Konrad, Kai A.; Ke, Changxia; Morath, Florian

Conference Paper

Brothers in Arms - An Experiment on the Alliance Puzzle

Provided in Cooperation with:
Verein für Socialpolitik / German Economic Association

This Version is available at:
http://hdl.handle.net/10419/62038

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Brothers in Arms - An Experiment on the Alliance Puzzle

Changxia Ke*, Kai A. Konrad† and Florian Morath‡

29th February 2012

Abstract

The generic alliance game considers players in an alliance who fight against an external enemy. After victory, the alliance may break up, and its members fight against each other about the spoils of the victory. Our experimental analysis of this game shows: In-group solidarity vanishes after the break-up of the alliance. Former ‘brothers in arms’ fight even more vigorously against each other than strangers do. Further, this vigorous internal fighting is anticipated and reduces the ability of the alliance to mobilize joint fighting effort, compared to a situation in which victorious alliance members share equally and peacefully.

Keywords: Alliance, Conflict, Contest, Free-riding, Hold-up problem, In-group solidarity.

JEL classification code: D72, D74

*Corresponding author. Max Planck Institute for Tax Law and Public Finance, Munich, changxia.ke@tax.mpg.de.
†Max Planck Institute for Tax Law and Public Finance, Munich, and Social Science Research Center Berlin, kai.konrad@tax.mpg.de.
‡Max Planck Institute for Tax Law and Public Finance, and Columbia University, florian.morath@tax.mpg.de.
1 Introduction

Alliances are an important and widespread phenomenon in conflict. Psychologists emphasize the importance of fighting in an alliance. Baumeister and Leary (1995, p.499), for instance, argue that there is a “severe competitive disadvantage of the lone individual confronting a group” and that, “when other people are in groups, it is vital to belong to a group oneself”. Other researchers emphasize the importance of group spirit; Campbell (1965, p.293) considers “the willingness to risk death for group causes” as one of the “things which makes lethal war possible”. Work on alliances by Sherif et al. (1961) reveals the importance of the rival, or out-group, for the emergence of in-group solidarity and out-group hostility. Cohesion among brothers in arms is possibly generated by the common enemy or ‘threat’.

In contrast, narrow rational choice reasoning hints at two major disadvantages for the members of an alliance. First, in the competition between the alliance and its adversaries, the members of the alliance face a free-rider problem, as their contributions to the fighting effort in the inter-alliance competition are to some extent contributions to a public good (Olson and Zeckhauser 1966). The members of an alliance - the ‘brothers in arms’ - all benefit from a higher collective fighting effort of their alliance. But each member should prefer the additional effort to be expended by other members of his group. The members of an alliance also face a second strategic problem: if the alliance is victorious, they may quarrel about dividing the spoils of victory. The effort expended in this internal distributional conflict reduces the value they attribute to winning this prize. This should further discourage alliance members at the stage when they decide about their contribution.

1 See, e.g., Wilkins (2006) for a discussion of the ‘realist’ and the ‘pluralist’ theory in the context of the Normandy Campaign 1944.

to the inter-alliance conflict.³ These considerations may be summarized as
the "alliance puzzle": on the one hand, to be in an alliance is vital on some
accounts, but on the other hand, alliances face strategic disadvantages that
actually weaken the alliance members' position in the conflict, compared to
stand-alone players.

Both psychological effects and rational choice considerations may be at
work. Empirically, the formation and resolution of alliances is a dynamic
phenomenon, and each cause of conflict is full of idiosyncrasies. This makes
it difficult to distinguish these effects and to measure their size empirically.
The experimental laboratory, with its controlled environment, allows us to
separate the different effects. International military alliances have many
complex features, which lead to further relevant questions, ranging from the
process of forming and dissolving alliances to the timing of alliance forma-
tion. These and many other aspects will, on purpose, not play a role in the
experimental framework, and what seemingly is a weakness of the approach
is in fact its main strength. Accounting for all these issues blurs the picture
and generally causes considerable data problems. In the experiment, it is
possible to remove the endogeneity problem and to detach a single conflict
from the larger course of history, allowing us to concentrate on the strategic
aspects that remain in our more narrowly defined framework.

We ask two main questions. First, we address the role of internal fighting
for the contributions to alliance effort. Taking into account that future redis-
tributional conflict within a victorious alliance reduces the value of winning,
how important is the prospect of future redistributional conflict for how much
alliance members contribute to the alliance effort? Does this future intra-
alliance conflict among the members of a victorious alliance discourage its
members from making effort contributions in the conflict between the alli-
ance and its adversary, compared to a situation in which they must peacefully

³See Katz and Tokatlıdu (1996), Esteban and Sákovics (2003), Müller and Wärneryd
share the prize of victory? Second, we address the psychological effect of in-group and between-group dynamics. We ask: how does the alliance members’ experience of successfully fighting ‘shoulder-to-shoulder’ affect their willingness to turn against each other when they have to solve the distributional conflict between them? There is strong evidence showing in-group favoritism inside alliances, particularly if they are threatened by an enemy. But does this mutual favoritism survive once the external enemy has been defeated, or does it disappear with the disappearance of the purpose that established the alliance?

In the experimental set-up, we study a contest between an alliance - consisting of two players - and a single player. Alliance players and the single player expend efforts trying to win a reward or prize of a given size. If the single player wins, he takes the prize and the game ends. If the alliance wins, the alliance players need to share this prize. We consider two different - exogenously imposed - regimes that differ in the rules of how the prize is allocated among the members of the alliance. In one regime, the alliance members must split the gains from winning evenly. In this regime, alliance players face only a free-riding problem. In a second regime, the members of an alliance that wins the prize have to fight about how to distribute the gains from winning between them. Here, in addition to the free-riding problem, alliance members face a hold-up problem: if they win they enter into a costly internal fight. The comparison of these two regimes yields an answer to the first of the key questions: do brothers in arms behave differently in inter-alliance contest if there is future internal fighting among the members of a victorious alliance? The second key question compares contest efforts in two situations: (i) efforts of players who have been together in a winning alliance and now fight internally in the redistributional conflict, and (ii) efforts of players who have not previously been together in an alliance, but fight in a two-player contest about a prize of the same size. This comparison provides

4See, e.g., Bernhard et al. (2006), Brewer (1979), and Sherif et al. (1961).
insights about whether in-group solidarity arising inside the alliance in the process of fighting against an external enemy survives the defeat of the enemy. Our results are mostly in line with the rational choice theory of alliances, and we do not find strong evidence in support of the survival of in-group solidarity. First, compared to an alliance in which the spoils of victory are peacefully and evenly shared, alliance members contribute less to total alliance effort if the members of a victorious alliance face a wasteful distributational conflict within the group. This behavior is in line with the predictions of the subgame-perfect equilibrium of players who care about their monetary payoff: alliance members who anticipate the strategic problem of intra-alliance fighting should expend less resources in the inter-alliance contest, because the dissipative internal conflict reduces the expected value of winning the inter-alliance contest. Second, we find no evidence that the experience of fighting ‘shoulder-to-shoulder’ in an alliance against a joint enemy reduces the alliance members’ mutual hostility when it comes to dividing the spoils of victory. Despite the empirical findings about the formation of minimal groups and in-group favoritism within such groups in the presence of an out-group,\(^5\) such in-group solidarity seemingly breaks down as soon as the joint enemy is defeated. If anything, former allies fight each other even more vigorously than contestants without joint history.

The different effects which we isolate and quantify in the laboratory can be illustrated by anecdotal evidence for wars. Apart from discussions of free-riding and strategies of burden shifting among allies\(^6\), many writers emphasize a high potential for the break-up of the alliance when defeat of the enemy is imminent. The break-up of the Great Alliance right after the Second World War and the beginning of the Cold War is perhaps the best and most

\(^6\)Starr (1972, p.28), for instance makes this point: "Indeed the Russians felt that the Western Allies had conspired to foist the human cost of the war upon them, as reflected in the delay in the opening of a second front, and the resulting casualty figures of the Red Army."
frequently cited example for former alliance members turning against each other and fighting about the spoils of war. Similar anecdotal evidence is reported for the First World War (Bunselmeyer 1975) and for the Napoleonic War (O’Connor 1967). As Beilenson (1969, p.193) concludes: “Among victors, alliances have tended to dissolve at the peace table in quarrels over the spoils.”

There is no experimental work that we are aware of that addresses the strategic effects of future conflict among current alliance members, nor on the possible solidarity effect in the fight about dividing the spoils when having previously been ‘brothers in arms’. However, structurally related questions have been addressed in the context of group contests. Ahn et al. (2011) compare group contests, individual contests, and individual-vs.-group contests, and reject “the paradox of group size” proposed by Olson (1965). Shere-meta and Zhang (2010) consider contests between teams with intra-group communication and joint decision-making and compare it to individual contests. Sutter and Strassmair (2009) study how intra- and/or inter-group communication affect effort levels in group contests with individually chosen effort. Abbink et al. (2010) study the effect of intra-group punishment on inter-group contests and find that allowing punishment greatly increases the dissipation rate. Gunnthorsdottir and Rapoport (2006) and Kugler et al. (2010) study the public goods problem embedded in group contests and focus on comparisons of the impact of two peaceful sharing rules (equal vs. proportional to efforts). In all these studies, the prize is either non-rival among group members or shared peacefully. These papers cover the problem of free-riding, but they do not address a possible conflict within the victorious

7 An important warning can be found in the Records of the War Department General and Special Staffs, Plans and Operations Division, Exec. 8. Col. J. McNarney and Rear Adm. R.K. Turner, in the ‘Joint Instructions for Army and Navy Representatives’, Office of the Chief of Staff, Washington DC, 21 January 1941, in preparation of the Allied conferences: "Never absent from British minds are their postwar interests, commercial and military. We should likewise safeguard our eventual interests." (Cited in Wilkins 2006, p.1136.)
group and its consequences for the inter-alliance conflict. Also, the existing studies do not address our key question of whether former ‘brothers in arms’ fight less violently with each other than strangers do.

Another important line of experimental research considers contests more generally. Most of the studies focus on one-stage contests (e.g., Millner and Pratt 1989; 1991; Shogren and Baik 1991; Davis and Reily 1998; Potters et al. 1998; Anderson and Stafford 2003), and few on multi-stage contests (Schmitt et al. 2004; Parco et al. 2005; Sheremeta 2010). As a common result, individuals expend more effort than what would be predicted in equilibrium. Explanations of over-dissipation include non-monetary utility of winning (Parco et al. 2005; Sheremeta 2010), misperception of the winning probabilities (Baharad and Nitzan 2008), quantal response equilibrium and heterogeneous risk preferences (Goeree et al. 2002, Sheremeta 2011). None of these papers address the role of future conflict among players at the stage in which they are ‘brothers in arms’, nor whether their joint history moderates internal fighting.

2 Theoretical setup

We consider two contest games with complete information. There are three players A, B, and C who compete for a given prize of value V. Each player chooses a non-negative amount of effort, denoted x_A, x_B, and x_C, respectively. Players A and B are in an alliance denoted AB and compete with player C. The following contest success function describes how players’ efforts translate into win probabilities of the alliance and of player C. The probability that the alliance AB wins this contest is equal to

$$p_{AB} = \begin{cases} \frac{x_A + x_B}{x_A + x_B + x_C}, & \text{for } x_A + x_B + x_C > 0 \\ \frac{1}{2}, & \text{for } x_A + x_B + x_C = 0 \end{cases},$$

(1)
and the probability that player C wins is equal to the remaining probability $p_C = 1 - p_{AB}$. This contest success function describes what is commonly known as the Tullock lottery contest.\footnote{This function has been invented and used independently to describe contests in different fields and also has received multiple axiomatic foundations. See, e.g., Konrad (2009, pp. 42-53) for a detailed survey.} Costs of efforts are equal to a player i's effort x_i, $i \in \{A, B, C\}$.

If player C wins, he gets the prize. If the alliance AB wins, the prize has to be allocated among players A and B. We consider two exogenously given allocation rules: the equal-sharing rule and the contest rule. If the equal-sharing rule applies, each of the players A and B gets one half of the prize, independently of the effort that players A and B expended in the contest with player C. If the contest rule applies, players A and B must compete for the prize. They have to expend effort y_A and y_B, respectively, in an intra-alliance contest between them.

The expected monetary payoff of each player, $E\pi_i$, is given as:

\begin{align*}
E\pi_i &= p_{AB}v_i - x_i \quad \text{if } i \in \{A, B\} \\
E\pi_C &= p_Cv_C - x_C
\end{align*}

where v_i denotes the valuation which player $i \in \{A, B\}$ attributes to the outcome in which the alliance wins the prize. In the regime with equal sharing, v_i is simply equal to $V/2$. In the regime with internal fighting, v_i also depends on the choices of fighting efforts in the internal contest and the allocation rule that maps these efforts into win probabilities, as will be discussed further below. If player C wins, he gets the entire prize, thus $v_C = V$.

Case 1: Equal sharing If players A and B must split up the prize equally in case they win against C, then $v_A = v_B = V/2$. If the alliance players choose their effort non-cooperatively and each player maximizes his
expected monetary payoff as given in (2) and (3), respectively, this results in equilibrium efforts

$$(x_A + x_B)^* = \frac{V}{9} \text{ and } x_C^* = \frac{2V}{9}. \quad (4)$$

The sum of efforts $(x_A + x_B)^*$ in (4) is smaller than player C’s equilibrium effort x_C^* and, for A and B, only the sum $(x_A + x_B)^*$ is uniquely determined in equilibrium. These two properties can be explained by a comparison of the marginal conditions that characterize the equilibrium. For given $(x_A + x_B)^*$, player C contributes x_C that fulfills the marginal condition $(-\partial p_{AB}/\partial x_C) V = 1$, and for given x_C^*, the marginal condition that determines the contributions of both players A and B is given by

$$\frac{\partial p_{AB}}{\partial (x_A + x_B)} \frac{V}{2} = 1. \quad (5)$$

This condition (5) takes into account that x_A and x_B are chosen simultaneously and independently and that, in an interior equilibrium, each player A and B must be indifferent about whether to increase $(x_A + x_B)$ by a marginal unit. A comparison of the marginal conditions reveals that $x_C^* > (x_A + x_B)^*$. Also, (5) determines the total contribution $(x_A + x_B)^*$, but not how this sum is composed of x_A and x_B; if $(x_A + x_B)^*$ makes (5) hold, then (5) holds for any (x_A, x_B) with $x_A + x_B = (x_A + x_B)^*$.\(^9\) Expected equilibrium payoffs are

$$(E\pi_A + E\pi_B)^* = \frac{2V}{9} \text{ and } (E\pi_C)^* = \frac{4V}{9} \quad (6)$$

where again only the sum of player A and B’s payoff is uniquely determined. The alliance’s joint payoff is smaller than the payoff of the single player.\(^{10}\)

\(^9\)See Nitzan 1991a for a more formal proof.

\(^{10}\)This holds qualitatively even if, for whatever reason, the players A and B could choose their efforts cooperatively in the contest against player C, due to prize sharing.
Case 2: Internal fight Suppose that, if the alliance wins the prize, the alliance members must allocate the prize as the outcome of an internal fight. Let this intra-alliance contest follow again the rules of the lottery contest. Recall that A’s and B’s efforts in this intra-alliance fight are non-negative and denoted by y_A and y_B. Then, A’s probability of winning this intra-alliance contest is

$$q_A = \begin{cases} \frac{y_A}{y_A + y_B}, & \text{for } y_A + y_B > 0 \\ \frac{1}{2}, & \text{for } y_A + y_B = 0 \end{cases}$$

and B’s winning probability is $q_B = 1 - q_A$. In case player $i \in \{A, B\}$ wins this internal fight, he obtains the entire prize V. Both players, however, have to pay their cost of effort, y_A and y_B, respectively. Conditional on reaching this subgame, player $i \in \{A, B\}$ has an expected continuation payoff $q_i V - y_i$. The Nash-equilibrium efforts in this subgame are

$$y_A^* = y_B^* = \frac{V}{4}.$$ \hspace{1cm} (8)

Thus, player $i \in \{A, B\}$ obtains an expected continuation payoff (net of effort cost y_i) in this subgame equal to

$$q_i V - y_i = \frac{V}{2} - \frac{V}{4} = \frac{V}{4} \text{ for } i \in \{A, B\}.$$

Hence, an alliance player’s expected valuation (net of effort cost) of winning against C is equal to $V/4$ (i.e., $v_A = v_B = V/4$). This valuation is only half of the valuation of winning in the regime where A and B share the prize peacefully. Consequently, the alliance players’ efforts x_A and x_B in the contest against C are lower in the regime with internal fight. Straightforward calculations yield

$$(x_A + x_B)^* = \frac{V}{25} \text{ and } x_C^* = \frac{4V}{25}.$$ \hspace{1cm} (9)
In total, expected payoffs are equal to

\[(E\pi_A + E\pi_B)^* = \frac{3V}{50} \quad \text{and} \quad (E\pi_C)^* = \frac{16V}{25}. \quad (10)\]

In this regime, the difference between expected payoffs of alliance players and the single player is even larger: potential internal fight about the prize is a second important disadvantage of fighting in an alliance.

3 The experiment

Our experiment is composed of three treatments that measure the effect of internal conflict, on the one hand, and test for the importance of joint fighting experience on the other hand. In the base (Share) treatment, two alliance players (A and B) are teamed up exogenously and fight against a player C for a prize of 450. Players A, B, and C independently choose their efforts \(x_A, x_B,\) and \(x_C\) from the set \{0, 1, 2, ..., 250\}. Then, the three choices \(x_A, x_B,\) and \(x_C\) within one group are displayed, and the lottery contest success function given in (1) determines whether the alliance \(AB\) or the sole player \(C\) wins. The probabilistic nature of the outcome of the lottery contest is illustrated graphically by a dynamic fortune wheel.\(^{11}\) Having followed the outcome of the fortune wheel, subjects are given their profits in this period. If the alliance wins, each of the alliance members gets half of the prize; if the sole player wins, he/she receives the full prize.

A second treatment, called Fight, is identical to treatment Share, except that, if the alliance players win the contest against player C, they have to enter into an intra-alliance contest to determine who gets the full prize. Hence, if the alliance of players A and B wins the prize, then the game

\(^{11}\)It is a well-known problem that it is difficult for the subjects to understand the probabilities as they emerge from the contest success function. In the fortune wheel, the efforts are translated into colored segments that correspond to the share of \(x_A + x_B\) and \(x_C,\) respectively, in total effort \(x_A + x_B + x_C.\) The segment in which the arrow stops determines whether the alliance \(AB\) or player \(C\) wins the contest.
continues. Players A and B have to simultaneously choose their intra-alliance contest efforts y_A and y_B. Again, after choices have been made, these efforts y_A and y_B are shown on the screen, and another fortune wheel determines the winner between the two. The winner in the lottery contest between A and B receives the full prize. A comparison of treatments Share and Fight will shed light on how the effort choice of alliance players in the inter-alliance contest is influenced by the intra-alliance prize sharing rule.

The third treatment FightNH (\text{NH} stands for “no history”) is conducted to elaborate on whether former ‘brothers in arms’ fight differently in the intra-alliance contest than two strangers do in the same contest. In the FightNH treatment, there are only two players A and B who play the lottery contest for a prize of 450 and who had no former history of inter-alliance competition.

Table 1 gives an overview of the three treatments. Columns 2-4 describe the features of these treatments and survey the effort levels and expected payoffs in the subgame-perfect equilibrium for players who maximize their material payoffs.

The experiment was programmed using z-Tree (Fischbacher 2007) and run in MELESSA, the Munich Experimental Laboratory for Economic and Social Sciences, in 2011. Each experimental session involved 24 student-
subjects playing one out of the three treatments.12 The data was collected from three sessions each for treatments Share and Fight, and from one session for treatment FightNH. Overall, 165 subjects participated in the experiment, and they were students from all fields of study.13 Each subject played only one treatment and had a fixed role (either player A or B, or player C) in this treatment. This role (as A, B, or C) was randomly assigned by the computer program. The instructions of the respective treatment were read out aloud to all players. Each treatment consisted of 30 rounds, and subjects kept their assigned roles throughout these rounds. However, subjects were randomly rematched in each round within their session group in order to avoid repeated interaction behavior.

Subjects were given written instructions at the beginning of each session (see Appendix for a sample). To ensure that they properly understood the instructions they had to answer a set of pre-experiment questions. The experiment only started after the subjects had correctly answered the testing questions. At the end of the experiment, the subjects had to fill in a questionnaire that collected some basic information such as individual characteristics. Afterwards, they were paid separately and in private. Subjects received a 4 EURO show-up fee. In addition, they were paid 0.6 EURO for each round played, which essentially served as their endowment in the contest. Profits from 6 rounds (out of 30) were randomly drawn to be added to (or deducted from, if negative) the payment per round. On average, the subjects earned 30 EURO, and in total a session took about 1.5 hours.14

12In one of the sessions of the Share treatment, the number of participants was only 21.
13The participants were recruited using the software ORSEE (Greiner 2004).
14The final payment varies substantially for different subjects (ranging from 8 EURO to 70 EURO), which assures that our design induces sufficient monetary incentives for subjects to make careful decisions.
4 Hypotheses and main results

The main questions that motivate our analysis are: (1) Does the nature of the subgame in which alliance members solve the problem of distributing the prize among themselves affect their contributions to the total effort of the alliance? (2) Does the experience of having been ‘brothers in arms’ in the contest against an outsider change alliance members’ fighting if the division of the prize among them follows the rules of a contest? In particular, does a possible in-group solidarity effect carry over to the contest between former ‘brothers in arms’? These questions and the related theory considerations translate into two main hypotheses.

Hypothesis 1: In the contest between the alliance and the out-group player, average effort of alliance players is higher if the members of a victorious alliance share the prize equally than if they fight about the prize among themselves.

Note that this hypothesis follows straightforwardly from economic theory (Katz and Tokadlidu 1996, Esteban and Sákovics 2003): future conflict about the prize reduces the value of winning this prize. This makes it less attractive for the alliance group to win, and this should reduce their joint efforts. Note also that this effect should emerge whether the alliance members’ contributions are determined by non-cooperative behavior or by group-spirited considerations.

The second hypothesis concerns the role of a ‘brothers in arms’ experience for the intensity of fighting between the members of a victorious alliance about who eventually receives the prize. In order to see whether the former in-group experience matters, we compare the effort of former ‘brothers in arms’ with the effort of complete strangers in a situation that otherwise is the same lottery contest for the same prize value. We formulate two mutually incompatible hypotheses:

Hypothesis 2a: Former brothers in arms expend the same effort in the
internal conflict as do players without a common history.

The competing hypothesis is:

Hypothesis 2b: Former brothers in arms expend less effort in the internal conflict than do players without a common history.

The anecdotal evidence of the break-ups of war alliances at the end of war and the intensity of the Cold War may support the rational choice prediction summarized in Hypothesis 2a. In-group solidarity suggested by psychologists would imply that Hypothesis 2b may hold. We use controlled experimental data to test the empirical relevance of these two hypotheses.\(^{15}\)

Before turning to the assessment of these main hypotheses, it is reassuring to note that the individuals in the experiment exhibit certain behavioral regularities that are known from other contest experiments. Typically, individuals in lottery contests expend more effort than what would be desirable for individuals who maximize their monetary payoffs, and individuals in our experiment also show this pattern. Table 2 provides the dissipation rates (defined as the total effort expended by all players divided by the prize value) observed in the experiment, compared to their theoretical predictions for all treatments.

In the *Share* treatment (where alliance players receive equal shares of the prize in case of a victory), subjects overall dissipate 50% of the prize value (in rounds 16-30), compared to the equilibrium prediction of only 33%. In

\(^{15}\)The usual caveat on the external validity of experimental results certainly applies.
the *Fight* treatment, the dissipation rate in the inter-alliance contest should be lower than in *Share* since alliance players will face a second-stage contest if they win. Indeed, the dissipation rate in stage 1 in *Fight* is reduced to 40% (in rounds 16-30), but it is still much higher than the theory prediction of 20%. Moreover, the dissipation rate in stage 2 of the *Fight* treatment is considerably higher than theoretically predicted (86% compared to the prediction of 50%). Interestingly, while, in the inter-alliance contest of *Share* and *Fight*, learning brings the dissipation rate closer to the theoretically predicted rates, the dissipation rate in stage 2 of the *Fight* treatment even goes up in later periods (compare the last two columns in Table 2). Finally, in the *FightNH* treatment, which is a symmetric two-player contest, the dissipation rate is 70% and hence again higher than the theoretically predicted 50%. This generally higher-than-predicted effort is a common phenomenon in contests and has been explained by factors like an intrinsic utility of winning or a misperception of the winning probabilities, among others.

Hypothesis 1 Let us now turn to the first main hypothesis on effort choices in the inter-alliance conflict, starting with a descriptive analysis. Figure 1 plots average individual effort in stage 1 for the treatments *Fight* and *Share*, separately for alliance players and single players. Not surprisingly, average effort of an alliance player (*A* or *B*) is much lower than a single player’s average effort, given the lower monetary incentives to win the inter-alliance contest. Moreover, both alliance players and single players expend less effort in the *Fight* treatment than in the *Share* treatment, in line with the theory prediction. Anticipation of the subsequent internal conflict in the *Fight* treatment seemingly causes alliance players to reduce their effort in stage 1; in turn, the lower effort of single players in *Fight* compared to *Share* might constitute a reaction to the reduced alliance effort. While single players’ effort is rather stable over time, experience is important for alliance players who adjust their effort choices toward the theory prediction. The fact
that learning is more important for alliance players is not surprising, given the more complex incentives they face.

To confirm quantitatively the effect of the intra-alliance contest on effort in the inter-alliance contest, we estimate effort choices in stage 1 in random-effects Tobit models16 where the estimated equation is

\[
x_{it} = \beta_0 + \beta_1 \times FIGHT + \beta_2 \times t(1..15) + \beta_3 \times FIGHT \times t(1..15) + \gamma \times z + \mu_i + \varepsilon_{it}.
\]

All estimations include a treatment dummy for the Fight treatment (FIGHT), a dummy variable indicating whether the observation stems from the first half of the experiment (t (1..15)), and an interaction of FIGHT and t (1..15), to capture both treatment and learning effects. Hence, the constant β_0 measures average effort in the Share treatment in rounds 16-30.17

16There are a significant number of choices lying at the boundary of the interval of possible choices (compare also Figure 2).

17We use data from periods 16 to 30 (instead of periods 1 to 15) as the base category because our focus in the analysis is on the treatment difference when subjects are rather
Moreover, some estimations also include individual characteristics obtained from the exit questionnaire as additional control variables, summarized in the vector \mathbf{z}. Besides gender, age, height, number of siblings ("NoOfSiblings"), we also include a dummy variable "Economist" indicating whether the participant studies economics or business administration (as major or minor subject), and individual risk attitudes ("RiskTaking"). The latter variable is generated by asking the participants in the exit questionnaire to indicate their willingness to take risks, in general, on a scale from 0 to 10.\footnote{Dohmen et al. (2011) compare the answer to this question with behavior in lottery choice problems. Their results suggest that the question is a simple and valid measure of risk attitudes.}

We estimate the effort choice of alliance players and single players separately; Table 3 shows the regression results of the random-effects Tobit models for the two subsamples. Among all individual characteristics, only those variables are reported that significantly explain individual effort choices.

Consider first alliance players’ choices. Estimation (1) in Table 3 includes only the treatment dummy FIGHT and the dummy for the first half of the experiment ($t(1..15)$). Average effort of an alliance player in the Share treatment and rounds 16-30 is equal to 34.48 (measured by the constant), and average effort in the Fight treatment is about 20 points lower. We can reject at the 1%-level that efforts in the Share and the Fight treatment are the same, focusing on rounds 16-30. In rounds 1-15, however, we do not find a significant treatment effect for the Fight treatment: $\text{FIGHT} + \text{FIGHT} \times t(1..15)$ is not significantly different from zero. Thus, learning seems to be important for alliance players to understand that future dissipation of the prize should make them reduce their stage 1 effort. Including individual characteristics as additional control variables (estimation (2)) does not affect the size and significance levels of the treatment effects.

The treatment effects of FIGHT for single players are similar as for alliance players, but much weaker: although effort choices in the Fight treatment
Data set: Alliance players
Dependent var.: effort x_A or x_B
Model: (1) (2) (3) (4)

<table>
<thead>
<tr>
<th></th>
<th>Alliance players</th>
<th>Single players</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>effort x_A or x_B</td>
<td>effort x_C</td>
</tr>
<tr>
<td>Constant</td>
<td>34.48*** (5.33)</td>
<td>152.39*** (15.34)</td>
</tr>
<tr>
<td></td>
<td>31.65*** (7.07)</td>
<td>150.82*** (16.68)</td>
</tr>
<tr>
<td>FIGHT</td>
<td>-20.25*** (7.49)</td>
<td>-20.46 (21.48)</td>
</tr>
<tr>
<td></td>
<td>-22.61*** (7.17)</td>
<td>-37.39* (19.19)</td>
</tr>
<tr>
<td>t(1..15)</td>
<td>15.66*** (2.34)</td>
<td>-2.55 (3.98)</td>
</tr>
<tr>
<td></td>
<td>15.66*** (2.34)</td>
<td>-2.56 (3.98)</td>
</tr>
<tr>
<td>FIGHT \times t(1..15)</td>
<td>11.51*** (3.33)</td>
<td>12.05** (5.57)</td>
</tr>
<tr>
<td></td>
<td>11.48*** (3.33)</td>
<td>12.05** (5.57)</td>
</tr>
</tbody>
</table>

Individ. characteristics
No | Yes | No | Yes

RiskTaking	4.51*** (1.68)	16.17*** (4.46)
NoOfSiblings	5.37* (3.08)	-16.58* (8.66)
Economist	5.12 (8.43)	100.51*** (29.29)

Log likelihood
-12492.99 | -12486.61 | -6699.51 | -6691.13

Wald χ^2
178.70*** | 192.19*** | 6.81* | 27.21***

Note: There are 2820 observations in regression 1 and 2 (487 left-censored obs., 2325 uncens. obs., 8 right-cens. obs.) and 1410 obs. in regression 3 and 4 (22 left-cens. obs., 1204 uncens. obs., 184 right cens. obs). Standard errors in parentheses. ***(***, *) p-value < 0.01(0.05, 0.1). Observations in SHARE treatment from periods 16-30 taken as the baseline group. FIGHT and t(1..15) are dummies indicating whether the observation is from the FIGHT treatment and from periods 1-15, respectively.

Table 3: Random effect Tobit models on efforts in the first stage.
are lower than in the Share treatment, this effect is only weakly significant (p-value is 0.051) when including individual-specific characteristics (compare estimations (3) and (4) in Table 3). Moreover, the treatment effect again disappears when focusing on the first half of the experiment; as for alliance players, $FIGHT + FIGHT \times t(1..15)$ is not significantly different from zero. In summary, single players react to the diminishing joint alliance effort by slowly reducing their own effort, and weak evidence on treatment differences only emerges in the second half of the experiment.

The coefficients for the individual-specific control variables show that participants who are more willing to take risks choose significantly higher effort (estimations (2) and (4) in Table 3). The number of siblings has a weak but ambiguous effect: having more siblings tends to increase alliance players’ effort, but decreases single players’ effort. A possible interpretation is that players who have siblings show stronger in-group solidarity, but we would rather not speculate and take it simply as a control variable, since this question is not within the focus of our analysis. Finally, for single players, economics students choose much higher effort.19

The estimation results show that future dissipation of the prize indeed leads to a hold-up effect and significantly reduces efforts in the inter-alliance contest as well as the alliance’s success. This finding is confirmed when plotting the cumulative distribution functions of individual effort choices from periods 16 to 30 (see Figure 2). Figure 2 reveals that individual effort choices exhibit a large variance (which is consistent with previous contest experiments), but it also shows that both for alliance players and individual players, low efforts occur more frequently in the Fight treatment, compared to the Share treatment. In particular, in the Fight treatment, there is a much larger share of alliance players who expend very low effort in the inter-alliance contest. Hence, anticipated future internal fight shifts both the alliance players’ and single players’ effort choice distributions to the left.20

19The overall share of economics students in the sample is about 20%.

20In addition to the effect of future prize dissipation, alliance players face the free-riding
Figure 2: Distribution functions of stage 1 effort (rounds 16-30).

Hypotheses 2a and 2b We now turn to the internal fight between former ‘brothers in arms’ and examine whether alliance players fight more or less fiercely against each other than strangers without a common history. We compare the effort choice in the second stage in the *Fight* treatment to the effort choices in the simple two-player Tullock contest without history (the *FightNH* treatment).

Figure 3 illustrates average effort choices in both treatments. While at the beginning of the experiment, average effort choices in *Fight* and *FightNH* are very similar, they increase over time in the *Fight* treatment, remain-

Note that, in the *Fight* treatment, stage 1 and stage 2 efforts exhibit an opposite problem (both in *Share* and in *Fight*) when contributing to joint alliance effort. In the exit questionnaire, we also asked alliance players: "In the competition with player C, have you tried to expend less effort than your co-player within the alliance in order to benefit from his effort?" The share of participants who agreed to this question is higher in the *Fight* treatment than in the *Share* treatment (52% compared to 39%), although not significantly different (the *p*-value of a two-sample *t* test is 0.169). The participants’ answers are strongly correlated with their average effort choice: the Spearman correlation coefficient of individual average effort in periods 16-30 and agreement to the question on free-riding is -0.418 (*p*-value is 0.004) for the *Share* treatment and -0.383 (*p*-value is 0.007) for the *Fight* treatment.

21
Figure 3: Average effort in two-players contest (Fight vs. FightNH).

...ing rather constant in the FightNH treatment. Hence, contrary to what a ‘brothers-in-arms’ effect would have induced, in-group solidarity may exist during stage 1 when the players fight jointly in an alliance, but seemingly it does not survive the break-up of the alliance. Rather, efforts in the intra-alliance contest appear to be even higher than in the contest without joint history.

Similar as before, we estimate individual effort in the two-player contest as a function of a treatment dummy FIGHT, a dummy for the first half of the experiment (t (1..15)), and additional control variables. Besides in-trend (compare Figures 1 and 3): while alliance players’ stage 1 efforts are declining, stage 2 efforts rise over time. But overdissipation rates (here defined as the ratio of observed effort and theoretically predicted effort) in stages 1 and 2 are converging: in early periods, overdissipation is much more pronounced in stage 1 than in stage 2, compared to late periods. Similar results for such opposite trends in multi-stage contests have been found by Sheremeta (2010). An explanation for such behavior (also proposed by Sheremeta 2010) is that, in the complex structure of a two-stage contest, individuals will employ simple heuristics in early rounds that cause efforts in the two stages to be not "too different". When gaining more experience, however, individuals correctly reduce their stage 1 effort and shift more effort to stage 2.
dividual characteristics, we also control for effort choices in stage 1 in the *Fight* treatment to examine whether they have an impact on the behavior in stage 2. Table 4 summarizes the results of several random-effects Tobit estimations; the baseline category is the *FightNH* treatment.

In estimation (1) without additional control variables, average effort in the second half of the *FightNH* treatment is equal to 170.41 (measured by the constant); average effort in the *Fight* treatment, however, is 41.61 points higher. In contrast to both Hypothesis 2a and Hypothesis 2b, there is a significant treatment effect of the *Fight* treatment, leading to higher effort choices in the contest with a joint history. Again, this treatment effect is only significantly different from zero in the second half of the experiment, but there is no treatment effect in rounds 1-15 (*FIGHT + FIGHT* × t (1..15) is close to zero). Adding individual-specific control variables in estimation (2) weakens the treatment effect somewhat, but still generates a weakly significant effect of having a joint history. Among the individual characteristics, only the willingness to take risks significantly explains effort choices, and as for the inter-alliance contest, participants who describe themselves as generally more willing to take risks expend more effort. Estimation (3) adds several variables from the inter-alliance conflict to test whether having expended more/less-than-average effort in stage 1 of the *Fight* treatment (variable $x_{it} - \bar{x}_{t}^{A,B}$) explains stage 2 effort; in addition, the co-player’s stage 1 effort compared to average stage 1 effort is included (variable $x_{it} - \bar{x}_{t}^{A,B}$). None of these variables capturing the specific history of effort choices in the *Fight* treatment is significant, and the inclusion does not significantly change the treatment effect for the *Fight* treatment.

Summarizing, we can reject Hypothesis 2a as well as Hypothesis 2b. Neither are effort choices independent of the history (as would predicted by equilibrium play among monetary payoff maximizing players), nor does the joint history lead to an in-group solidarity effect that survives the break-up of the alliance and keeps efforts in the intra-alliance conflict low. Consistent
Table 4: Random effect Tobit models on two-player contests.

<table>
<thead>
<tr>
<th>Dependent Variable: Effort y_A or y_B</th>
<th>Model:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>170.41***</td>
<td>182.78***</td>
<td>182.13***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(16.58)</td>
<td>(19.28)</td>
<td>(19.49)</td>
<td></td>
</tr>
<tr>
<td>FIGHT</td>
<td>41.61**</td>
<td>36.78*</td>
<td>39.07*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(20.78)</td>
<td>(20.77)</td>
<td>(21.17)</td>
<td></td>
</tr>
<tr>
<td>$t(1..15)$</td>
<td>-0.09</td>
<td>-0.08</td>
<td>-0.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.92)</td>
<td>(4.92)</td>
<td>(4.91)</td>
<td></td>
</tr>
<tr>
<td>FIGHT$\times t(1..15)$</td>
<td>-38.65***</td>
<td>-38.73***</td>
<td>-37.64***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(8.01)</td>
<td>(8.01)</td>
<td>(8.71)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individual characteristics</th>
<th>No</th>
<th>Yes</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>RiskTaking</td>
<td>8.17*</td>
<td>8.79*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.75)</td>
<td>(4.81)</td>
<td></td>
</tr>
<tr>
<td>$(x_{it} - \bar{x}_{it}^{A,B}) \times \text{FIGHT}$</td>
<td>-0.15</td>
<td>(0.11)</td>
<td></td>
</tr>
<tr>
<td>$(x_{it} - \bar{x}_{it}^{A,B}) \times \text{FIGHT} \times t(1..15)$</td>
<td>-0.13</td>
<td>(0.14)</td>
<td></td>
</tr>
<tr>
<td>$(x_{it} - \bar{x}_{it}^{A,B}) \times \text{FIGHT}$</td>
<td>-0.08</td>
<td>(0.10)</td>
<td></td>
</tr>
<tr>
<td>$(x_{it} - \bar{x}_{it}^{A,B}) \times \text{FIGHT} \times t(1..15)$</td>
<td>-0.05</td>
<td>(0.13)</td>
<td></td>
</tr>
</tbody>
</table>

Log likelihood: -5394.65 -5392.24 -5387.41
Wald(χ^2): 38.31*** 43.23*** 52.53***

Note: There are 1246 observations in total (20 left-censored obs., 910 uncens. obs., 316 right-cens. obs.). Standard errors in parentheses. ***(**, *) p-value<0.01(0.05, 0.1). Observations in FightNH treatment from periods 16-30 taken as the baseline group. FIGHT and $t(1..15)$ are dummies indicating whether the observation is from the FIGHT treatment and from periods 1-15, respectively. x_{it} and $x_{it'}$ are own and alliance partner’s stage 1 effort in period t (in the FIGHT treatment); $\bar{x}_{it}^{A,B}$ is the average alliance stage 1 effort in period t.
with previous group contests experiments which find that the existence of competition with an out-group enhances in-group coordination (e.g., Bornstein et al. 2002), alliance players’ effort in the joint fight against the single player is initially much higher than what the free-riding incentive would predict. This in-group solidarity, however, disappears over time; in the last few periods the average effort of alliance players is remarkably close to the equilibrium prediction of 25 units (recall Figure 1). More importantly in our context, this in-group solidarity even turns into greater hostility after the break-up of the alliance.

Assessing this result, several potentially countervailing effects might have caused a different behavior in the intra-alliance contest of the Fight treatment compared to a standard two-player contest as in the FightNH treatment. In particular, the result of higher efforts in the Fight treatment could potentially be caused by two factors that might raise effort levels in the second stage of the contest: a selection bias and the sunk cost problem. It is important to control for these effects, as they could potentially cloud a possible solidarity effect.

First, in the Fight treatment, the subsample of participants reaching stage 2 might not be drawn from the same distribution as the sample of observations in the FightNH treatment. Rather, in the Fight treatment there could be a selection of subjects who, for some reason, spent more effort in stage 1 and in this way made the alliance win. If those subjects also tend to spend more effort in stage 2, for instance because there are simply "more aggressive" participants, then this could have caused intra-alliance efforts to be higher in the Fight treatment than in the FightNH treatment. In our data, however, there is only very weak evidence for such a selection bias. One would expect that in estimation (3) in Table 4 the coefficient of $x_{it} - \bar{x}_t^{A,B}$ is significantly positive (players who spent more stage 1 effort than the average alliance player in the respective round expend higher effort in stage 2); however, we observe small negative coefficients which are not significant from zero.
Second, since the individual willingness to take risk (variable "RiskTaking") significantly and consistently explains effort choices, we can test if the average type in stage 2, measured by "RiskTaking", differs from the average type in stage 1 of the Fight treatment. Indeed this seems to be the case, although only weakly: the average risk type is 5.27 in the entire sample of Fight and 5.39 in the subsample of observations in stage 2 and periods 16-30 (recall that the willingness to take risks is measured on a scale from 0 to 10). Given the estimated coefficient of "RiskTaking", however, this small difference cannot explain that effort in Fight is by 40 points higher.

Third, in the exit questionnaire, we asked the participants (alliance players of the Fight treatment and all participants of the FightNH treatment) whether in the two-player contest they "absolutely tried to win on their own". Taking the answer to this question as a proxy for "aggressiveness", those who said yes indeed spent significantly more effort in stage 2 than those who said no.\footnote{The Spearman correlation coefficient relating average individual effort in the two-player contest and the individual answer to the question on the will to win is 0.293 (p-value is 0.046) for the Fight treatment and 0.365 (p-value is 0.079) for the FightNH treatment.} There is, however, no difference between the average "type" of players measured by this question in the entire sample in the Fight treatment compared to the subsample of observations in stage 2 (81.3% compared to 82.1% agreement). Overall, although a selection effect could be an explanation for our results we do not find much evidence for a selection bias causing the treatment effect of FIGHT.\footnote{Given that the contest success function is probabilistic and given the interdependency of the alliance players, higher effort by an alliance player does not necessarily lead to a victory in the inter-alliance contest, which weakens the problem of a selection bias.}

An alternative explanation for why efforts in the Fight treatment are higher is the "sunk cost fallacy", caused by the cost of effort expended in stage 1. A sunk cost problem would suggest that in estimation (3) of Table 4, \((x_{it} - \bar{x}_{it}^{A,B}) \times \text{FIGHT} \) has a positive effect on stage 2 effort. This is not the case in our estimation. In the Fight treatment, players who have spent more than average effort in stage 1 are not more likely to spend more in stage 2.
to recover the cost incurred for stage 1 effort. This is mild evidence, but not a proof that the sunk cost fallacy is not the reason for high effort in stage 2 in the fight treatment. In our setting, the cost incurred in stage 1 is not exogenous, but chosen by the participants themselves. Hence, players who know that they usually feel a strong sunk cost problem may have reduced their stage 1 effort in anticipation of the situation they would face in stage 2 and in order to be less committed in stage 2; this endogeneity makes it difficult to properly measure the effect of the stage 1 effort cost on stage 2 effort. The distribution of efforts in the Fight treatment compared to the FightNH treatment as shown in Figure 4 yields some evidence in line with the hypothesis that some players follow the sunk cost fallacy: compared to FightNH, in the Fight treatment a much larger share of participants choose an extremely high effort level. This could be an indication for an attempt to recover the cost of effort already paid in the inter-alliance contest, but the existence and the role of a sunk cost fallacy is difficult to identify in the data we have.

To summarize our findings on the effect of a joint history, even if there is a
considerable amount of heterogeneity across subjects, our evidence suggests that the positive effect of a joint history on internal fighting intensity is not driven by a selection effect of more "aggressive" subjects in the Fight treatment. Returning to the question of whether a brother-in-arms effect helps alliances to reduce rent dissipation in the internal conflict, we can clearly falsify the hypothesis that alliances succeed in achieving such a brothers-in-arms effect. This result can provide a basis for further analysis of whether factors which are absent in our setting might favor the emergence of in-group solidarity effects and their persistence even after the alliance has been dissolved.

5 Conclusion

We studied the generic strategic setup of an alliance: players who fight jointly against a common adversary for a prize, and who, if they win, may fight about how to divide the prize between them. As one of the main research questions, we considered how former fighting shoulder-by-shoulder as ‘brothers in arms’ affects players’ behavior once they become adversaries, i.e., after the break-up of the alliance. Using experimental data, we tested two competing hypotheses. On the one hand, the in-group solidarity that has been described for groups fighting against an out-group may suggest that former ‘brothers in arms’ fight less vigorously against each other than strangers. On the other hand, a rational choice theory that is based on monetary incentives suggests that a common history as ‘brothers in arms’ should make no difference for the behavior in the internal fight. The experimental data reject the idea that in-group solidarity survives the break-up of the group: former members of an alliance fight even more vigorously against each other than strangers.

A second question considered mobilization of alliance effort. We asked whether an alliance can mobilize more total alliance effort if its members share the prize of victory equally and peacefully than if its members anti-
cipate that they have to fight about how to divide this prize. An answer to this question takes the answer to the first question on board and anticipates that former ‘brothers in arms’ will fight vigorously when dividing the spoils of winning. We would then expect that alliances with rules that ensure that they peacefully share the prize should be able to mobilize more alliance effort. This is also what we find in the experiment - not for inexperienced players, but for players who have gathered some experience. As has been reported by political scientists for cases of military alliances, such alliances often break up after victory and enter into vigorous fighting. We show that the possible break-up of a victorious alliance and the vigorous fighting between former members of the same alliance is a serious strategic drawback of alliances. Institutions or other arrangements that eliminate such intra-alliance conflict could considerably strengthen alliances and their success. By and large, our analysis corroborates the anecdotal evidence that has been reported by political scientists about the strategic disadvantages of alliances.

6 Acknowledgements

We thank Subhasish Chowdhuri, Oliver Gürtler, Werner Güth, Roman Sheremetia, participants of the CEPR Public Policy Symposium at Zurich 2011, the DIW conference on the Global Economic Costs of Conflict 2011, the APET Conference on Development and Political Economy at Chulalongkorn University in Bangkok 2011, the Workshop on Contests and Tournaments in Magdeburg 2011, the Jan Tinbergen Conference in Amsterdam 2011, the Royal Economic Society Meeting 2011, the International Meeting on Experimental and Behavioral Economics 2011, the Econometric Society Australasian Meeting 2011, seminars at Düsseldorf, two reviewers and an advisory editor for valuable comments. For providing laboratory resources we kindly thank MELESSA of the University of Munich. Financial support from the German Research Foundation (DFG, grant no. SFB-TR-15) is gratefully ac-
knowledged. Last but not the least, we thank Nina Bonge, Bernhard Enzi, David Houser, Verena Hefner, Christoph Rüschstroer for their excellent research assistance.

References

[40] Nitzan, Shmuel, 1994, Modelling rent-seeking contests, European Journal of Political Economy, 10(1), 41-60.

[51] Sheremeta, Roman M., 2010, Experimental Comparison of Multi-Stage
and One-Stage Contests, Games and Economic Behavior, 68(2), 731-747.

[56] Starr, Harvey, 1972, War coalitions, the distributions of payoffs and losses, Lexington Books, Toronto.

A Experimental Instructions (a sample for the *Fight* treatment)

Welcome to this experiment! Please read these instructions carefully and completely. Properly understanding the instruction will help you to make better decisions and hence earn more money.

Your earnings in this experiment will be measured in Talers. At the end of the experiment we will convert the Talers you have earned to cash and pay you in private. For each 45 Talers you earn you will be paid 1 Euro in cash. Therefore, the more Talers you earn, the more cash you will gain at the end of today’s experiment. In addition to the Talers earned during the experiment, each participant will receive a show-up fee of 4 Euros.

Please keep in mind that you are not allowed to communicate with other participants during the experiment. If you do not obey this rule you will be asked to leave the laboratory without getting paid. Whenever you have a question, please raise your hand; an experimenter will come to you.

A.1 Your task

This experiment will consist of 30 rounds. Before the actual experiment starts, you will first have to answer a few questions related to the experiment. The questions will be presented to you through the computer screen. For the experiment, groups consisting of three people are formed. These groups are randomly composed in each round. Your task in each round is to make some decisions. The money you earn depends on your decision and the decisions of the two other players in your group.

Let the three players in one group be called *A*, *B*, and *C*. In each round, three players *A*, *B*, and *C* compete for a prize of 450 Talers. The competition works as follows:

1. Two players *A* and *B* form an “alliance”. Player *C* is playing on his
own.

2. Your role in the experiment will be either that of player A, B, or C. This role will be randomly assigned to you. Each participant will keep his role throughout the entire experiment.

3. In a first stage, all players will simultaneously choose “an effort level”. Each player decides independently on his own effort level. A player’s effort is chosen as an integer between 0 and 250, and it corresponds to the amount of Talers the player would like to expend in the competition to win the prize. You will have to pay this amount of Talers to the lab, whether or not you win the competition. In the following, player A’s effort is denoted by X_A, player B’s effort is denoted by X_B, and similarly player C’s effort is denoted by X_C.

4. Then, you will be shown the amount of Talers that the other players in your group have expended. The efforts of player A and B will be added up and the sum of X_A and X_B corresponds to the effort that the alliance of players A and B spends on the competition. The total expense is equal to the sum of all players’ efforts: $X_A + X_B + X_C$.

5. Now a fortune wheel will turn and decide whether the alliance consisting of A and B or whether player C wins the 450-Taler-prize. As you will see, the fortune wheel is divided into two colors - red and blue. The red color represents the total Talers spent by player A and B (i.e., $X_A + X_B$). The blue color represents the Talers spent by player C (i.e., X_C). The two colored areas on the wheel represent exactly their shares in the total expense (i.e., $X_A + X_B + X_C$).

6. At the centre of the fortune wheel there is an arrow initially pointing to the top. After some time the arrow starts to rotate and then stops randomly. If the arrow stops in the red-colored area, players A and B win the prize. If the arrow stops in the blue-colored area, player C wins the prize.
wins the prize. This means that the probability that players A and B win the prize is equal to their share of their joint effort in the total expense, hence

$$\text{probability that } A \text{ and } B \text{ win} = \frac{\text{effort } X_A + \text{effort } X_B}{\text{total expense } X_A + X_B + X_C}.$$

Equivalently, the probability that player C wins the prize is equal to the share of C’s effort in the total expense:

$$\text{probability that } C \text{ wins} = \frac{\text{effort } X_C}{\text{total expense } X_A + X_B + X_C}.$$

For your information, the probabilities that either the alliance of A and B or player C wins the competition will be displayed to you.

Therefore, each player’s probability of winning depends not only on his own expenditure in the competition but also on the expenditures of the other players in the group. Note that the more Talers a player spends, the more likely it is that he wins the competition. More effort expended, however, means that a player has to pay more Talers to the lab.

7. If none of the players expends any Taler, i.e., $X_A = X_B = X_C = 0$, then it is equally likely that either the alliance A and B or player C wins. If players A and B both do not expend any Taler, but player C expends at least one Taler, player C wins the competition. If player C does not expend any Taler, but either player A or player B (or both) expends at least one Taler, the alliance A and B wins the competition.

8. Every player has to pay his effort (in Taler) to the lab, irrespectively of the outcome of the fortune wheel. Therefore, your earnings per round will be calculated as your gain in the competition minus your effort: $\text{earnings} = \text{gain} - \text{effort}$.

A-3
• In case player C wins, the competition ends and he gets the 450-Taler-prize; players A and B will gain nothing. While players A and B do not have any gain, but have to pay their efforts, the earnings of player C are calculated as follows: C’s earnings = 450 – X_C.

• In case the alliance of A and B wins the competition, then players A and B again have to compete with each other for the prize of 450 Taler. The procedure of this competition is exactly the same as described above when the alliance players A, B compete against player C for the prize. At first A and B have to decide simultaneously and independently about the amount of Talers they would like to expend to win the prize of 450 Taler. The effort again is chosen as an integer between 0 and 250, and it has to be paid to the lab in addition to the efforts already paid (X_A and X_B), whether or not the player wins the competition.

In the following these new efforts of A and B are denoted by Y_A and Y_B. (Note that these efforts are only chosen if the alliance of A and B has won against player C.) Again a fortune wheel will determine the winner. The probability that A wins the prize of 450 Taler will be:

\[
\text{Probability that } A \text{ wins} = \frac{\text{effort } Y_A}{\text{total expense } Y_A + Y_B}
\]

Equivalently, the probability that player B wins, will be:

\[
\text{Probability that } B \text{ wins} = \frac{\text{effort } Y_B}{\text{total expense } Y_A + Y_B}
\]

Therefore, each player’s probability of winning now depends only on the efforts in this new competition. The yellow-colored area on the lottery wheel will denote the share of A’s effort in total expense
$Y_A + Y_B$, the green-colored area denotes the share of B’s effort in total expense. Again the arrow will rotate to decide whether A or B wins the prize.

Hence, in case that players A and B won the competition against player C before, the earnings of players A and B are calculated as follows:

- In the case that A wins against B, B has to pay both his efforts X_B and Y_B, and does not receive any gain. A’s earnings in this case will be: A’s earnings = $450 - X_A - Y_A$.

- In the case that A loses against B, player A has to pay both his efforts X_A and Y_A, and does not receive any gain. B’s earnings will be: B’s earnings = $450 - X_B - Y_B$.

- In both cases player C receives no gain but has to pay his effort X_C expended in the first competition.

A.2 Procedure

The experiment will consist of 30 identical rounds. In each round, you will have the same role (player A, B, or C). The other two players in your group will be randomly assigned to you in each round.

You will not know who the other players in your group are. All the decisions you make will remain anonymous, and any attempt to reveal your identity to anyone is prohibited. After the experiment, you will be asked to answer some questions, including some personal information (e.g., gender, age, major...). All the information you provide will be kept anonymous and strictly confidential.

At the end of today’s experiment, we will randomly choose 6 out of the 30 rounds to pay you. Your total earnings in those 6 rounds will be added up, converted to euros and paid to you in cash. This means that the earnings of all other rounds will not be paid to you and that you do not have
to pay the efforts of these rounds either. You will get to know which 6 out of the 30 rounds will be chosen only after finishing these 30 rounds.

Moreover, you will receive \textbf{0.60 euros} for each of the 30 rounds you have played. The sum of this payment of 0.60 euros per round and your earnings in the 6 rounds of the experiment selected for payment will determine your total earnings in today’s experiment.

Before the experiment starts, we will ask you some questions (which are related to the actions in the experiment) through the computer screen.