but they can always switch between

marketplaces without incurring any cost. When they match they immediately leave the

marketplace. Let un(x) ≤ l(x) represent the mass of searching agents of type x on

marketplace n, while the mass of matched agents is thus l(x)−
∑N

n=1 u
n(x)−κ(x)−ν(x).

All these quantities are determined endogenously. When indifferent whether to engage in

search, whether to accept a match, and whether to stay in a marketplace or switch, an

agent respectively searches, accepts the match, and stays.

Types are exogenously given, but only privately observable. Every searching agent

chooses a costless signal x̃ ∈ Θ to convey information about her type to other agents on

the same marketplace. The signal x̃ may or may not be equal to her true type x, and

it can always be instantly and costlessly changed. By contrast, agents who are matched,

waiting, or non-participating do not send any signal and are not on any marketplace.

Since searching agents can condition meetings on signals, meetings are non-random.

Agents can influence whom they meet through their choice of marketplace: each market-

place n is characterised by a set Rn of required signals, such that each agent who chooses

this marketplace and sends a signal x̃ ∈ Rn can meet all other agents on the marketplace

who also send a required signal. We let Rn be public information, as agents can in any

case very quickly infer Rn from the signals they observe on marketplace n.

Inside a marketplace, meetings are random and are described by a meeting function

m(·). With a mass of agents

λn =
∑
x∈Θ

un(x)

the flow of meetings in marketplace n equals m(λn) ≤ λn, and m(0) = 0. The meeting

rate on the marketplace is

ηn =

{
m(λn)
λn

if x̃ ∈ Rn and λn 6= 0

0 if x̃ 6∈ Rn or λn = 0
(1)

We assume constant returns to scale in meeting, so that agent x faces the same meeting

rate ηn = η across all N marketplaces, provided she always chooses a required signal.

Then x must choose her marketplace by the agents she wants to meet, as she would meet
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all agents equally quickly. When she is indifferent, she randomises over her most preferred

marketplaces. Finally, any marketplace can be created at no cost but must attract agents

in order to last. The agent(s) creating marketplace n choose Rn, which cannot be changed

thereafter.

Before two agents can match, a meeting between them will have to occur. To distin-

guish between the agents, we will denote one’s type by x and the other’s by y. Normalising

the flow output generated by an unmatched agent to zero, a match between types x and

y generates a constant flow output f(x, y).

Assumption 1 (Regularity conditions). The match production function f(·, ·) is sym-

metric (f(x, y) ≡ f(y, x)), strictly increasing in both arguments, and, for any existing

types, takes only positive values (f : Θ2 7→ R++).

Because productivity types are scalars, there can only be gains from specialisation in

production if one role in production rewards productivity more than the other role does.

This specialisation will remain possible despite the assumption of symmetry if the more

productive agent always assumes the role that rewards productivity more, so that the

output of the match is maximised.

By observing a signal ỹ agent x can only form a belief about the true type y behind

the signal. Agents never directly observe each other’s actual types. Let hx be the history

of the interaction with some agent as observed by x, i.e. a set of actions such as the

observed signal. We represent a belief as a probability distribution Ψ(·). Concretely, for

each hx, the belief held by agent x of the other agent’s true type y is the probability

distribution Ψ(·|hx) over Θ. Then x, having observed hx, believes that the other’s type

is y with probability mass ψ(y|hx). All agents use Bayes’ rule to form and update their

beliefs.

Match output must also be unobservable when types are unobservable: knowing f(·, ·),
x could otherwise infer y from the observed output f(x, y). To keep the notation simple,

let g(x|hx) denote the match output that x expects based on her belief after observing

hx:

g(x|hx) =
∑
y∈Θ

f(x, y)ψ(y|hx)

Agents in a meeting bargain over the division of the match output that they would produce

between them. We model this using a strategic bargaining procedure with alternating

offers. It is useful to imagine that f(x, y) is contained in a pot that agents can only take

from but cannot look into.5 When agents first meet, either of them is randomly selected

with probability 1
2

to move first. An agent x who moves first takes a share π(x|y) for herself

from the pot, which is not observed by y. Then y takes the remainder f(x, y) − π(x|y)

5The function of this pot is to ensure that agents do not agree on shares that sum to more than
f(x, y). Alternatively, one can let agents make any agreement and note that it will break down when
f(x, y) cannot satisfy the demands agreed. As such a break-down would occur immediately, it would
effectively be the same as bargaining failure. The results with this approach would be the same.
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from the pot (which may be negative), unobserved by x. Now y has three options: she

can accept the share left for her in the pot, reject this share but stay, or reject it and

walk away to immediately continue searching.6 If y rejects but stays, x can walk away;

otherwise, the same two agents meet again for the next round of bargaining, in which

one agent is again selected with probability 1
2

to move first, and so on. Shares offered in

previous rounds cannot be accepted ex post, and if players never agree nor walk away,

both will obtain 0. If y accepts, agents match immediately and obtain their respective

share as a flow utility for the duration of the match. As each agent can assure herself

flow utility 0 by not participating, negative shares will always be rejected and thus never

arise as a flow utility. Finally, matches dissolve exogenously at constant rate δ.

In order to be more precise, let us formalise this bargaining game. The players are

’nature’ Q and the agents x and y who meet. The history hx records the actions that

x has observed thus far, hy records what y has observed, and we simply index histo-

ries in chronological order. When x and y first meet, they already know both sig-

nals, so that hx1 = hy1 = {x̃, ỹ}. A player function P (·, ·) assigns to each history pair

(hx, hy) (except any terminal history pairs) a player who moves at this history pair.

P (hx1 , h
y
1) = Q selects x and y each with probability 1

2
to move first. If x is selected, then

hx2 = hy2 = hx1 ∪ {x} and P (hx2 , h
y
2) = x. Agent x now chooses some π(x|y) according

to her bargaining strategy B(x) that assigns an action to every possible history pair for

which P (hx, hy) = x. As y observes only the remainder, hy3 = hy2 ∪ {f(x, y) − π(x|y)}
while hx3 = hx2 ∪ {π(x|y)}, and y responds according to B(y) by choosing an action from

the set {“accept”, “reject but stay”, “reject and walk away”}. If she chooses “accept” or

“reject and walk away”, then (hx4 , h
y
4) will be a terminal history pair. If she chooses

“reject but stay”, then hx4 = hx3 ∪ {“reject but stay”} and P (hx4 , h
y
4) = x who chooses

from {“continue”, “walk away”}. If x does not walk away, bargaining will continue in the

next meeting with P (hx5 , h
y
5) = Q, and so on.

Assumption 2 (Common expected delay). A further meeting with the same agent

arrives at the same rate as a new meeting with another agent.

That is, a time 1/η elapses in expectation before another bargaining round, so that both

a meeting to continue bargaining and a meeting with a different agent arrive at rate

η. While there is nothing in our model that would cause these meeting rates to differ

systematically, assumption 2 is obviously a simplification. Recall that waiting for another

bargaining round is a separate state that an agent can be in, so that waiting agents neither

send a signal nor meet anyone else.

All agents are risk-neutral, discount future utility at discount rate r (with 0 < r <∞), and

seek to maximise the present discounted value (pdv) of their expected utility. Throughout

the paper, ‘payoff’ refers to the pdv, not to the flow utility. Because of discounting, the

6The fact that agents have met implies that these agents prefer engaging in search to not participating.
It is thus without loss of generality that non-participation is not a further outside option here.

9



time that elapses before a meeting makes meetings costly. In addition, we include a second

kind of search friction by allowing for explicit cost c ≥ 0 that an agent incurs each time

she attends a meeting.

Assumption 3 (Gains from trade). The output produced in a match between two

agents of the lowest type, discounted at effective discount rate r + δ, can reimburse both

agents’ explicit costs of one meeting:

2c ≤
f(x, y)

r + δ

While explicit costs always have to be limited relative to the available payoffs to ensure

agents’ participation, note that assumption 3 is particularly mild. For example, we do

not assume that each agent is in fact reimbursed in the event of a match, nor that match

output is sufficient to reimburse the costs of the expected number of meetings before a

match. Finally, agents know everything except the true type of any other agent and, by

consequence, the actual match output f(x, y).

4 Equilibrium

4.1 Definition of equilibrium

We begin by defining three expected present values: Un(x) as the value to x of searching

in marketplace n, V (x|y) as the value to x of waiting for another bargaining round with y,

and W (x|y) as the value to x from being matched with y. Let the set A(hx, hy) comprise

of all combinations of bargaining strategies (B(x), B(y)) that lead to a subgame-perfect

equilibrium (SPE) of the bargaining game given history pair (hx, hy), so that an agree-

ment is reached immediately and agents match. Let α(·, ·) be an indicator function such

that α(B(x), B(y)) = 1 if (B(x), B(y)) ∈ A(hx, hy) and 0 otherwise. In exact analogy,

also define Ω(hx, hy) as the set of bargaining strategies that lead to another round of

bargaining given (hx, hy), and ω(·, ·) as an indicator function such that ω(B(x), B(y)) = 1

if (B(x), B(y)) ∈ Ω(hx, hy). Then the following asset equation expresses, for one market-

place, the expected return on searching as the expected gain from a meeting net of search

cost c:

rUn(x) = ηn

(
−c+

∑
y∈Θ

α(B(x), B(y)) [W (x|y)− Un(x)]ψ(y|hx = {ỹ ∈ Rn})

+
∑
y∈Θ

ω(B(x), B(y)) [V (x|y)− Un(x)]ψ(y|hx = {ỹ ∈ Rn})

)
(2)

where ψ(y|hx = {ỹ ∈ Rn}) is the probability mass of y that x believes conditional on

meeting y in marketplace n (and thus after observing a required signal ỹ ∈ Rn). Whenever
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x does not send a required signal herself, rUn(x) = 0.

Let us define U(x) as the value of Un(x) that x obtains in equilibrium. As is natu-

ral when signals are involved, we look for a perfect Bayesian equilibrium (PBE) of our

model. We will focus our attention on separating equilibria that survive the Intuitive

Criterion.7 Because signals are costless all PBE will necessarily be cheap-talk equilibria.

A steady-state PBE of our model, separating or not, requires that the flows into and out

of matches balance for every type (a pointwise steady state), that all agents choose all

their strategies optimally, and that agents’ beliefs are consistent with all agents’ actual

equilibrium behaviour.

Definition 1 (Search equilibrium with signals). In a steady-state PBE of the model,

each agent x ∈ Θ

(i) engages in search if and only if U(x) ≥ 0

(ii) optimally chooses a marketplace such that ∀n, U(x) ≥ Un(x) given B(x), B(y) for

all y ∈ Θ, and (Rn)Nn=1, where Un(x) is determined by equation (2)

(iii) chooses her signal optimally as arg maxx̃ rU
n(x) given B(x), B(y), and Rn, noting

that ηn depends on x̃ as specified by equation (1)

(iv) chooses a stationary subgame-perfect bargaining strategy as arg maxB(x) rU
n(x) given

all B(y) and Rn, noting that W (x|y) depends on the share obtained in bargaining

(v) holds beliefs that are formed using Bayes’ rule where possible and that are consistent

with equilibrium play: given an equilibrium history hx, ψ(y|hx) = un(y|hx) where

un(y|hx) is the true probability mass of y in marketplace n conditional on hx

and the matching market is in a pointwise steady state, so that the flows into and out of∑N
n=1 u

n(x) +κ(x) balance for each x ∈ Θ. Marketplaces are created until there is no new

marketplace n0 such that Un0
(x) > Un(x), ∀n holds for any x ∈ Θ.

A PBE only requires agents’ beliefs to be consistent with equilibrium play, not with

actions out of equilibrium. As is well known, a PBE can therefore depend on unreason-

able off-equilibrium beliefs because these beliefs are never tested in equilibrium. Since

unreasonable beliefs are not needed for any of our results, we rule out beliefs that are

unreasonable in the sense of the Intuitive Criterion. To do this formally, let us call the

choices of n, x̃, and B(x) the ’grand strategy’ of agent x, denoted GS(x) = (n, x̃, B(x)).

Also define BR(x|hx) as the set of continuation strategies GS(x|hx) that are best re-

sponses for x. To apply the Intuitive Criterion as an equilibrium refinement, we have to

define the notion of equilibrium domination in our model:

7Kübler et al. (2008) report experimental evidence suggesting that pooling equilibria never arise when
some types can benefit from the effective use of signals.
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Definition 2 (Equilibrium domination). Given a PBE of the model, the continuation

strategy GS(x|hx) is equilibrium-dominated at history pair (hx, hy) if

U(x) > max
GS(y|hy)∈BR(y|hy)

U(x|GS(x|hx))

where U(x|GS(x)) is the present value to x of searching with strategy GS(x|hx).

The Intuitive Criterion then demands that the beliefs of y place probability 0 on any type

x who would have to pursue equilibrium-dominated strategies to reach the respective

history: ψ(x|hy) = 0 if, at a history up to hy, x would have had to play an equilibrium-

dominated strategy GS(x|hx).

4.2 Putative equilibrium

We next propose that a particular separating equilibrium exists under a simple condition

on the match production function f(·, ·). All we need is a weak and intuitive form of

complementarity known as strict supermodularity (or increasing differences): the marginal

product of one agent in a match is strictly increasing in the type of the other agent.8

Definition 3 (Supermodularity). The match production function f(·, ·) is strictly su-

permodular if, for all xH > xL and yH > yL,

f(xH , yH)− f(xL, yH) > f(xH , yL)− f(xL, yL)

Further, we refer to the sorting with x = y in all matches as perfect positive assortative

matching (PPAM). We can now propose existence of the following PBE in our model:

Proposition 1 (Existence). Let agents’ beliefs place probability 0 on the occurrence of

equilibrium-dominated actions. Then for any type distribution L(x), strict supermodular-

ity of f(·, ·) is necessary and sufficient for the existence of a separating PBE in which

each agent x ∈ Θ

(i) engages in search: U(x) ≥ 0

(ii) chooses a marketplace where she meets exclusively agents of her own type

(iii) signals truthfully: x̃ = x

(iv) reaches a bargaining agreement in the first meeting and thus matches:

α(B(x), B(y)) = 1 and ω(B(x), B(y)) = 0 for x = y

8A stronger form of complementarity is strict log-supermodularity, which is defined using ln f(·, ·)
instead of f(·, ·) in definition 3, so that the proportional marginal product of one agent is increasing in
the other’s type.
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(v) correctly believes all signals to be truthful:

ψ(y|hx = {ỹ}) = un(y|hx = {ỹ}) = 1 for all y = ỹ.

The market is in pointwise steady state and is perfectly segmented, so that there is only

one type x ∈ Θ on each marketplace. The equilibrium matching is PPAM.

A proof of proposition 1 will thus establish that not only PAM, but even PPAM arises in

our model under the same weak condition as in a frictionless model, although our model

allows for two kinds of frictions. In a model with frictions only from discounting, Shimer

and Smith (2000) establish PAM, albeit not PPAM, under the condition that the match

production function f(·, ·), the logarithm of its first derivative, and the logarithm of its

cross-partial derivative are all supermodular. These conditions are directly comparable

to our condition and are unambiguously more restrictive: proposition 1 claims that our

model achieves PPAM with just the first of these conditions, which is also the most

intuitive.

The next section proves proposition 1 through a series of lemmas. Each time, we sep-

arately consider a component of proposition 1, taking as given that all other components

are indeed as specified in proposition 1. We verify for the component in question, as

applicable, that it is optimal for agents to behave as specified, that a steady state results,

and that beliefs are consistent with equilibrium play.

5 Existence proof for the putative equilibrium

5.1 Bargaining

We first determine the expected present values in the putative equilibrium situation.

Given that beliefs are consistent with equilibrium play, we have

ψ(y|hx = {ỹ ∈ Rn}) = un(y|hx = {ỹ ∈ Rn})

If x only meets agents of her own type, then

un(y|hx = {ỹ ∈ Rn}) = 0 ∀y 6= x (3)

Since every meeting in the putative equilibrium leads to match,

α(B(x), B(y)) = 1 for y = x and ω(B(x), B(y)) = 0 for y = x (4)

For the marketplace chosen in the putative equilibrium, equation (2) thus simplifies to

rU(x) = η [W (x|y)− c− U(x)] (5)
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with y = x. Hence the rate of matches equals the rate of meetings, and an agent effectively

incurs costs c each time she matches. Next, the expected return on being matched with y

is the expected flow utility while matched and the loss from match dissolution at rate δ:

rW (x|y) = σ(x|y)− δ[W (x|y)− U(x)] (6)

where σ(x|y) denotes the expected share that x obtains when bargaining with y over the

flow of match output f(x, y), which is in effect known from truthful signals:

σ(x|y) =
1

2
π(x|y) +

1

2
[f(x, y)− π(y|x)] (7)

One can solve equation (5) for U(x) and equation (6) for W (x|y), then use the latter to

substitute for W (x|y) in the former to obtain

rU(x) = β[σ(x|y)− (r + δ)c] (8)

where β = η/(r + δ + η). Now suppose y has been randomly selected to move first in

the bargaining game. In response to the share left for her, x can reject it and continue

searching, which carries the value U(x), or she can reject this share and wait for another

round of bargaining, which carries a value V (x|y). Note that the first mover y cannot

hope to attain a better position than she currently has: at best, she will find herself as

first mover again in a later meeting, be it with the same agent x or another agent of the

same type. As delay is costly, y seeks to seize the opportunity and to ensure that x accepts

her offer. In turn, x will accept any implicitly offered payoff WO(x|y) that satisfies

WO(x|y) ≥ max[V (x|y), U(x)] (9)

as she would otherwise reject the offer. When x moves first, y requires

WO(y|x) ≥ max[V (y|x), U(y)] (10)

In case of a second meeting, the same logic as before implies that the first mover seeks to

ensure agreement, so that the second meeting can be expected to result in a match. By

assumption 2, the second meeting happens at rate η, so that

rV (x|y) = η [W (x|y)− c− V (x|y)] (11)

in the putative equilibrium. Solving equation (11) for V (x|y) and equation (5) for U(x)

establishes that V (x|y) = U(x), since x meets a type y = x after an expected delay of 1/η

in any case. Hence the outside option U(x) is not binding. As we also require bargaining

strategies to be stationary, the game reduces to a variant of Rubinstein’s (1982) set-up,

and we have the following result:
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Lemma 1 (Bargaining equilibrium). Given truthful signals and given marketplace

choices as in the putative equilibrium situation, the following stationary strategies form

the unique SPE of the bargaining game:

(i) for herself, agent x always proposes

π∗(x|y) =

(
1− β

2

)
f(x, y) + β(r + δ)c (12)

When y proposes π(y|x), x always accepts if and only if π(y|x) ≤ π∗(y|x).

(ii) for herself, y always proposes π∗(y|x) = π∗(x|y). When x proposes π(x|y), y always

accepts if and only if π(x|y) ≤ π∗(x|y)

Agreement is reached in the first round of bargaining.

Proof. See appendix. �

The essence of the bargaining SPE is that each agent makes offers that leave the other

indifferent, and each agent accepts offers that make her indifferent or better off: the

first-mover takes a share π∗(x|y) such that the second-mover share

f(x, y)− π∗(x|y) =
β

2
f(x, y)− β(r + δ)c

is just enough to prevent the second mover from rejecting. The second-mover share will

still be weakly positive if

β

2
f(x, y) ≥ β(r + δ)c ⇔ 2c ≤ f(x, y)

r + δ

which by assumption 3 even holds for f(x, y) = f(x, y). The two indifference conditions

in equations (9) and (10), depending on who moves first, then together pin down a unique

SPE. Finally, expected shares in the SPE are

σ(x|y) = σ(y|x) =
1

2
π∗(x|y) +

1

2
[f(x, y)− π∗(x|y)] =

1

2
f(x, y) (13)

as one would expect when everything is symmetric.

5.2 Participation and steady state

To ensure that all agents engage in search, c must not be so high that U(x) becomes

negative for some x, since each agent can obtain a payoff 0 by not participating.

Lemma 2 (Participation). Assumption 3 is necessary and sufficient for all agents to

prefer engaging in search to non-participation.
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Proof. As match output is the only source of utility in the model, agents who do not

engage in search obtain payoff 0. Then agent x will only engage in search if U(x) ≥ 0.

By equation (8), this requires

c ≤ σ(x|y)

r + δ
⇔ 2c ≤ f(x, y)

r + δ

using equation (13). If this holds for f(x, y), as stated in assumption 3, then it will also

hold for the output generated in any other match because f(x, y) is strictly increasing in

x and y by assumption 1. �

As agents prefer search to non-participation, ν(x) = 0, ∀x ∈ Θ. Moreover, recall that

agents in the putative equilibrium reach an agreement in the first bargaining round, so

that κ(x) = 0, ∀x ∈ Θ. Hence agents only flow from searching to being matched (at rate

η) and back (at rate δ). Equating these flows, we obtain the pointwise steady state in the

putative equilibrium:

δ

l(x)−
∑
N (x)

un(x)

 = η
∑
N (x)

un(x) ∀x ∈ Θ (14)

where N (x) ≡ {n|Rn = {x}} is the set of all marketplaces on which x meets exclusively

her own type when signals are truthful.

5.3 Signals and beliefs

In this section, we examine whether any one agent has an incentive to unilaterally deviate

from the putative equilibrium by choosing a different signal. Therefore, we take as given

that all other agents signal truthfully, that all believe signals to be truthful, as well as

the other components of the putative equilibrium. We proceed by identifying first the

conditions under which every agent prefers her match in the putative equilibrium (hence-

forth the equilibrium match) to any other match that is available to her (i.e. mutually

acceptable). From this, we infer under which conditions there will be no incentive to

deviate from the truthful signal.

There are two reasons why we need to worry about false signals. First, because true

types are only privately observable, agents can perfectly imitate agents of other types

by sending their signal and bargaining as these types would. Second, agents might just

imitate another type’s signal and then renege on it in the meeting. Since search frictions

make switching to another meeting costly, the other agent in the meeting might still

accept the match. For example, consider a rather high type yH who matches with xH

in the putative equilibrium. If yH finds she has been lured into a meeting with a type

xL < xH by a false signal, she will nevertheless grudgingly accept whenever her share of
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f(xL, yH) is not so far below her expected share of f(xH , yH) that the costs of another

meeting would be justified. Therefore, there can in principle be an incentive to send false

signals.

We first compare the equilibrium match to matches with lower types. Without loss

of generality, let us take the perspective of some agent with a type xH > x, so that

lower types necessarily exist. We thus want to compare being matched with yH = xH to

being matched with yL < xH . The expected present discounted values of these matches

are W (xH |yH) and W (xH |yL), respectively. In the spirit of the one-deviation principle,

x reverts to the putative equilibrium strategies after the deviation. Hence, the asset

equations for both rW (xH |yH) and rW (xH |yL) in analogy to equation (6) depend on the

same U(xH) and thus differ only in the expected shares. Solving these two asset equations

respectively for W (xH |yH) and W (xH |yL), we therefore find that

W (xH |yH) > W (xH |yL) ⇔ σ(xH |yH) > σ(xH |yL)

where σ(xH |yH) and σ(xH |yL) denote the expected share obtained by xH in a match with

yH and yL, respectively.

Thus suppose a type xH > x signals to be of type xL in order to meet a type yL.

Further suppose that agent xH continues to behave like a type xL so as to conform to the

beliefs of yL, given that all other agents signal truthfully. Recall from section 5.1 that

neither agent’s signal implies a binding outside option. Hence the bargaining equilibrium

described by lemma 1 will be reached in the first round of bargaining. Then the expected

flow utility for xH in the match with yL is

σ(xH |yL) =
1

2

[
f(xH , yL)− β

2
f(xL, yL) + β(r + δ)c

]
+

1

2

[
f(xH , yL)−

(
1− β

2

)
f(xL, yL)− β(r + δ)c

]
= f(xH , yL)− 1

2
f(xL, yL) (15)

If xH moves first (with probability 1
2
), she leaves a second-mover share to yL as if output

was f(xL, yL) and keeps the rest of the actual output f(xH , yL). If yL moves first, yL

takes the first-mover share of f(xL, yL) for herself and xH obtains the actual remainder.

In an equilibrium match, by contrast, xH would obtain

σ(xH |yH) =
1

2

[(
1− β

2

)
f(xH , yH) + β(r + δ)c

]
+

1

2

[
β

2
f(xH , yH)− β(r + δ)c

]
=

1

2
f(xH , yH) (16)

Comparing σ(xH |yL) and σ(xH |yH), we find the following:

Lemma 3 (Matches with lower types). In the putative equilibrium, strict supermod-
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ularity of f(·, ·) is necessary and sufficient for any agent x ∈ Θ to strictly prefer the

equilibrium match to a match with a lower type in which she perfectly imitates the lower

type.

Proof. Any agent xH > x will strictly prefer the equilibrium match to a match with a

lower type yL if W (xH |yH) > W (xH |yL). As argued above, this is equivalent to

σ(xH |yH) > σ(xH |yL)

⇒ f(xH , yH)− f(xH , yL) > f(xH , yL)− f(xL, yL) (17)

using equations (15) and (16). Next, note that we can write

f(xH , yL) = f(yH , xL) = f(xL, yH) (18)

where the first equality holds because xH = yH and yL = xL, while the second equality

holds by symmetry of f(·, ·) (see assumption 1). Therefore substituting f(xL, yH) for

f(xH , yL) on the left-hand side of equation (17) only, we obtain the equation in definition

3. By this definition, strict supermodularity of f(·, ·) is necessary and sufficient for the

equation to hold. Finally, the type x matches with y in the putative equilibrium, so that

a lower type than in the equilibrium match does not exist in this case. �

Next suppose that xH has signalled to be of type xL, has thus met a type yL, but now

wants to renege on the signal. We will find below that xH has to let at least one round

of bargaining fail to actually convince yL of her true type. Here we ask whether reneging

could possibly make the deviation to a match with a lower type worthwhile. By considering

the hypothetical extreme case that yL instantly observes the true type xH , we obtain an

envelope result and thereby a negative answer:

Lemma 4 (Reneging in matches with lower types). Suppose types were instantly

observable in meetings. Consider a type xH who deviates from the putative equilibrium

situation and meets a type yL < xH .

a) If neither agent’s outside option is binding, the following stationary strategies will form

the unique SPE of the bargaining game and lead to agreement in the first round:

(i) for herself, agent xH always proposes

π∗(xH |yL) =
2r + η

2(r + η)

[
f(xH , yL) +

βδ

2r

[
f(xL, yL)− η

2r + η
f(xH , yH)

]]
+ β(r + δ)c

When yL proposes π(yL|xH), xH always accepts if and only if π(yL|xH) ≤ π∗(yL|xH).
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(ii) for herself, yL always proposes

π∗(yL|xH) =
2r + η

2(r + η)

[
f(xH , yL) +

βδ

2r

[
f(xH , yH)− η

2r + η
f(xL, yL)

]]
+ β(r + δ)c

When xH proposes π(xH |yL), yL always accepts if and only if π(xH |yL) ≤ π∗(xH |yL).

b) If only the outside option of yL binds, the shares in the unique SPE become

π∗(xH |yL) = f(xH , yL)− β

2
f(xL, yL) + β(r + δ)c

π∗(yL|xH) =
1

2r + η

[
2rf(xH , yL) + δβf(xH , yH) +

ηβ

2
f(xL, yL)

]
+ β(r + δ)c

c) Strict supermodularity of f(·, ·) is sufficient for any agent x ∈ Θ to strictly prefer the

equilibrium match to this deviation.

Proof. See appendix. �

Part a) of lemma 4 presents an expression for π∗(xH |yL) that is increasing in f(xL, yL)

and decreasing in f(xH , yH). This has nothing to do with outside options, as they were

assumed non-binding. Rather, it reflects that xH is less patient than yL, since bargaining

delay is more costly when one expects a share 1
2
f(xH , yH) eventually after a match break-

up than when one expects only 1
2
f(xL, yL). This tends to reduce π∗(xH |yL) and raise

π∗(yL|xH) (but does not drive any of our results). For the same reason, σ(xH |yL) turns

out to be slightly less than 1
2
f(xH , yL) (see the proof of part c)). The expression for

π∗(yL|xH) is interpreted analogously. The shares in part b) exhibit the pattern one would

expect, given that f(xL, yL) drives the binding outside option of yL. If, however, xH , yH ,

xL, and yL are all set equal in lemma 4, both expressions for π∗(xH |yL) will collapse into

that for π∗(x|y) in lemma 1, and likewise for π∗(yL|xH). Hence parts a) and b) of lemma

4 may be regarded as a generalisation of lemma 1 to an asymmetric case.

Crucially, part c) finds that even if xH could immediately convince yL of her true

type, xH would strictly prefer the equilibrium match, as she does when she would have

to imitate some lower type. Based on lemmas 3 and 4, we show below that higher types

never have an incentive to deviate from the putative equilibrium to matches with lower

types if f(·, ·) is supermodular, for any beliefs that lower types might hold about deviants.

In turn, whenever a deviant causes bargaining to fail, the other agent thus knows that she

faces a strictly lower type: for a weakly higher type, a deviation would be equilibrium-

dominated. Next recall from assumption 2 that in expectation the same time 1/η elapses

before another round of bargaining as before a meeting with a different agent. As we

consider only a single deviation, a different agent signals truthfully. When bargaining

fails due to a deviant, the other agent (whose type was observable from a truthful signal)

now prefers by lemma 4 to meet a different agent: she simply chooses her equilibrium
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match rather than a match with some strictly lower type after the same expected delay.9

As this insight is central to our argument, we formally prove it:

Lemma 5 (Equilibrium-dominated strategies). Let agents’ beliefs place probability

0 on the occurrence of equilibrium-dominated actions, let f(·, ·) be strictly supermodular,

and consider a meeting between some x and y in the putative equilibrium. If x deviates

such that bargaining fails, y will correctly believe to face a lower type and will choose to

walk away.

Proof. We first establish that any agent xH > x always prefers, for any beliefs of

yL ≤ xH , her equilibrium match to a deviation such that she meets a weakly lower type

with whom bargaining fails. For xH = yL, lemma 1 implies that xH would have preferred

reaching a bargaining agreement with yL. For xH > yL, we have to consider all possible

beliefs held by yL about the potential match output f(x, y) when bargaining fails:

(i) g(yL|hy) = f(xH , yL) so that yL believes to face the true type xH . By lemma 4, xH

strictly prefers her equilibrium match.

(ii) g(yL|hy) > f(xH , yL) so that yL overestimates potential match output and thus

believes to face a type even higher than xH . By the same argument as in the proof

of part c) of lemma 4, yL does not believe the outside option of xH to bind: if it

did, x would have had to pursue an equilibrium-dominated strategy. Observe that

both π∗(yL|xH) and f(xH , yL) − π∗(xH |yL) in lemma 4 are non-decreasing in xH ,

whether or not the outside option of yL binds. Hence yL demands weakly higher

shares than under (i). Because xH strictly prefers her equilibrium match under (i),

she still prefers her equilibrium match when yL is more demanding.

(iii) f(xH , yL) > g(yL|hy) > f(xL, yL) so that yL underestimates potential match output

but still believes to face a higher type. Note that f(xL, yL) is then a lower bound

for g(yL|hy). By lemma 3, xH strictly prefers her equilibrium match if yL believes

to face xL (and xH imitates xL to avoid bargaining failure). By the same arguments

as under (ii), if yL believes to face a higher type xH > xL, she will not believe the

outside option of xH to bind and will demand weakly higher shares. Then xH still

prefers her equilibrium match.

(iv) g(yL|hy) = f(xL, yL) so that yL believes to face the same type as her own type. By

lemma 3, xH strictly prefers her equilibrium match.

(v) g(yL|hy) < f(xL, yL) so that yL believes to face a lower type. As we consider a

unilateral deviation from the putative equilibrium by xH , yL has sent a truthful

9This logic will also apply if a deviation is only detected after the start of the match: it can only
be detected when agents’ initial bargaining agreement breaks down, so that there is no basis for further
production while agents wait for the new round of bargaining required for renegotiation.
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signal, so that her type has been disclosed to xH . By lemma 4, yL then strictly

prefers her equilibrium match to a match with xH who is perceived as a lower type.

Hence yL walks away to meet another agent, as the expected delay is the same.

Hence the deviation in question is equilibrium-dominated for weakly higher types than yL.

Now requiring that agents’ beliefs place probability 0 on the occurrence of equilibrium-

dominated actions, yL must believe to face a lower type when bargaining fails, g(yL|hy) <
f(xL, yL). By the argument under (v), yL thus walks away when bargaining fails. As we

supposed that yL ≤ xH , the entire reasoning applies to any y ∈ Θ. �

Let us turn to the incentive for lower types to deviate to a match with a higher type.

Without loss of generality, consider some agent with a type xL < x̄, so that higher types

necessarily exist. Now we want to compare being matched with an exactly corresponding

type yL = xL, as in the equilibrium match, to being matched with a higher type yH > xL.

The lower type xL has two possibilities: she can either perfectly imitate xH , or she can

signal to have type xH in order to meet yH but then renege on the signal. We have

just shown that, if xL reneges such that bargaining fails, yH will walk away and xL

does not gain from the deviation. Next note that, once signals have been observed, xL

cannot further influence the beliefs yH holds before bargaining begins. In particular,

should xL simply claim to have a still higher type, she would thereby claim to have

taken an equilibrium-dominated action (see lemma 5). Provided the beliefs of yH rule out

equilibrium-dominated actions, this claim will not be taken seriously. Should xL claim to

have a lower type, yH still will not have any reason to believe this:

Lemma 6 (Irrelevant communication). Any claims by agents to have a lower type

than signalled will not be credible if f(·, ·) is strictly supermodular.

Proof. See appendix. �

Hence, unless xL herself walks away (without gain from the deviation), she will have to

bargain under two constraints: yH believes to face a type xH and bargaining must not

fail. Now recall that these are exactly the constraints under which the bargaining strategy

of xH in the putative equilibrium is optimal (see lemma 1), so that xL cannot do better

than perfectly imitate xH : if she is more demanding than xH , bargaining will fail, and if

she is less demanding, she will not be optimising. When xL therefore perfectly imitates

xH , the expected flow utility for xL is

σ(xL|yH) =
1

2

[
f(xL, yH)− β

2
f(xH , yH) + β(r + δ)c

]
+

1

2

[
f(xL, yH)−

(
1− β

2

)
f(xH , yH)− β(r + δ)c

]
= f(xL, yH)− 1

2
f(xH , yH) (19)
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If xL moves first, she has to leave yH the second-mover share of f(xH , yH) to avoid being

found out and can thus take whatever is left of the actual output f(xL, yH). If yH moves

first, yH takes the first-mover share of f(xH , yH) for herself and xL obtains the actual

remainder. By contrast, the expected flow utility for xL from her equilibrium match

would be

σ(xL|yL) =
1

2
f(xL, yL) (20)

A comparison of σ(xL|yH) and σ(xL|yL) yields the following result:

Lemma 7 (Matches with higher types). In the putative equilibrium, strict super-

modularity of f(·, ·) is necessary and sufficient for any agent x ∈ Θ to strictly prefer the

equilibrium match to a match with a higher type in which she perfectly imitates the higher

type.

Proof. Any agent xL < x̄ will strictly prefer the equilibrium match to a match with a

higher type yH if W (xL|yL) > W (xL|yH), which is equivalent to

σ(xL|yL) > σ(xL|yH)

⇒ f(xH , yH)− f(xL, yH) > f(xL, yH)− f(xL, yL)

using equations (19) and (20). By equation (18), we can replace f(xL, yH) on the right-

hand side by f(xH , yL). Hence strict supermodularity is necessary and sufficient for this

equation to hold. Finally, for the type x̄, a higher type than in the equilibrium match

does not exist. �

We have thus identified conditions under which each agent x ∈ Θ strictly prefers her

equilibrium match to a deviation to any other match. Also recall that matching rates

are the same across marketplaces, so that matching rates do not reverse this preference.

Corollary 1 collects the implications of this section for agents’ signals and beliefs:

Corollary 1 (Truthful signals). Let agents’ beliefs place probability 0 on the occurrence

of equilibrium-dominated actions. Then strict supermodularity of f(·, ·) is necessary and

sufficient for each agent x ∈ Θ in the putative equilibrium to strictly prefer a truthful

signal x̃ = x. Given hx = {ỹ}, the only beliefs consistent with truthful signals are ψ(y|hx =

{ỹ}) = un(y|hx = {ỹ}) = 1 for all y = ỹ.

Proof. Choose and fix some arbitrary unmatched agent with a type x ∈ Θ and call

this exemplary type xE. Given the choices of marketplace and bargaining strategy in

the putative equilibrium, an agent of type xE matches with an agent of type yE = xE

at rate η unless there is a deviation. Further, types xE and yE also meet unless there

is a deviation. Hence, if xE does not deviate, but sends a truthful signal x̃E = xE, it
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must be that x̃E ∈ Rn for the chosen marketplace n. Given that agents meet exclu-

sively their own type in the putative equilibrium, |Rn| = 1. Then we have x̃′E 6∈ Rn

for any non-truthful signal x̃′E 6= xE. Hence xE has to signal truthfully to obtain her

equilibrium match. By lemmas 3 through 7, she will strictly prefer this match to any

other mutually acceptable match if f(·, ·) is supermodular and agents’ beliefs rule out

equilibrium-dominated actions. Because type xE was arbitrarily chosen, the reasoning

extends to any type x ∈ Θ. Finally, if all signals are truthful, then un(y|hx = {ỹ}) = 1 for

all y = ỹ, and agents’ beliefs can only be consistent if ψ(y|hx = {ỹ}) = 1 for all y = ỹ. �

In short, each agent x ∈ Θ finds it optimal to signal truthfully because this is the only

way to obtain her equilibrium match, which she prefers to a deviation. As all agents

therefore indeed signal truthfully, only beliefs that signals are truthful can be consistent

with equilibrium play.

In conclusion, this section has presented an extensive but essentially simple reasoning.

We found that higher types will never deviate from the putative equilibrium to match with

lower types if f(·, ·) is supermodular. An agent who detects a deviation should therefore

believe to face a lower type; when she can choose between continued bargaining with a

lower type and her equilibrium match, she prefers the latter. Lower types can thus only

match with higher types by imitating them, but they will not gain from such a deviation

if f(·, ·) is supermodular. Then each agent prefers not to deviate and consequently finds

it optimal to signal truthfully.

5.4 Marketplace choice and creation

In this section, we take it as given that signals are truthful and concentrate on the creation

of marketplaces and on agents’ optimal choice among them. Consider three types xL, xM ,

and xH , with x ≤ xL < xM < xH ≤ x̄ (while the argument generalises to all types).

Suppose these types search in the same marketplace, so that each of them can meet with

yL, yM , or yH . We know from lemma 4 that each xH would prefer a match with yH to a

match with yM or yL. Using the truthful signals, the agents of type xH can profitably set

up a new marketplace where Rn = {xH} so that agents of type xH exclusively meet each

other. In the initial marketplace, they would also meet other types although matches with

these types would be less desirable, which is not offset by any advantage in meeting rates.

By setting up an exclusive marketplace, the congestion externality imposed by these other

types is avoided (see Jacquet and Tan (2007) for details of this logic).

Given that signals are truthful, the remaining types xM and xL can no longer meet

with yH , as they would have to send a false signal to join the marketplace where yH can

be met. Among the possible matches, xM prefers by lemma 4 the match with yM , so that

all agents of type xM now set up an exclusive marketplace with Rn = {xM}, leaving the

initial marketplace to the agents of type xL. This logic applies to any marketplace with
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different types, so that all types have their own exclusive marketplaces in equilibrium.

(We will generalise this logic in section 6.3 to show that it does not only apply in the pu-

tative equilibrium, but always when signals are truthful.) There may be several exclusive

marketplaces for the same type in equilibrium (|N (x)| ≥ 1), as none of our conclusions

is affected by their exact number due to constant returns to scale in meeting. Formally,

each agent x thus optimally chooses a marketplace n ∈ N (x) and thereby obtains the

present value U(x) ≥ Un(x), ∀n. Given the optimal bargaining strategies in lemma 1,

every meeting in the putative equilibrium then leads to a match, as one would expect

when truthful signals allow agents to know everything in advance.

By way of summary, this subsection and the preceding have each shown a component

of the putative equilibrium situation to hold, given the other components. We thus found

the pointwise steady state in the PBE. Given a supermodular match production function

and beliefs that rule out equilibrium-dominated actions, agents seek to meet only exactly

corresponding types. All agents then signal their types truthfully and correctly believe

that all other agents signal truthfully. They match only with exactly corresponding types,

so that the resulting equilibrium matching of agents is PPAM. Our model thus leads to

PPAM under the same weak condition as in Becker’s (1973) frictionless model, despite

two kinds of search frictions. The next section discusses key properties of the separating

equilibrium.

6 Equilibrium properties

6.1 Efficiency

The separating equilibrium we have identified is efficient in a number of important re-

spects. First and foremost, search costs are minimised, both for each agent individually

and overall: in equilibrium, truthful signals allow each agent to ensure that no meeting is

wasted, but that every meeting she attends results in a match. Hence, whenever an agent

searches, she matches after an expected search time of 1/η. This is the minimum delay

because a meeting necessarily precedes a match. In a random search model, each match

would typically be preceded by a number of unsuccessful meetings, and only by chance

will the first meeting of an agent result in a match. Therefore, search costs in random

search models are at least as high from the individual perspective as in our model with

truthful signals, and strictly higher in expectation as well as on aggregate. Second, note

that all agents match in equilibrium so that there is no unrealised surplus left in the form

of agents who never match. On the contrary, Becker (1973) proved the following result:

Corollary 2 (Output efficiency). If the match production function is strictly super-

modular, PPAM will maximise aggregate output.

Proof. See appendix. �
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Random search models, be it with or without supermodularity of the match production

function, do in general not maximise aggregate match output, as they lead to a certain

degree of mismatch instead of PPAM. Finally, among the mutually acceptable matches,

agents in the equilibrium we found always obtain the match they most prefer. This again

contrasts starkly with random search models, where the match an agent expects is the

expectation over the mutually acceptable matches, not the most preferred one of them.

6.2 Stability

In this section, we examine whether the equilibrium matching we found is a stable match-

ing. Because this equilibrium is symmetric, our notation can abstract from the distinction

between types and individual agents without loss of generality. Suffice to let σ(x) denote

the expected flow utility that an agent of type x obtains under a particular matching.

Recall that σ(x) = σ(x|y) if x and y are matched in this matching and σ(x) = 0 if x

remains unmatched. We can then define stability in a symmetric equilibrium as follows:

Definition 4 (Stable matching). A matching is stable if σ(x) satisfies σ(x) ≥ 0 for all

x ∈ Θ and there is no match between any agents with types x and y such that σ(x|y) > σ(x)

and σ(y|x) > σ(y).

Becker (1973) instead used the concept of the core in his seminal work. In words, the core

is the set of matchings such that no legal coalition of agents can ensure more flow utility

for all its members than obtained in the matching (see e.g. the definition in Telser (1978)).

However, if only the sum of utility obtained by the coalition counts, the possibility of side

payments within the coalition is implicitly assumed. Side payments are crucial in Becker’s

(1973) reasoning: an individual agent then always prefers, among all matches available to

her, the match generating the highest match output, since her partner in this match will

use the extra output to outbid any other potential match partners. Yet where output is

divided through bargaining, an agent’s share in the match generating the highest output

may fall short of her share in another match.

We would thus have to modify the definition of the core to ensure that each agent’s

σ(x) weakly exceeds the utility she obtains in any legal coalition available to her. In

our model, legal coalitions always have one or two members. Then a modified definition

reduces to two requirements: σ(x) has to weakly exceed the utility of being single, and

no match is available to x in which she obtains strictly more than σ(x). When agents go

to perfectly segmented marketplaces, we can identify a match that is available to x with

a match where the match partner is better off than in any other available match. Then

these requirements coincide with those in definition 4.

A proof that PPAM is a stable matching would thus also prove that it is a matching

in the core of our model. We find that supermodularity of the match production function

is a sufficient condition here for PPAM to be a stable matching:
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Corollary 3 (Stability of PPAM). Whenever it exists, the separating equilibrium de-

scribed by the putative equilibrium leads to a stable matching.

Proof. Recall that the separating equilibrium above exists provided f(·, ·) is strictly

supermodular and that it leads to PPAM. Now suppose that PPAM is not a stable match-

ing. Then there must be a match between unequal types that is preferred by both types

to matches with exactly corresponding types. However, given strict supermodularity of

f(·, ·), matching with a lower type is an equilibrium-dominated action for the higher type

in any match between unequal types, by the proof of lemma 5. Hence the higher type

would then always prefer a match with an exactly corresponding type, so that a match

between unequal types that is preferred by both does not exist. Finally, lemma 1 implies

together with assumption 1 that σ(x) ≥ 0 ∀x ∈ Θ under PPAM. �

A stable matching is a most unusual result in a model with search frictions. In random

search models, agents cannot search selectively and might thus be matched with any type

from a certain range of types. Of course, many of these types are only accepted because

search frictions make continued search undesirable. A stable matching cannot be expected

to arise under such circumstances and is very unlikely to arise by chance whenever the

number of different types is not trivially small. Stable matchings normally only arise

in frictionless models. We attribute the reason that a stable matching is achieved here

despite search frictions to the signals: they allow agents to pursue their search almost as

if there were no search frictions.

Adachi (2003) shows for a fairly general search model that the set of equilibria will

reduce to the set of stable matchings in a model à la Gale and Shapley (1962) if search

frictions become negligible. Our result in this section qualifies this finding in so far as

search frictions remain in our model because agents do not meet immediately (η <∞) and

incur costs from meetings (c ≥ 0), and yet a stable matching results. This suggests that

frictions do not prevent a stable matching in a search model as long as they do not keep

agents from meeting only specifically chosen types. Intuitively, arbitrarily high frictions

do not have any effect when agents find ways to match like in a frictionless environment.

If search costs are only incurred at the end of an otherwise costless search process, the

matching will be as in the absence of any costs, provided agents still participate.

6.3 Uniqueness

While we have shown that a particular separating equilibrium exists, this section argues

that it is unique. By its very nature, a separating equilibrium is characterised by truth-

ful signals.10 In section 5.4, truthful signals lead to marketplaces where agents meet

10We ignore separating equilibria where signals are not truthful yet still informative because they are
linked by a one-to-one mapping to agents’ true types, and this mapping forms the basis of agents’ correct
beliefs. Such equilibria would only be variants of equilibria with truthful signals.
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exclusively their own type. This result generalises:

Lemma 8 (Market segmentation). Agents will meet only their own type in any sepa-

rating equilibrium if f(·, ·) is strictly supermodular.

Proof. Suppose there is at least one marketplace n =M in which, with truthful signals,

agents do not only meet their own type, so that two or more types meet. Focus on the

lowest type yL in M. This type must be the most preferred feasible type of some higher

type xH > yL in M, otherwise the higher types would exclude yL from M to reduce

congestion.

We will show that such a marketplaceM cannot exist in a separating equilibrium. When

xH and yL bargain, V (xH |yL) ≥ U(xH) because xH most prefers yL and continued bar-

gaining guarantees a meeting with yL at rate η. While U(yL) is unknown, yL could choose

in any separating equilibrium to meet only agents of her own type on an exclusive market-

place n = L. As part of a separating equilibrium, the situation in L would correspond to

the putative equilibrium situation, and because of the symmetry when yL and xL bargain

in L,

π∗(xL|yL) = π∗(yL|xL) ⇒ σ(yL|xL) =
1

2
f(xL, yL)

independently of outside options. As L is always an option for yL, the payoff yL would

obtain there constitutes a lower bound for U(yL), denoted U(yL). With equation (8), it

is found as

rU(yL) = β

[
1

2
f(xL, yL)− (r + δ)c

]
Next observe that xH cannot do better in a match with yL than to leave yL only with the

payoff U(yL) in expectation, so that the payoff to xH in this case constitutes an upper

bound W (xH |yL). Now suppose that an agent of type yH = xH sets up an exclusive

marketplace n = H for her type. If this creates a profitable deviation for xH who currently

most prefers yL, the supposed marketplaceM cannot exist in equilibrium. The symmetry

in H would lead to

π∗(xH |yH) = π∗(yH |xH) ⇒ σ(xH |yH) =
1

2
f(xH , yH)

again as in the putative equilibrium situation. As an envelope case, suppose xH obtains

W (xH |yL) in a match with yL in M and now faces the choice between this match and a

match with yH in H. Part c) of lemma 4 applies to this choice (with U(yL) = U(yL)) and

establishes a strict preference for the match with yH over the match with yL. As xH meets

yH at rate η and yL at most at rate η, this preference also translates into a strict prefer-

ence for marketplace H. Hence xH has a profitable deviation from M to H even when

W (xH |yL) is obtained inM. By the same reasoning, yH also gains from setting up H. �

Since agents only meet their own type in any separating equilibrium, they can only match
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with their own type. Therefore, PPAM is the unique matching that may result in any

separating equilibrium of our model. We can now conclude more comprehensively:

Proposition 2 (Uniqueness). Whenever it exists, the separating equilibrium described

by the putative equilibrium is unique up to off-equilibrium beliefs.

No formal proof is needed, as this follows from our earlier results. We know from lemma

8 that any separating equilibrium would have to lead to PPAM, so that other separating

equilibria would have to differ in agents’ signals, their beliefs, their choice of marketplace,

their bargaining strategy, or in the steady state. However, there is only one way for each

agent to signal truthfully. When signals are truthful, lemma 8 means that choosing a

marketplace n ∈ N (x), as in section 5.4, is the uniquely optimal choice rule for x. Section

5.1 identified the unique bargaining SPE in this context. Then only one specification of

beliefs about equilibrium actions will be compatible with these choices.

Finally, as the bargaining SPE ensures agreement in the first round of bargaining,

κ(x) = 0, for all x ∈ Θ and in any separating equilibrium. Since this agreement to

match is reached with an agent of the same type, assumption 3 is sufficient to ensure

participation of all types, as shown in section 5.2. Hence also ν(x) = 0, ∀x ∈ Θ, so that

equation (14) applies to the steady state and determines a unique mass for the matched

and for the unmatched agents of each type. Hence, separating equilibria other than the

putative equilibrium can only differ in beliefs about off-equilibrium actions.

7 Discussion

7.1 The role of supermodularity and private information

Let us clarify why supermodularity is central to our results. Since types are only privately

observable and nothing keeps agents from imitating other types, an agent may match

incognito with any type she likes. However, because actual match output then differs

from the match output suggested by the signals, the deviant will only remain incognito

if she bears the necessary adjustment: she has to give up as much of her own share as is

necessary to bridge the gap when actual output is lower (otherwise bargaining fails and

the other agent walks out), and she quietly pockets the excess output when actual output

is higher. To explain why a lower type xL would then not match incognito with a higher

type yH > xL, supermodularity is key: f(xH , yH)− f(xL, yH) is the necessary adjustment

when yH otherwise matches with xH in equilibrium, while f(xL, yH) − f(xL, yL) is the

extra output produced in comparison to the equilibrium match of xL. With f(xL, yH) =

f(xH , yL) in the latter, as established by equation (18), the necessary adjustment will

exceed the extra output if f(·, ·) is strictly supermodular. From the perspective of a lower

type, any possible gains from higher output with a higher type are therefore more than

outweighed by the costs from adjustment.
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It is crucial for this argument that the necessary adjustment falls entirely on the

deviant xL. This happens when the treatment xL faces is independent of her actual type.

Therefore, our results are obtained under the realistic assumption that true types are

always only privately observable. With publicly observable types, yH would be willing to

compromise when she bargains with a deviant xL, in order to avoid bargaining failure.

Yet under private information, yH instead bases her bargaining behaviour on the signal

sent by xL, which creates a link between signals and payoffs. Now given that xL has to

signal like a type xH in order to meet yH at all, she will be treated exactly like a type

xH at least in the first round of bargaining (and as failure of this round is bad news, a

second round never happens). This way, the supermodularity of the match production

function fully translates into supermodularity of the payoffs that determine signal choice.

In effect, supermodularity assumes the role of a single-crossing property in our model and

we thus obtain a fully separating equilibrium even though signals are costless. Separation

is therefore not driven by differences in the cost of signals, but by differences in marginal

productivity of the same agent over different matches.

7.2 Implications for recruitment and market design

Sorting in the separating PBE is driven by a logic apparently new to the literature. In

intuitive terms, agents are effectively bound by their signal, so that a low type can only

choose between “being herself” in a match with an equally low type and behaving like

a high type in a match with a high type. The most desirable option, “being herself”

in a match with a high type, is not available. When behaving like a high type implies

disproportionate sacrifices due to supermodularity, low types prefer matches with equally

low types.

To put this into a real-world labour market context, suppose a low-skilled worker faces

the choice between working at McDonalds and working at McKinsey. While McKinsey

would presumably pay a significantly higher wage, the low-skilled worker would have

to perform at McKinsey like her high-skilled colleagues. It is easy to imagine that the

sheer effort and the extra hours needed to reach this performance outweigh the benefit

of a higher salary, so that the low-skilled worker actually prefers working at McDonalds.

Whenever this is the case, McKinsey does not even have to check whether applications

are truthful, but would still meet only those who claim to be high-skilled. Indeed, this

seemingly paradoxical behaviour that our model rationalises appears to be widespread in

recruiting.

While lies in applications and job advertisements are certainly more frequent in prac-

tice than in the separating PBE, they seem much less frequent than one might think,

given how easy it is to lie in applications and job advertisements. This suggests that most

real-world agents consciously choose not to lie and thus do behave as in the separating

PBE. It also makes sense in practice to dismiss applicants who are known to have lied in
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their application: firstly, it is very likely that such applicants are underqualified rather

than overqualified. Secondly, as our model suggests, it appears easier to find a replace-

ment rather than to disentangle lies from truth for such applicants, thereby determine

their actual qualifications, and then adjust the job requirements to fit these qualifications.

Our analysis also offers insights for policy, specifically for market design. A policy

maker who wishes to obtain sorting in a matching market would often be unable to

determine agents’ true types, so that the policy maker cannot check which types join

a given marketplace. Yet our findings imply that officially designating a marketplace

for a specific type may suffice, as entering this marketplace then becomes a signal. In

fact, our entire model could be recast such that agents are only asked to declare their

type before entry to a marketplace, and are only granted entry if they declare the type

that the marketplace is designated for. If agents on the marketplace bargain and types

are sufficiently complementary, one can expect their declarations to be accurate, and

agents will then quickly find corresponding match partners. For example, consider again a

labour market context: if highly productive workers are better placed at highly productive

firms, one can achieve both a more efficient sorting and lower unemployment by creating

marketplaces that are limited to agents who self-declare as a certain type.

8 Conclusions

This paper has introduced costless signals into a search model with transferable utility.

We find a unique separating equilibrium characterised by perfect positive assortative

matching, minimised search duration and search costs, and maximised overall match

output. These efficiency benchmarks are virtually never met by random search models

because frictions lead to lengthy search and to some mismatch. In our model, signals allow

agents to avoid this, so that signals largely offset the effect of frictions on efficiency. The

role of signals reflects the pervasive use of effective communication in real-world matching

markets that facilitates search.

Positive assortative matching in the separating equilibrium only requires supermodu-

larity of the match production function, i.e. the same condition as in a frictionless model.

Supermodularity simultaneously ensures enough complementarity for sorting and replaces

a single-crossing condition that is normally needed for truthful signals. Our model thereby

proposes a solution to the paradox in Shimer and Smith (2000): supermodularity as such

is unambiguously a weaker condition than the conditions they identified. In fact, our par-

ticularly mild condition does not merely ensure positive assortative matching, but even

perfect positive assortative matching. To the best of our knowledge, ours is the only

model that generates perfect sorting despite discounting or explicit search costs.

We conclude that positive assortative matching as an empirical regularity can be

replicated by search models under plausible conditions. This is demonstrated by the model

in this paper for the most extreme form of sorting; less pronounced sorting can presumably
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be obtained by adding noise to various elements of the model. Compared to models with

random search, a model with more information in the search process thus appears to

generate sorting more easily. We have found this for the realistic case that agents control

the additional information flows and may manipulate them strategically. Our results

would therefore explain why sorting is much more frequent across many different real-

world matching markets than one would expect, given the findings in previous models.

Sorting is likely to become more important as technological and societal progress

favours specialisation. At the same time, many new means have appeared of effective

and rapid communication that might, as in our paper, support sorting. Such means

of communication and the greater availability of information may therefore be expected

to increase efficiency, but also to deepen segregation. In any case, the interaction of

specialisation and communication offers ample scope for further research.

A Omitted proofs

Proof of lemma 1. Equations (9) and (10) uniquely determine equilibrium, as follows.

Whenever y moves first, her optimisation problem is

maxπ(y|x) s.t. WO(x|y) ≥ max[V (x|y), U(x)]

With V (x|y) = U(x), the constraint becomes WO(x|y) − U(x) ≥ 0. When match output is

f(x, y) and y takes π(y|x) for herself, f(x, y)− π(y|x) would be left for x. Therefore,

rWO(x|y) = f(x, y)− π(y|x)− δ[WO(x|y)− U(x)]

Solving this for WO(x|y), we find that WO(x|y)− U(x) ≥ 0 if and only if

f(x, y)− π(y|x)− rU(x) ≥ 0 (21)

After substituting for rU(x) and then for σ(x|y) from equations (8) and (7), respectively,

[f(x, y)− π(y|x)]φ ≥ π(x|y)− 2(r + δ)c (22)

where φ = (1 − β
2 )/β2 . As y raises π(y|x) the left-hand side of equation (22) linearly falls,

while the right-hand side stays constant. Hence this constraint will hold with equality for the

equilibrium value of π(y|x). When x moves first, the constraint is analogously found as

[f(x, y)− π(x|y)]φ ≥ π(y|x)− 2(r + δ)c (23)

As binding constraints, equations (22) and (23) are two equations in two unknowns, so that they

determine a unique equilibrium. By the symmetry of these equations, we infer π(x|y) = π(y|x).
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When we make this substitution in either equation and solve for π(y|x), we obtain

π(y|x) =
φ

1 + φ
f(x, y) +

2

1 + φ
(r + δ)c =

(
1− β

2

)
f(x, y) + β(r + δ)c

which also equals π(x|y). Because both first-mover shares have been derived under the constraint

that the second mover accepts, agreement is reached in the first round of bargaining. Finally,

subgame perfection as in Rubinstein (1982) holds because present values such as V (x|y) and

U(x) incorporate optimising behaviour in every later subgame. �

Proof of lemma 4, part a). Agents xH and yL would respectively accept if

WO(xH |yL) ≥ max[V (xH |yL), U(xH)], WO(yL|xH) ≥ max[V (yL|xH), U(yL)]

If outside options are not binding and yL moves first, she will maximise π(yL|xH) subject to

WO(xH |yL) ≥ V (xH |yL). As players revert to the putative equilibrium after a match break-up,

rWO(xH |yL) = f(xH , yL)− π(yL|xH)− δ
[
WO(xH |yL)− U(xH)

]
(24)

while W (xH |yL) and V (xH |yL) are determined by

rW (xH |yL) = σ(xH |yL)− δ [W (xH |yL)− U(xH)] (25)

rV (xH |yL) = η[W (xH |yL)− c− V (xH |yL)] (26)

Use equation (25) to substitute for W (xH |yL) in equation (26) and solve for V (xH |yL). After

also solving (24) for WO(xH |yL), we can rewrite WO(xH |yL) ≥ V (xH |yL) as

f(xH , yL)− π(yL|xH) + δU(xH) ≥ η

r + η
[σ(xH |yL) + δU(xH)− (r + δ)c] (27)

With σ(xH |yL) defined in analogy to equation (7), equation (27) becomes

(2r + η) [f(xH , yL)− π(yL|xH)] ≥ ηπ(xH |yL)− 2 [δrU(xH) + η(r + δ)c] (28)

after collecting terms. Using the results from lemma 1 in equation (8),

rU(xH) = β

[
1

2
f(xH , yH)− (r + δ)c

]
(29)

Thus substituting for rU(xH) in equation (28), we obtain

(2r + η) [f(xH , yL)− π(yL|xH)] ≥ ηπ(xH |yL)− β [δf(xH , yH) + 2(r + η)(r + δ)c] (30)

As before, the left-hand side of equation (30) linearly falls as yL raises π(yL|xH), while the right-

hand side stays constant. This constraint will therefore hold with equality. The same applies to

the analogous constraint for the case that xH moves first:

(2r + η) [f(xH , yL)− π(xH |yL)] ≥ ηπ(yL|xH)− β [δf(xL, yL) + 2(r + η)(r + δ)c] (31)
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As a system of two binding constraints in two unknowns, equations (30) and (31) then deter-

mine a unique equilibrium. Solving them simultaneously, one obtains the expressions given for

π∗(xH |yL) and π∗(yL|xH) in lemma 4. The equilibrium is subgame-perfect because the present

values incorporate optimising behaviour in following subgames. �

Proof of lemma 4, part b). The proof is very similar to that for part a) and we thus focus

on the differences. With a binding outside option, yL would accept if WO(yL|xH) ≥ U(yL), i.e.

f(xH , yL)− π(xH |yL)− rU(yL) ≥ 0 (32)

as in equation (21). This will hold with equality by the same logic as before. The other

constraint WO(xH |yL) ≥ V (xH |yL) leads as in part a) to equation (28), which will likewise hold

with equality. Solve equation (32) for π(xH |yL), substitute in equation (28), and solve it for

π(yL|xH) to arrive at

π(yL|xH) =
1

2r + η
[2rf(xH , yL) + ηrU(yL) + 2[δrU(xH) + η(r + δ)c]]

Substituting for rU(xH) from equation (29) and analogously for rU(yL), the expression given

for π∗(yL|xH) in part b) of the lemma results. The expression for π∗(xH |yL) is obtained directly

from equation (32) after substituting for rU(yL). �

Proof of lemma 4, part c). We want to prove that some xH > x will strictly prefer the

equilibrium match to a match with a type yL < xH when the true type xH is observed before

bargaining begins. First suppose the outside option of xH binds, V (xH |yL) < U(xH), with

V (xH |yL) and U(xH) determined by

rV (xH |yL) = η[W (xH |yL)− c− V (xH |yL)], rU(xH) = η[W (xH |yH)− c− U(xH)] (33)

Solving equation (33) respectively for V (xH |yL) and U(xH), we obtain

V (xH |yL) =
η[W (xH |yL)− c]

r + η
, U(xH) =

η[W (xH |yH)− c]
r + η

(34)

so that V (xH |yL) < U(xH) if and only if W (xH |yL) < W (xH |yH). Hence xH strictly prefers her

equilibrium match whenever her outside option binds. Therefore suppose instead that neither

agent’s outside option binds, so that the results from part a) apply. Then

σ(xH |yL) =
1

2
π∗(xH |yL) +

1

2
[f(xH , yL)− π∗(yL|xH)]

=
1

2

[
f(xH , yL) +

βδ

2r
[f(xL, yL)− f(xH , yH)]

]
Recalling that σ(xH |yH) = 1

2f(xH , yH), we will thus have σ(xH |yH) > σ(xH |yL) if

f(xH , yH) > f(xH , yL) +
βδ

2r
[f(xL, yL)− f(xH , yH)]
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which holds because f(xH , yH) > f(xH , yL) and f(xL, yL) − f(xH , yH) < 0. We conclude that

xH strictly prefers her equilibrium match when neither outside option binds. In the final case

to consider, only the outside option of yL binds, so that the results in part b) apply. Then

σ(xH |yL) =
r + η

2r + η

[
f(xH , yL)− β

2

[
δ

r + η
f(xH , yH) + f(xL, yL)

]]
We will thus have σ(xH |yH) > σ(xH |yL) if, after collecting terms in f(xH , yH),

f(xH , yH) >
2(r + η)

2r + η + δβ

[
f(xH , yL)− β

2
f(xL, yL)

]
Now subtracting f(xH , yL) from both sides gives

f(xH , yH)− f(xH , yL) >
η − δβ

2r + η + δβ
f(xH , yL)− β(r + η)

2r + η + δβ
f(xL, yL)

⇔ f(xH , yH)− f(xH , yL) >
β(r + η)

2r + η + δβ
[f(xH , yL)− f(xL, yL)]

since η− δβ = β(r+η). With the substitution f(xH , yL) = f(xL, yH) on the left-hand side only,

this equation will hold by strict supermodularity of f(·, ·) if

β(r + η) ≤ 2r + η + δβ ⇔ η(r + η) ≤ η(r + η) + 2[ηδ + r(r + δ + η)]

which holds because ηδ + r(r + δ + η) > 0. Hence, if f(·, ·) is strictly supermodular, xH will

strictly prefer her equilibrium match also when only the outside option of yL binds. �

Proof of lemma 6. We have to show that an agent who does not have a lower type than

yH also has an incentive to make such claims. In particular, consider an agent of type xH = yH

with whom yH matches in the putative equilibrium. Suppose yH believes this agent’s claim to

be of type xL < yH , so that bargaining proceeds as in a meeting between xL and yH under

full information. Recall from lemma 4 c) that W (yH |xL) < W (yH |xH) if f(·, ·) is strictly

supermodular. Then an analogy to equation (34) implies V (yH |xL) < U(yH), so that the

outside option of yH is binding. However, while assuming supermodularity of f(·, ·) keeps the

proof short, this is not a necessary condition. Hence yH accepts if WO(yH |xL) ≥ U(yH), i.e.

f(xL, yH)− π(xL|yH)− rU(yH) ≥ 0 (35)

as in equation (21). As before, this will hold with equality, and after substituting for rU(yH) in

analogy to equation (29),

π∗(xL|yH) = f(xL, yH)− β

2
f(xH , yH) + β(r + δ)c

The outside option of xL cannot bind, as an analogy to equation (34) implies that xL then would

not have deviated. Hence yH can expect that xL accepts if WO(xL|yH) ≥ V (xL|yH), where

rWO(xL|yH) = f(xL, yH)− π(yH |xL)− δ
[
WO(xL|yH)− U(xL)

]
(36)
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while W (xL|yH) and V (xL|yH) are determined by

rW (xL|yH) = σ(xL|yH)− δ [W (xL|yH)− U(xL)]

rV (xL|yH) = η[W (xL|yH)− c− V (xL|yH)]

Then follow the same steps as in the proof of lemma 4 a) to obtain an analogy of equation (30):

(2r + η) [f(xL, yH)− π(yH |xL)] ≥ ηπ(xL|yH)− β [δf(xL, yL) + 2(r + η)(r + δ)c]

which will hold with equality as before. Using the result for π∗(xL|yH),

π∗(yH |xL) =
1

2r + η

[
2rf(xL, yH) + δβf(xL, yL) +

ηβ

2
f(xH , yH)

]
+ β(r + δ)c

Now if xH claims to be xL and then bargains like xL, the expected share σ′(xH |yH) is

1

2

[
f(xH , yH)− β

2
f(xH , yH) + β(r + δ)c

]
+

1

2

[
f(xH , yH)− 1

2r + η

[
2rf(xL, yH) + δβf(xL, yL) +

ηβ

2
f(xH , yH)

]
− β(r + δ)c

]
= f(xH , yH)− 1

2r + η

[
β

2
(r + η)f(xH , yH) + rf(xL, yH) +

δβ

2
f(xL, yL)

]
by the same logic that leads to equation (15). Then xH gains from a false claim to be xL if

σ(xH |yH) < σ′(xH |yH), which requires

1

2
f(xH , yH) < f(xH , yH)− 1

2r + η

[
β

2
(r + η)f(xH , yH) + rf(xL, yH) +

δβ

2
f(xL, yL)

]
⇔ 2rf(xL, yH) + δβf(xL, yL) < (2r + η − β(r + η))f(xH , yH)

Noting that 2r+ η− β(r+ η) = 2r+ δβ, this inequality holds because f(xH , yH) > f(xL, yH) >

f(xL, yL). Hence agent xH has an incentive to downplay her type in order to make yH propose

and accept lower shares for herself. �

Proof of corollary 2. The proof given in Becker (1973) applies to our set-up and we

essentially repeat it here. Let f(·, ·) be strictly supermodular and index the types x ∈ Θ by

1, 2, . . . I such that x1 < x2 < . . . < xI . If PPAM maximises aggregate output, then

I∑
j=1

f(xj , yij ) <
I∑
i=1

f(xi, yi) for all permutations (i1, i2, . . . iI) 6= (1, 2, . . . I)

Suppose to the contrary that aggregate output is maximised by some permutation i1, i2, . . . iI

for which i1 < i2 < . . . < iI does not hold. Then the permutation includes at least one j0 such

that ij0 > ij0+1. By strict supermodularity of f(·, ·),

f(xj0+1, yij0 )− f(xj0 , yij0 ) > f(xj0+1, yij0+1)− f(xj0 , yij0+1)
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because xj0+1 > xj0 while yij0 > yij0+1 . After rewriting this as

f(xj0 , yij0+1) + f(xj0+1, yij0 ) > f(xj0 , yij0 ) + f(xj0+1, yij0+1)

the left-hand side represents the match production under PPAM, while the right-hand side

represents the match production under the permutation i1, i2, . . . iI . As the former exceeds the

latter, the permutation i1, i2, . . . iI does not maximise aggregate output. �
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