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Multi-Asset Portfolio Optimization and Out-of-Sample Performance:  

An Evaluation of Black-Litterman, Mean Variance and  

Naïve Diversification Approaches 

 

 

 

Abstract. 

 

The Black-Litterman (BL) model aims to enhance asset allocation decisions by overcoming 
the weaknesses of standard mean-variance (MV) portfolio optimization. In this study we 
implement the BL model in a multi-asset portfolio context. Using an investment universe of 
global stock indices, bonds, and commodities, we empirically test the out-of-sample portfolio 
performance of BL optimized portfolios and compare the results to mean-variance (MV), 
minimum-variance, and naïve diversified portfolios (1/N-rule) for the period from January 
1993 to December 2011. We find that BL optimized portfolios perform better than MV and 
naïve diversified portfolios in terms of out-of-sample Sharpe ratios even after controlling for 
different levels of risk aversion, realistic investment constraints, and transaction costs. 
Interestingly, the BL approach is well suited to alleviate most of the shortcomings of MV 
optimization. The resulting portfolios are less risky, are more diversified across asset classes, 
and have less extreme asset allocations. Sensitivity analyses indicate that the outperformance 
of the BL model is due to the consideration of the reliability of return estimates and a lower 
portfolio turnover.   
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1. INTRODUCTION  

The traditional mean-variance (MV) optimization (Markowitz, 1952) has played a 

prominent role in modern financial theory for many decades. It provides the investor with the 

optimal asset allocation if future asset returns are known and if portfolio risk and return are 

the only relevant parameters. In practical applications estimation errors in the input 

parameters, corner solutions, and high transaction costs resulting from extreme portfolio 

reallocations often result in a poor out-of-sample portfolio performance. Practitioners 

frequently try to cope with these problems by implementing constraints on the portfolio 

weights and turnover. Black and Litterman (1992) propose an alternative approach to deal 

with the shortcomings of MV and to improve portfolio performance. Their approach has 

gained increasing attraction among practitioners. Surprisingly, the academic literature has 

paid little attention to this model so far. One advantage of the Black-Litterman (BL) model is 

that it combines two sources of information - ‘subjective’ and ‘implied’ return estimates - 

thereby reducing the sensitivity of portfolio weights. In contrast to MV optimization, 

investors have the choice either to provide return estimates for each asset or to stay neutral for 

some assets they feel uncomfortable in providing reliable future return estimates. Moreover, 

the reliability of each return estimate can be incorporated enabling investors to distinguish 

between qualified estimates and pure guesses. 

So far the academic literature provides little empirical evidence analyzing the 

performance of the BL model in an out-of-sample setting. Although several studies 

investigate the rationale of the BL model and apply it to calculate efficient frontiers, there 

exists no evidence that in an out-of-sample optimization the BL model generates a superior 

portfolio performance relative to MV, minimum-variance, or naïve diversified benchmark 

portfolios. We contribute to the literature by testing the BL model empirically in that we 

conduct out-of-sample multi-asset portfolio optimizations for the period from January 1993 to 

December 2011. We implement BL, MV, minimum-variance as well as naïve diversification 

approaches and evaluate the respective portfolio performance results. The main research 

question is whether the BL model is able to alleviate the problems of MV optimization and 

whether it generates a superior out-of-sample portfolio performance. We compute several 

performance measures and evaluate the BL portfolios in comparison to MV, minimum-

variance, and naïve diversified benchmark portfolios. In addition, the literature is extended by 

implementing the BL model on multi-asset portfolios including global stocks, bonds, and 

commodities rather than stock-only portfolios. 
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Our empirical results offer new insights in several dimensions. We find that the BL 

model can successfully be applied to multi-asset portfolio optimization by using strategic 

weights for the different asset classes. BL optimized portfolios exhibit a consistently higher 

out-of-sample portfolio performance, they include a larger number of assets than MV 

optimized portfolios, and they are better diversified across asset classes. The superior out-of-

sample performance of the BL model is due to the additional information on the reliability of 

return estimates (‘views’) and a lower portfolio turnover. In an analysis of sub-periods we 

find that the BL model outperforms MV and naïve diversified portfolios particularly in 

recessionary periods and that BL-optimized portfolios exhibit lower turnover and superior 

diversification properties. Finally, our results are robust to variations of the input parameters.  

The remainder of the paper is organized as follows. In section 2 we review the 

literature on MV optimization, naïve diversification rules, and the BL approach. In section 3 

the methodology of the BL model and the employed performance measures are described. 

The data and some descriptive statistics are provided in section 4. Our empirical results are 

presented and discussed in section 5. Section 6 concludes. 

 

2. LITERATURE REVIEW  

 

2.1. Mean-Variance-Optimization   

The traditional mean-variance (MV) optimization (Markowitz, 1952) is widely 

employed in the academic literature. A number of studies use MV optimization to analyze the 

diversification benefits of an additional asset class in a multi asset portfolio context. These 

studies usually employ mean-variance spanning tests and analyze the diversification benefits 

of emerging equity markets (Bekaert and Urias, 1996; Roon, Nijman and Werker, 2001), real 

estate (Chiang and Lee, 2007), small cap stocks (Petrella, 2005), microfinance funds (Galema, 

Lensink, Spierdijk, 2011), commodities (Daskalaki, Skiadopoulos (2011) or hedge funds 

(Bessler, Holler, Kurmann, 2012). These studies provide evidence that investing in additional 

asset classes may be attractive for investors seeking to improve their risk-return profile.  

In these approaches the portfolios’ expected risk and returns are estimated relying on 

historical data. These historical estimates, however, are subject to a substantial level of 

uncertainty. Hence, the expectations on the portfolios risk-return structure may not materialize 

ex post. In fact, an early study by Jobson and Korkie (1981a) highlights the large estimation 
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errors in using sample estimates and the poor out-of-sample performances of MV strategies. 

Estimation errors of returns, however, are much more critical than those of the covariance 

matrix since their effect on the optimized portfolio weights is about ten times larger (Chopra 

and Ziemba, 1993). In the MV optimization framework, assets with the highest estimation 

errors tend to obtain the highest portfolio weights, resulting in ‘estimation error 

maximization’ (Michaud, 1989). Additionally, the MV approach tends to generate extreme 

portfolio allocations and low levels of diversification across asset classes (Broadie, 1993), i.e. 

the optimized portfolios are usually corner solutions. Furthermore, mean-variance optimal 

portfolio weights are highly sensitive to changes in the input parameters which results in 

radical portfolio reallocations even for small variations in expected return estimates (Best and 

Grauer, 1991).  

A number of authors propose variations and extensions of the MV approach trying to 

cope with these shortcomings. These approaches range from imposing portfolio constraints 

(Frost and Savarino, 1988; Jagannathan and Ma, 2003; Bessler, Holler and Kurmann, 2012) to 

the use of factor models (Chan, Karceski and Lakonishok, 1999) and Bayesian methods for 

estimating the MV input parameters. Prominent Bayesian approaches include the Bayes-Stein 

shrinkage estimation (Jorion, 1985 and 1986), which shrinks the return estimates from the 

sample mean returns towards the minimum variance portfolio return, and approaches 

proposed by Pastor (2000) and Pastor and Stambaugh (2000) which builds on the prior belief 

in an asset-pricing model such as the CAPM or a multi-factor model, e.g. the three-factor 

Fama and French model (1993). However, to evaluate the contribution of these extensions in 

a more realistic environment, the performance of the optimization rules has to be evaluated in 

an out-of-sample setting in comparison to adequate benchmark portfolios. Prominent 

benchmark portfolios and popular investment strategies include naïve diversified portfolios 

such as the 1/N-portfolio, which is discussed in the next section. 

2.2. Naïve Diversification: 1/N 

Naïve diversified portfolios are usually based on a simple asset allocation strategy 

such as the 1/N-rule, which suggests to split the wealth uniformly between the available 

investment opportunities. In an early study Jobson and Korkie (1980) find that the ‘naïve 

formation rules such as the equal weight rule can outperform the Markowitz rule.’ Duchin and 

Levy (2009) provide a comparison of the 1/N rule with the Markowitz mean-variance 

optimization using 30 Fama-French industry portfolios for the period from 1991-2007. They 

conclude that the 1/N strategy outperforms MV optimization for individual small portfolios, 
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but that for large portfolios (i.e. institutional investors) the Markowitz strategy provides 

superior results in an out-of-sample framework. Another recent study by DeMiguel, Garlappi 

and Uppal (2009) analyzes whether MV strategies and the various variations adopted in the 

literature outperform a naïve diversified 1/N portfolio across a wide range of different asset 

allocation datasets. Using several performance measures DeMiguel, Garlappi and Uppal 

(2009) find that none of the different MV strategies is able to consistently outperform the 

naïve equal weighted benchmark (1/N) in an out-of-sample application. However, the analysis 

by Kirby and Ostdiek (2012) suggests that the results of DeMiguel, Garlappi and Uppal 

(2009) are largely driven by their research design and their choice of asset allocation datasets. 

Nevertheless, the results of Kirby and Ostdiek (2012) reveal that a high turnover mostly 

erodes the benefits of MV optimization when transaction costs are included. These findings 

might explain why the naïve diversification approach experiences an increasing interest 

among academicians and practitioners alike. Benartzi and Thaler (2001) provide evidence that 

the 1/N-rule is also a popular strategy for private investors. More than a third of the analyzed 

direct contribution plan participants allocate their assets equally among the investment options 

offered in these plans. Pflug, Pichler and Wozabal (2012) suggest that the 1/N approach is the 

optimal investment strategy even under high model ambiguity. They demonstrate numerically 

that MV optimized portfolios convergence to the uniform portfolio if model uncertainty 

increases. 

2.3. The Black-Litterman Approach 

The Black-Litterman model (1992) was developed more than twenty years ago in a 

professional asset management environment and since then experiences an increasing 

attention among quantitative portfolio managers (Satchell and Scowcroft, 2000; Jones, Lim 

and Zangari, 2007). In the academic literature several authors analyze the rationale of the BL 

model and provide examples for applying the methodology (Satchell and Scowcroft, 2000; 

Lee, 2000; Drobetz, 2001; Idzerek, 2005). For example, Meucci (2006) proposes an extension 

of the BL model to non-normally distributed markets, whereas Herold (2005) provides an 

alternative approach to compute implied returns. Chiarawongse et al. (2012) propose an 

extension for incorporating qualitative views in the form of linear inequalities. An overview 

of the BL model and its extensions are provided by Walters (2011) and Meucci (2010). 

Even if several studies analyze the rationale of the BL model, apply it to compute 

efficient frontiers, and provide model extensions, the academic literature does hardly offer 

any empirical evidence documenting the performance of the BL model in out-of-sample 
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applications. So far there is no evidence that the BL model generates superior portfolio 

performance results relative to MV, minimum-variance, or naïve diversified benchmark 

portfolios. In addition, the literature on the BL model does not provide a satisfying answer 

how to generate adequate ‘subjective’ return estimates and how to quantify the reliability of 

these estimates. Several studies simply assume exogenously given estimates (He and 

Litterman 1999, Lee 2000, Drobetz 2001, Idzorek 2005) and suggest confidence intervals of 

the return estimates as a measure of uncertainty (Black and Litterman 1992, Drobetz 2001). 

As the portfolio performance critically depends on the exogenously assumed estimates, these 

approaches are hardly capable to evaluate the advantageousness of the BL model in 

comparison to MV and naïve diversified benchmark portfolios. 

 

3.  METHODOLOGY 

 

3.1. The Black-Litterman approach 

The BL model combines two sources of information to obtain return estimates: 

‘neutral’ return estimates implied in market weights which are also referred to as ‘implied’ 

returns and ‘subjective’ return estimates that are also referred to as ‘views’. ‘Implied returns’ 

are derived by market or benchmark weights and are used as a prior. The basic idea is that 

investors should only depart from the market or benchmark weights if they have reliable 

information and estimates on future returns, which differ from the implied market or 

benchmark expectations. ‘Implied’ returns are derived using the simple assumption that the 

observed market or benchmark weights of assets are the result of a risk-return optimization. 

More precisely it is assumed that market participants maximize the utility function U: 

ωωδω
ω

∑−Π= T
e

TU
2

max     )1(  

where ω is the vector of portfolio weights, Пe is the vector of implied asset excess returns, Σ 

is the variance-covariance matrix, and δ is the investor’s risk aversion coefficient. 

Maximizing the unrestricted utility function results in the optimal portfolios weights: 

eΠ∑= −1)(*     (2) δω  
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Assuming that the observable market weights (ω) are the average optimized portfolio weights 

of investors, the average excess-return estimates of the market can be calculated as: 

ωδ ∑=∏e     )3(  

In the BL framework the vector of implied excess returns (Пe) is combined with the 

investor’s views expressed in the vector (Qe), incorporating the reliability of each view 

quantified in the matrix (Ω). To derive the combined return estimates, the original Black-

Litterman (1992) paper references the Theil’s mixed estimation model (Theil, 1971), while 

several authors also suggest a Baysian estimation model (Lee, 2000; Drobetz, 2001). Figure 1 

illustrates the procedure of the BL approach.  

[Figure 1 about here] 

We briefly describe the intuition of combining the return estimates following Theil’s 

mixed estimation approach. It is assumed that implied excess returns (Пe) and subjective 

views (Qe) are estimators for the mathematically correct excess return estimates (µe). Hence, 

the correct excess return estimates (µe) can be written as implied excess return estimates (Пe) 

plus an error term (η), where (I) is the identity matrix: 

),0(~   with        )4( ∑+⋅=∏ τηηµ NI ee  

The error term (η) is assumed to be normally distributed with a variance proportional 

to the historic variance-covariance matrix (Σ). The proportional factor (τ) reflects the 

uncertainty of implied returns.  

The subjective excess return estimates (Qe) can be written as a linear combination with 

the error term (ε), where (P) is a binary matrix which contains the information for which asset 

a subjective return estimate is considered. 

),0(~   with        )5( Ω+⋅= NPQ ee εεµ  

The matrix (Ω) is the covariance matrix of the error terms and represents the reliability of 

subjective estimates. Implied returns and subjective estimates can be combined as: 

   
Q

     )6(
e









+








=







Π
ε
η

µ
P

Ie
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Applying a generalized least square procedure leads to the estimator of combined excess 

return estimates which after some simplifications can be written as: 

( )[ ] ( )[ ]QPPP TT

BLe

11111

,
ˆ     )7( −−−−− Ω+ΠΣΩ+Σ= ττµ  

The resulting return estimate can be interpreted as a weighted average of implied returns and 

subjective return estimates (Lee 2000) with respect to the correlation structure. The weights 

are the uncertainty factors of implied returns (τ) and subjective return estimates (Ω), which 

will be discussed in the following section. 

Satchell and Scowscroft (2000) show that the posterior variance covariance matrix is: 

 ( )[ ] 111     )8(
−−− Ω+Σ+∑=∑ PPT

BL
τ  

After computing combined return estimates and the posterior variance-covariance matrix a 

traditional risk-return optimization is conducted, maximizing the investor’s utility. 

ωωδµω
ω BL

T
BLe

TU ∑−=
2

max     )9( ,  

We implement realistic investment constraints, namely a budget restriction, an 

exclusion of short-selling, an upper bound on the portfolio volatility and solve the 

maximization problem numerically. The volatility constraint allows us to differentiate 

between different investor types in terms of their desired portfolio volatility rather than risk 

aversion coefficients, which are intuitively difficult to quantify. We keep the risk aversion 

coefficient constant at a level of 2. For MV optimization, we implement the same 

optimization procedure. The only difference is that for the MV approach the vector of mean 

historic excess returns (�̅�) and the historic variance-covariance-matrix (Σ) are used while in 

the BL framework combined excess return estimates (�̂�,��.) and the posterior variance-

covariance-matrix (Σ��) are plugged in. For the time period from January 1993 to December 

2011 we calculate monthly out-of-sample optimized portfolios at every first trading day of the 

month, using the BL, MV and minimum-variance approach. 

3.2. Uncertainty of implied returns 

Before implementing the BL model the uncertainty parameter of implied returns (τ) 

has to be specified. In the literature the values used for (τ) usually range from 0.025 to 0.3 
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(Black and Litterman, (1992); He and Litterman, (1999); Idzorek, (2005); Drobetz, 2001). For 

very small values (τ→0) the combined returns converge to implied returns and the optimized 

portfolio converges to the market portfolio or the respective benchmark. For large values 

(τ→∞) the combined returns converge to the ‘views’ and the optimized portfolio converges to 

the mean-variance portfolio in which the ‘views’ are the underlying return estimates. The 

parameter (τ) controls how distinctly the optimized portfolio may depart from the market 

portfolio or the underlying benchmark. Hence, the parameter (τ) may be calibrated using a 

desired tracking error. We start with setting the parameter (τ) at a level of 0.1 and analyze 

variations between 0.025 and 0.30 in a robustness check. 

3.3. Uncertainty of ‘subjective’ return estimates 

Furthermore, the uncertainty of ‘views’ has to be expressed in the matrix (Ω), which is 

a diagonal matrix comprising the variance of the error terms (ε) of the ‘views’ on its diagonal. 

Values offside the diagonal would represent correlations between the error terms of different 

‘views’ which in the BL model are assumed to be zero (Black and Litterman, 1992). If the 

variance of error terms is large, the uncertainty of the respective ‘view’ is high. In this case 

the optimized portfolio weight will be close to the market or benchmark weight.  

Drobetz (2001) suggests using confidence intervals for estimating the uncertainty of 

‘views’. However, mutually estimating returns and their respective confidence intervals might 

be a challenging task for analyst and might hinder a successful implementation of the BL 

model. Several authors propose to simply assume the same or a proportional uncertainty for 

subjective estimates as for implied returns (He and Litterman, 1999; Meucci, 2010) by setting 

(Ω) as: 

  T)P( P    )10( Σ=Ω τ  

In this approach the resulting combined return estimates are independent of the choice 

of (τ) but no additional information on the reliability of ‘views’ is included. We suggest that 

the out-of sample performance of the BL model should be enhanced if reasonable and time-

varying information on the reliability of views is considered. Therefore, we measure the 

reliability of each view (i) by computing the historic variance of the error terms (εi), where 

(εi,t) is the difference of the subjective return estimate (qi,t) for an asset (i) in month (t) and the 

realized return (ri,t) of asset (i) in month (t). We employ a 12-month moving estimation 

window to calculate the historic variance of the error terms and employ different window 
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lengths in a robustness check. The idea is that in an uncertain market environment when the 

last month’s return estimates depart strongly from the realized returns the investor should 

stick closer to the benchmark. On the other hand, in stable market conditions when the last 

months subjective return estimates were close to the realized returns, we would expect the 

subjective estimate for the next month to be more reliable. 

We analyze the contribution of this historic reliability measure by comparing the out-

of-sample portfolio performance of our approach with the assumption of equal uncertainty 

used by He and Litterman (1999) and Meucci (2010), which substitutes (Ω) according to 

equation (10). 

3.4. Setting strategic weights and constructing benchmark portfolios   

To apply the BL model on a multi-asset portfolio we use an investment universe 

consisting of global stocks, bonds, and commodities. To calculate implied returns we employ 

strategic weights for all asset classes. This implies that the optimized portfolio weights 

converge to the strategic weights if the reliability of the ‘views’ is low. An alternative 

approach is to employ market weights of the assets to calculate implied returns. However this 

would be problematic for several reasons. For commodities, market weights would be 

difficult to measure, while for bonds market weights would be problematic due to their 

relatively heavy weight in comparison to stocks, which would imply that investors allocate an 

extreme high proportion of their assets to bonds, if they do not have ‘subjective’ return 

estimates or if the reliability of these estimates is low. Since this might not be an adequate 

assumption for all investors, we rather rely on strategic weights.  

We account for three different investor types - a ‘conservative’, a ‘moderate’ and an 

offensive’ one - and set different strategic weights for bonds, commodities, and stocks for 

each type. To determine the strategic weight of commodities we rely on the results of earlier 

studies. Anson (1999) who analyzes US stocks and bonds for the period from 1974 to 1997 

suggests that a moderate investor should allocate around 15% to commodities, while a less 

risk-averse investor should allocate over 20% to commodities. Erb and Harvey (2006) derive 

an optimal portfolio weight for commodities of 18%. Based on these results we set the 

strategic weight for commodities to 5%, 15% and 25% for the conservative, moderate and 

offensive investor clienteles, respectively. Furthermore, we assume that the conservative 

investor allocates strategically 80% in bonds, which might be, for instance, realistic for 

pension funds. For the offensive investor we assume that he only invests 10% in bonds 
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strategically, but he might employ higher bond weights in case of stock market downturns or 

high market uncertainty using bonds as a safe haven. The moderate investor type is assumed 

to exhibit a strategic weight of bonds of 45% which is right in between the offensive and 

conservative bond weights. The strategic weights for the different investor types are 

summarized in table 1. These strategic weights are not only used to compute implied returns 

as input for the  BL model but to construct a naïve diversified benchmark for each investor 

type as well. This benchmark statically invests in all assets using the strategic weights shown 

in table 1 (BM I st.w.). A second benchmark (BM II 1/N) follows the simple 1/N-rule in 

which all considered assets are equally weighted. Both benchmark portfolios, as well as all 

optimized portfolios are rebalanced at every first trading day of each month. 

[Table 1 about here] 

We compute ‘implicit’ return estimates for each asset and for each investor type 

according to equation (3). To derive the maximum allowed portfolio risk used as optimization 

constraint we rely on historic benchmark volatilities before the evaluation period from 

January 1988 to December 1992 and add a premium to allow for some reasonable deviation 

from the benchmark. More precisely, we assume maximum desired portfolio volatilities for 

the ‘conservative’, ‘moderate’, and ‘offensive’ investor clienteles of 5%, 10%, and 15% p.a., 

respectively (see table 1), which we assume to stay constant over time. 

3.5. Subjective return estimates 

To successfully implement the BL model the determination of ‘subjective’ return 

estimates is crucial. To be able to compare the results of BL and MV optimization the same 

return estimates have to be used in both approaches. Since a common approach in MV 

optimization is to use mean historic returns as return estimates, we implement this simple 

approach in the BL framework as well, using a moving estimation window of 12 month in the 

base case and analyzing different estimation windows in a robustness check. However, the BL 

approach additionally considers the reliability of the ‘subjective’ estimates as additional input 

parameter. As mentioned above we measure the reliability of historic mean return estimates as 

the variance of the historic differences of forecasted and realized returns, using a 12-months 

moving estimation window in the base case and analyzing various window sizes in a 

robustness check. Hence, the historic return estimate of an asset is assumed to be more 

reliable if the historic error of forecasted returns is lower. 
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3.6. Performance measures  

We calculate several performance measures to evaluate the optimized portfolios. First, 

we compute the moments of the net portfolio returns (after transaction costs) for each 

optimization strategy (i). Further, we compute the out-of-sample net Sharpe ratio as the 

fraction of the out-of-sample mean net excess-return (mean return after transaction costs less 

risk-free rate) divided by the standard deviation of out-of-sample net returns. 

iNet

fiNet RR

,

,
iNet, ˆ
 RŜ     )13(

σ
−

=  

We use the two-sample statistic for comparing Sharpe ratios as proposed by Opdyke 

(2007) to test if the difference in Sharpe ratios of two portfolios is significant. In contrast to 

earlier Sharpe ratio tests as proposed by Jobson and Korkie (1981b) or Lo (2002) this test can 

be applied under very general conditions – stationary and ergodic returns. Most importantly 

for our analysis the test permits auto-correlated and non-normal distributed returns and allows 

for a likely high correlation between the portfolio returns of different strategies.  

As a further risk measure besides volatility, we compute the maximum drawdown, as 

proposed by Grossman and Zhou (1993), which reflects the maximum accumulated loss that 

an investor may suffer in the worst case during the whole investment period from 2000 to 

2011. An advantage of the MDD measure is that it does not draw any assumption on the 

return distribution. We compute the percentage maximum drawdown (MDD) of strategy (i) 

as: 























= ∈∈

ti

i
i P ,

,ti,
),0( t i,T)(0,  ,i

P-P
MaxMaxMDD     )14( τ

ττ

 

where (Pi, t) is the price of portfolio (i) at time (t), when the portfolio is bought and (Pi, τ) is the 

price of portfolio (i) at time (τ), when the portfolio is sold.   

Further, we compute the portfolio turnover, in line with Daskalaki, Skiadopoulos 

(2011), and DeMiguel et al. (2009), which quantifies the amount of trading required to 

implement a certain strategy. The portfolio turnover (PTi) of strategy (i) is the average 

absolute change of the portfolio weights (ω) over the T rebalancing points in time and across 

the N assets: 
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We account for trading costs by assuming proportional transaction costs of 30 basis 

points of the transaction volume in the base case and compute the percentage trading costs 

generated by a certain strategy. We investigate the impact of differing trading costs in the 

robustness check. Additionally we compute the optimized portfolios tracking error and 

information ratio by relying on the benchmark I, which is the reference portfolio for BL. 

 

4. DATA  

To construct multi-asset portfolios we include global stocks, bonds, and commodities 

in the investment universe. We use tow geographic MSCI stock indices covering both 

developed and emerging markets: MSCI World and MSCI Emerging Markets, both 

denominated in US dollar. Emerging markets usually provide higher stock returns than 

developed markets which are related to additional risk factors such as illiquidity or 

institutional and political conditions (Iqbal et al., 2010). Chiou et al. (2009) show that 

international diversification is beneficial for US investors by reducing portfolio volatility and 

improving risk-adjusted returns. Their results hold when including investment constraints 

such as a short-sale constraint and are also evident for time-rolling efficient frontiers and in 

out-of-sample tests.  

Bonds are usually negatively correlated with stocks and are considered as a safe haven 

during stock market downturns. To ensure their function as a low risk investment we use US 

Government bonds. Thereby we exclude default and currency risk from the bond investment. 

We rely on the Bank of America / Merill Lynch US-Government Bond Index (all maturities) 

to represent investments in bonds. In addition we include the Bank of America / Merill Lynch 

US High Yield 100 Bond Index in order to add an exposure to default risk factors. This index 

is expected to yield higher returns than Government bonds, but at the same time to provide a 

lower volatility than stock indices. 

The S&P GSCI Light Energy Index represents the exposure to commodity 

investments. This diversified commodity index enables investors to participate in price 

changes in a wide range of commodity markets. While the often used S&P GSCI Index is 

mainly driven by energy prices, the S&P GSCI Light Energy Index is more balanced across 
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different commodity classes. It reflects the price developments on the future markets for 

energy (37.4%), agricultural products (31.2%) and livestock (10%) as well as industry metals 

(14%) and precious metals (7.4%)1. Commodities are expected to provide low correlations 

with the traditional asset classes stocks and bonds since their prices are related to additional 

risk factors such as weather, geographical conditions or supply constraints. Moreover, as 

several studies document a positive correlation between commodity returns and future 

inflation, investments in commodities might be used as a hedge against inflation (e.g. Bodie 

and Rosanky, 1980; Erb and Harvey, 2006; Gorton and Rouwenhorst, 2006). Several studies 

find that an inclusion of commodities improves the efficient frontier of stock-bond portfolios 

(e.g. Satyanarayan and Varangis, 1996; Abanomey and Marthur, 1999; Anson, 1999; Jensen 

et. al., 2000). However, a recent study of Cheung and Miu (2010) indicates that diversification 

benefits of commodities are regime-dependent and Daskalaki and Skiadopoulos (2011) report 

that portfolio improvements of commodities are not present in out-of sample MV optimized 

portfolios. Since a large strand of the literature finds evidence for the positive role of 

commodities in portfolio optimization, we include commodities as another asset class in our 

analysis. 

We obtain monthly total return index data for all indices for the time period from 

January 1988 to December 2011 from Thomson Reuters Datastream. All data is denominated 

in US dollar. As risk-free rate we use the yield of a three month US T-Bill. Table 2 provides 

descriptive statistics of the monthly asset returns during the whole evaluation period from 

January 1993 to December 2011.  

[Table 2 about here] 

The table shows similar annualized mean returns for stock and bond indices ranging 

between 6.16% and 8% p.a. The average return of the commodity index is slightly lower than 

the average risk free rate of 3.12% during the period, resulting in a negative Sharpe ratio. The 

highest Sharpe Ratio of 0.655 is generated by the US Governmental Bond Index. The 

maximum drawdowns (MDD) of the assets reveals that the maximal loss an investor could 

have suffered during the observed period by investing in stocks was between 55.16% and 

63.04% of the invested capital. This figure was roughly 60% for commodities, 27.21% for the 

US High Yield Bond Index, and 5.29% for the US Government Bond Index. The Jarque-Bera 

statistics is significant for all asset classes. Hence, the assumption of normal distributed 
                                                 
1 Index weights in parentheses are of 30th of December 2011. 
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returns has to be rejected for the whole period.   

For implementing an out-of-sample portfolio optimization with the BL and MV 

approach, we estimate the variance-covariance matrix and historic mean returns using rolling 

estimation windows. Rolling estimation windows provide the advantage that they are more 

responsive to structural breaks than expanding estimation windows. In the base case we use 

estimation windows of 36 months for the variance-covariance matrix and 12 month for 

returns. We choose a longer estimation window for the covariance matrix since we expect the 

correlation structure to be more stable over time than returns. Different window sizes are 

considered in a sensitivity analysis. For these shorter observation windows the assumption of 

normal distributed returns cannot be rejected and the application of the mean-variance 

framework is reasonable. 

Table 3 provides evidence on potential diversification benefits in terms of pair-wise 

correlation coefficients. Over the entire period the diversification benefits across stock indices 

are limited. The correlation between the MSCI World and MSCI Emerging Markets is highly 

significant and larger than 0.8 indicating a strong co-movement of developed and emerging 

market stocks. While the US High Yield Bond Index and Commodities provide a slightly 

larger diversification effect with correlation coefficients ranging between 0.35 and 0.65, the 

highest diversification potential is provided by the US Government Bond Index, which is 

reflected in negative correlation coefficients. Consequently, we expect to find significant 

portfolio benefits by applying the BL and MV frameworks on a multi-asset portfolio, 

including bonds and commodities, rather than on a stock-only portfolio. 

[Table 3 about here] 

5. EMPIRICAL RESULTS 
  

5.1. Results for the base case 

To analyze whether the BL mixed estimation approach enhances historic return 

estimates we compute monthly out-of-sample estimation errors (mean squared errors) of 

forecasted returns. The results are presented in table 4. BL forecasts are derived by combining 

implied returns with ‘views’. Implied returns are computed using the strategic weights 

presented in table 1. Within the asset class stocks the strategic weights are assumed to be 25% 

for emerging markets and 75% for developed markets. Accordingly, within the asset class 

bonds the strategic weights are set 75% for Governmental Bond Index and 25% for the High 
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Yield Bond Index. The same asset weights are used to construct the naïve diversified Bond 

Index Benchmark I. ‘Views’ are historic mean returns using a 12-month rolling estimation 

window. The results reveal that BL return forecasts exhibit lower estimation errors in 

comparison to simple historic means, which would be used in traditional MV optimization.  

[Table 4 about here] 

To analyze whether the improved return forecasts translate to a significant 

outperformance of BL optimized portfolios in comparison to MV, we compute out-of sample 

BL, MV and minimum variance optimized portfolios and two naïve diversified benchmark 

portfolios. Table 5 summarizes the empirical results for the evaluation period from January 

1993 to December 2011. We compute sample moments of portfolio returns and portfolio 

performance measures for the three investor types ‘conservative’, ‘moderate’ and ‘offensive’. 

All data is computed net of transaction costs. For both the BL and MV optimization we use 

historic mean returns as (subjective) return estimates. Benchmarks I is computed according to 

the asset weights in table 1. Benchmark II is an equally weighted (1/N) portfolio in which all 

five asset classes obtain a portfolio weight of 20%. All portfolios are rebalanced at the first 

trading day of each month. The results reveal that BL optimized portfolios exhibit a better 

performance in terms of net Sharpe ratio than MV, minimum-variance and both benchmark 

portfolios for all investor types. For the moderate and offensive investors the outperformance 

of the BL portfolio in comparison to MV is significant. The insignificant result for the 

conservative investor is not surprising since both BL and MV optimization converge to the 

minimum-variance portfolio for high risk aversions. Both risk measures volatility and 

maximum drawdown (MDD) indicate a consistently lower risk of the BL optimized portfolios 

in comparison to MV, independently of the investor type. The lower risk is also reflected in a 

lower absolute sample skewness of  BL portfolio returns in comparison to all other portfolios.  

The average portfolio turnover is an indicator for the amount of trading and, hence, 

transaction costs generated by implementing a certain optimization strategy. However, 

transaction costs are already priced in the net return, maximum drawdown and Sharpe ratio 

measure. The results show that for all investor types the BL approach exhibits a lower 

portfolio turnover and, therefore, lower transaction costs and less extreme reallocations of the 

optimized portfolios in comparison to the MV approach. The average number of assets in the 

optimized portfolio as an indicator for the diversification of the optimized portfolios across 

asset-classes is on average higher for BL portfolios than for MV portfolios. Consequently, BL 

portfolios tend to be better diversified across asset classes.  
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[Table 5 about here] 

Figure 2 shows the optimized portfolio weights during the period 1993-2011 for BL 

and MV optimization for the three investor types. In line with the turnover and diversification 

measures, the figure reveals less extreme portfolio reallocations and a higher benchmark 

orientation of the BL optimized portfolios in comparison to MV. 

[Figure 2 about here] 

5.2. Sensitivity Analyses 

Next, we perform various sensitivity analyses to check if our results are robust to 

changes in the input data. To test whether the outperformance of the BL approach is 

responsive to the optimization constraint ‘maximum allowed portfolio volatility’, presented in 

table 1, we vary the maximum allowed portfolio volatility, while keeping the strategic weights 

of stocks, bonds and commodities constant at the level of 40%, 45% and 15%, respectively. 

Panel I of table 6 shows that the BL approach generates consistently and significantly higher 

net Sharpe ratios than MV optimization and both benchmark portfolios for all considered 

volatility constraints. Additionally, we find lower portfolio risks reflected in a lower 

maximum drawdown (MDD), a higher degree of diversification across asset classes expressed 

in a larger number of assets in the optimized portfolio, a lower portfolio turnover and a higher 

information ratio for BL optimized portfolios in comparison to MV portfolios.  

In panels II and III of table 6, we present the results for different estimation windows 

for the variance-covariance matrix and the return estimates. As before, we find consistently 

higher net Sharpe ratios for the BL approach in comparison to MV optimization and both 

benchmark portfolios. The results get insignificant for too short or too long estimation 

windows for the return estimates. For short estimation windows the portfolio turnover 

increases dramatically, resulting in immense transaction costs and a relatively lower 

outperformance in comparison to the naïve diversified benchmark portfolios. For long 

estimation windows of 18 month and more the responsiveness to structural breaks such as a 

stock market downturn is lower, resulting in a lower out-of-sample Sharpe ratio. Additionally 

an analysis of the auto correlation functions of the asset returns shows that returns are 

significantly correlated with the last months returns only, while returns with a lag larger than 

12 month do not have almost any explanatory power.  
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Additionally, we observe a better performance of BL optimized portfolios in terms of 

maximum drawdown, diversification, turnover, and information ratios. Based on these results, 

we identify an optimal estimation window of 36 to 48 month for the covariance matrix and 12 

month for the return estimates. The insignificant outperformance of the BL model for too long 

and too short return estimation windows highlights the importance of accurate and responsive 

return estimates. However, further research is required to analyze the performance of the BL 

approach when using alternative return estimates. This issue will be addressed in a further 

study. 

[Table 6 about here] 

To derive additional insights for explaining the outperformance of the BL approach we 

conduct a further sensitivity analysis, varying the BL parameters (τ) and (Ω). The results are 

shown in table 7. To analyze the contribution of the uncertainty measure (Ω) of views, we 

alternatively apply the approach used by He and Litterman (1999) and Meucci (2010) and 

substitute (Ω) according to equation (10). In this case we simply assume the same uncertainty 

for ‘views’ as for ‘implied’ returns. Hence, no additional information on the reliability of 

‘views’ is considered. The results show that this approach leads to an almost complete 

disappearance of the outperformance of the BL model in comparison to MV. Therefore, we 

infer that a major part of the outperformance of the BL model can be explained by the 

consideration of additional information on the reliability of return estimates. This leads to an 

investment close to the benchmark or market portfolio in case of uncertain market conditions 

and high deviations from the benchmark or market portfolio, when markets are more stable 

and return forecast errors are low. 

[Table 7 about here] 

Next, we vary the parameter (τ) on a range from 0.025 to 0.3 which captures most of 

the documented approaches in the literature (Black and Litterman, 1992: He and Litterman, 

1999; Idzorek, 2005; Drobetz, 2001). The results show that the BL model outperforms MV 

optimization for all considered values of (τ). This is not only true for the out-of-sample 

Sharpe ratios but also for the risk measure “maximum drawdown” (MDD), the diversification 

measure “average number of assets”, the portfolio turnover, and the information ratio 

measures. Further, we observe that the BL portfolio’s deviation from the benchmark declines 

with lower values of (τ) which is reflected in lower tracking errors for lower (τ)-values. This 

is in line with the interpretation of (τ) as an uncertainty measure of implied returns and 
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confirms its function to control the desired deviation from the benchmark or market portfolio. 

Further, we find that for our sample a (τ)-value of 0.05 is superior to all other analyzed cases. 

As expected, for tiny values of (τ), close to zero, we find that the unconstrained optimized BL 

portfolio equals exactly the benchmark portfolio. On the other hand, for infinite large values 

of (τ), the optimized BL portfolio is equivalent to the MV optimized portfolio. A further 

variation of (Ω) reveals that the outperformance of the BL portfolio is robust to changes in the 

estimation window of (Ω) for all considered cases from 6 to 36 months. 

To investigate the impact of the assumed level of transaction costs, we vary the 

variable transaction costs from 5 to 50 basis points. The net Sharpe ratio measures for BL, 

MV and the two benchmark portfolios are reported in table 8. Again, the results reveal that 

the BL portfolio performs significantly better than the MV approach and better than both 

naïve diversified benchmark portfolios for all considered levels of transaction costs. However, 

for large transaction costs of 50 basis points or more, the lower portfolio turnover of both 

benchmark portfolios gets more pronounced leading to a lower level of significance of their 

relative underperformance to the BL portfolio. For low levels of transaction costs the 

significance level of the outperformance of the BL portfolio relative to the MV portfolio is 

lower, illustrating that the lower level of portfolio turnover relatively to MV is an additional 

driver of the outperformance of the BL approach. 

[Table 8 about here] 

Finally, we analyze the impact of the chosen reference portfolio for the BL portfolio 

performance. So far, we applied the strategic weights for stocks, bonds, and commodities as 

presented in table 1 (BL-st.w.). Now, we consider two alternative reference portfolios. The 

first is a naïve diversified portfolio in which all the five considered assets obtain the same 

strategic weight of 20% (BL-1/N). The second approach uses the minimum variance portfolio 

as reference portfolio (BL-MinVar). This approach is particularly reasonable for a 

conservative investor, since it implies that investors hold the minimum variance portfolio if 

they do not have information on future returns or the reliability of return forecasts (‘views’) is 

low. The results for different reference portfolios are presented in table 9. The results reveal 

that for all considered reference portfolios the BL optimization leads to consistently better 

portfolio performances in comparison to MV and both benchmark portfolios and all investor 

types. Not surprisingly, we find that for the conservative investor type the BL-MinVar 

approach performs slightly better than the BL-strategic-weights approach in terms of net 
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Sharpe Ratio and portfolio volatility. For offensive investors, however, the BL model with 

strategic weights as reference portfolio performs marginally better. 

[Table 9 about here] 

5.3. Performance of optimized portfolios in different market environments 

To examine the performance of the BL, MV and minimum variance portfolios in different 

market environments, we separate the total time period between 1993 and 2011 into several 

sub-periods. We determine expansionary and recessionary sub-periods on an ex ante basis 

following the approach proposed by Jensen and Mercer (2003). This approach builds on the 

monetary cycle defined as the first change of the short-term interest rate by the central bank 

that runs counter to the previous trend. In line with Bessler et al. (2012) we rely on changes in 

the federal funds target rate augmented by signals originating from the stock market. As in 

Bessler et al. (2012) it is assumed that the stock market signals a change in the business cycle 

if the 24-months moving average of the MSCI World is crossed by the actual index from 

below (expansionary state) or above (recessionary state). For the transition from one state to 

another it is required that both instruments, the monetary policy as well as the stock market, 

provide a consistent signal, thereby reducing the probability of incorrect signals. Figure 3 

shows the definition of sub-periods as well as the monetary policy and stock market signals, 

where shaded areas denote down markets/recessionary periods. 

The first sub-period ranges from January 1993 to January 2001 and covers a number 

of events such as the Asian crisis, the Russian default, and the build-up of the technology 

bubble. This period comprises 96 months and can be characterized as ‘expanding’ with 

increasing values in developed stock markets and relatively high interest rates with a T-Bill 

yielding on average 4.77% p.a.. The second sub-period between February 2001 and June 2004 

covers the end of the new economy bubble and the subsequent rebound of international stock 

markets. The second period comprises 41 months and can be characterized as ‘recessionary’ 

with bearish stock markets and an average risk free rate of 1.85% p.a. (average yield of a 3-

month T-Bill). The third sub-period from July 2004 to February 2008 comprises 48 months 

and covers bullish stock markets and high interest rates. The average risk free rate in this 

period is 3.67% p.a.. The final sub-period from March 2008 to December 2011 includes 47 

months and incorporates the recent financial crisis that led to significant declines in the values 

of equities and alternative asset classes, such as commodities and Hedge Funds. The average 

risk free rate in the fourth period was 0.37% p.a..  
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Table 10 summarizes the performance measures of the out of sample optimized 

portfolios for the four sub-periods for the moderate investor type. We analyzed the sub-

periods for the conservative and offensive investor clienteles as well. Since the results do not 

change qualitatively, we only report the performance measures for the moderate investor type 

for the sake of clarity and simplicity. In the BL and MV optimized portfolios the maximum 

expected volatility is constrained to 10% p.a.. For the BL optimization the strategic weights 

are set according to table 1: 45% for bonds, 15% for commodities and 40% for stocks. These 

weights are also used to compute the naïve diversified benchmark I. In benchmark II all assets 

are equally weighted (1/N). All portfolios are rebalanced at the first trading day of every 

month.  

For both recessionary sub-periods we find significantly higher Sharpe ratios for the BL 

optimized portfolios in comparison to MV and a better performance in comparison to both 

naïve diversified benchmark portfolios as well. In both expansionary periods we find a 

relatively smaller and insignificant outperformance of BL in comparison to MV. In the third 

sub-sample, which covers the bullish stock markets between July 2004 and February 2008 we 

find that the naïve diversified portfolios outperform both BL and MV optimized portfolios. 

However the difference in Sharpe ratios is insignificant.  

Consistently with the analysis for the full sample, we find that for all sub-periods BL 

optimized portfolios are less risky than MV and both naïve diversified portfolios which is 

indicated by a lower maximum drawdown. Furthermore, the analysis of the portfolio turnover 

reveals consistently lower turnovers and, hence, lower transaction costs for BL compared to 

MV for all sub-periods. Additionally, we find that for all sub-periods BL portfolios are better 

diversified across asset classes than MV portfolios, which is indicated by a higher average 

number of assets in the optimized portfolios. 

Overall, we find that the BL model outperforms MV and naïve diversified portfolios 

particularly in recessionary periods. In expansionary periods the outperformance in 

comparison to MV is insignificant and naïve diversified portfolios even perform better in one 

sub-period. In terms of the maximum drawdown, portfolio turnover and portfolio 

diversification the results for all sub-periods are consistent with the results for the full sample.  

[Table 10 about here] 
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6. CONCLUSION  

We analyze the out-of-sample performance of BL optimized portfolios in comparison to 

MV, minimum variance and naïve diversified benchmark portfolios using multi-asset 

portfolios. To ensure the comparability of MV and BL optimization, we use the same historic 

return estimates in both approaches. While in the MV approach the historic estimates are 

directly used in the optimization condition, in the BL approach the estimates are first 

combined with implied returns, considering the reliability of each historic estimate.  

Our empirical results contribute to the literature in several ways. First, we find that the 

BL model can successfully be applied on multi-asset portfolios, rather than to stock-only 

portfolios, by using strategic weights for the different asset classes or using the minimum 

variance portfolio as reference portfolio. For the period from January 1993 to December 2011, 

we find that BL optimized portfolios exhibit consistently higher out-of-sample portfolio 

performances in terms of net Sharpe ratios and the risk measure ‘maximum drawdown’ in 

comparison to MV, minimum variance and two benchmark portfolios. While in line with 

DeMiguel et al. (2009), the MV approach fails in most cases to significantly outperform a 

naïve equally weighted (1/N) benchmark, the BL model significantly outperforms both 

considered static benchmark portfolios in almost all considered cases. Moreover, BL 

optimized portfolios include, on average, a larger number of assets than MV optimized 

portfolios and, therefore, are better diversified across asset classes. A further sensitivity 

analysis reveals that the out-of-sample outperformance of the BL model is driven by the 

consideration of additional information on the reliability of return estimates (‘views’) and by a 

lower portfolio turnover.  

Furthermore we separate the full sample from January 1993 to December 2011 into four 

sub-periods based on the monetary cycle and stock market signals, following the approach of 

Bessler et al. (2012). We find that the BL model outperforms MV and naïve diversified 

portfolios particularly in recessionary periods. The other benefits of the BL optimized 

portfolios such as the lower maximum drawdowns, the lower portfolio turnover and the 

higher portfolio diversification could be observed for all sub-periods consistently with the 

results for the full sample.   

Finally, we find that for conservative investors using the minimum variance portfolio as 

reference portfolio in the BL approach performs slightly better in terms of net Sharpe ratios 

than setting strategic weights. Our results are robust to all considered variations of the input 
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parameters. However, further research is required to evaluate the BL portfolio performance 

for other than historic return estimates. We will address this research question in another 

study.    
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Table 1:  Strategic Weights and Benchmark Portfolios 

 

Bonds Commodities Stocks

conservative 80% 5% 15% 4.58% 5.00% p.a.

moderate 45% 15% 40% 6.66% 10.00% p.a.

offensive 10% 25% 65% 9.72% 15.00% p.a.

Investor type

Benchmark portfolio weights Historic volatility of 
benchmark portfolio

Optimization constraint: 
max. portfolio volatility

 
 
This table provides the strategic weights for the three analyzed investor types: conservative, moderate and 
offensive, which are used to compute implied return estimates. Within the asset class stocks and bonds emerging 
market stocks and high yield bonds obtain a strategic weight of 25% while developed market stocks and 
government bonds obtain a strategic weight of 75%. We assume that the three investor types prefer a maximum 
expected portfolio volatility of 5%, 10% and 15%, respectively. We compute two alternative benchmark 
portfolios. Benchmark I is computed using the strategic weights presented in this table. Benchmark II is a naïve 
diversified 1/N benchmark, in which all five asset classes obtain a portfolio weight of 20%.  
 

 

 

 

 

 

Table 2:  Descriptive statistics of asset returns (January 1993- December 2011) 
 

MSCI World
MSCI Emerging 
Markets

US Gov. 
Bondindex

US High Yield 
Bondindex

S&P GSCI
Light Energy

Mean Return p.a. 6,71% 8,00% 6,16% 7,31% 2,66%
SD p.a. 16,61% 25,40% 4,64% 8,44% 16,58%
Skewness -0,897 -0,934 -0,037 -1,467 -1,228
Kurtosis 5,337 5,928 4,259 10,444 8,447
Sharpe Ratio 0,216 0,192 0,655 0,496 -0,028
MDD 55,16% 63,04% 5,29% 27,21% 59,95%
JB 82.47*** 114.61*** 15.10*** 608.24*** 339.20***
Observations 228 228 228 228 228

 
This table provides sample moments, Sharpe ratios, Maximum Drawdown and Jarque-Bera statistics of the eight 
asset classes considered in the empirical analysis. The time period covers the months from January 1993 to 
December 2011. ‘Mean Return p.a.’ denotes annualized time-series mean of monthly returns while ‘SD p.a.’ 
denotes the associated annualized standard deviation. ‘Skewness’ and ‘Kurtosis’ represent the third and fourth 
moment of the return distribution. ‘Sharpe Ratio’ shows the annualized Sharpe ratios of the respective asset 
classes using the average 1993 -2011 risk-free interest rate of 3.12% per year. MDD shows the maximum 
drawdown of the respective asset class during the period from January 1993 to December 2011 and ‘JB’ is the 
Jarque-Bera statistic for testing normality of returns. ***, **, * indicate statistical significance at the 1%, 5%, 
and 10% level, respectively. 
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Table 3:  Correlation matrix of asset classes (January 1993- December 2011) 
 

MSCI World
MSCI Emerging 
Markets

US Gov. 
Bondindex

US High Yield 
Bondindex

S&P GSCI
Light Energy

MSCI World 1

MSCI Emerging Markets 0.811*** 1

US Gov. Bondindex -0.182*** -0,221*** 1

US High Yield Bondindex 0.652*** 0.619*** -0.069 1

S&P GSCI Light Energy 0.470*** 0.463*** -0.128** 0.353*** 1
 

This table provides the correlation matrix for the asset classes considered in the analysis over the time period 
January 1993 to December 2011. ***, **, * indicate values significantly different from 0 at the 1%, 5%, and 
10% level, respectively. 
 
 
 
 
 
 
 
Table 4:  Mean squared error of monthly out-of-sample forecasted returns  
 

View

conservative moderate offensive 12 month mean

MSCI World 0.227% 0.227% 0.227% 0.245%

MSCI Emerging Markets 0.533% 0.532% 0.532% 0.583%

US Gov. Bondindex 0.018% 0.018% 0.018% 0.019%

US High Yield Bondindex 0.060% 0.059% 0.059% 0.063%
S&P GSCI Light Energy 0.226% 0.227% 0.227% 0.255%

Black Litterman mixed estimation

 
 
This table documents mean-squared errors (MSE) of monthly forecasted returns. Forecasts are computed using 
the BL mixed estimation approach (combining 12-month means as “views” with implied returns) and the views 
as used in MV. 
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Table 5:  Empirical Results for the full sample (evaluation period 1993-2011): 
 
Investor type: 
conservative 

Black-Litterman Mean-Variance 
Minimum 
Variance 

BM I (st.w.) BM II (1/N)

Net mean return p.a. 7.81% 7.29% 6.09% 6.29% 6.08%
Volatility p.a. 5.16% 6.08% 4.17% 4.86% 11.08%
Skewness -0.23 -1.14 -0.48 -1.11 -1.48
Kurtosis 3.70 8.30 4.26 8.11 9.41
Jarque-Bera 6.63** 316.14*** 23.77*** 294.52*** 473.16***

Net Sharpe Ratio 0.91
ϮϮ 

0.68
Ϯ

0.71 0.65 0.27
Net MDD 5.99% 9.41% 7.45% 13.99% 40.59%
Avrg. number of assets 3.32 2.69 3.71 8.00 8.00
Avrg. turnover p.a. 2.13 2.67 0.77 0.18 0.29
Tracking Error 1.16% 1.37% 0.73% / /
Information Ratio 1.31 0.73 -0.28 / /
Obs. 228 228 228 228 228

Investor type: 
moderate

Black-Litterman Mean-Variance 
Minimum 
Variance 

BM I (st.w.) BM II (1/N)

Net mean return p.a. 9.58% 8.21%       / 6.03% 6.08%
Volatility p.a. 8.65% 10.37%       / 9.16% 11.08%
Skewness -0.53 -0.72       / -1.37 -1.48
Kurtosis 4.98 5.62       / 8.84 9.41
Jarque-Bera 47.83*** 85.14***       / 395.82*** 473.16***

Net Sharpe Ratio 0.75
**'##'ϮϮ

0.49       / 0.32 0.27
Net MDD 9.46% 16.18%       / 35.10% 40.59%
Avrg. number of assets 3.26 2.16       / 8.00 8.00
Avrg. turnover p.a. 3.32 4.44       / 0.27 0.29
Tracking Error 2.03% 2.50%       / / /
Information Ratio 1.75 0.86       / / /
Obs. 228 228 228 228 228

Investor type:
offensive

Black-Litterman Mean-Variance 
Minimum 
Variance 

BM I (st.w.) BM II (1/N)

Net mean return p.a. 11.72% 10.35%       / 5.81% 6.08%
Volatility p.a. 11.68% 13.62%       / 14.27% 11.08%
Skewness -0.34 -0.42       / -1.26 -1.48
Kurtosis 5.17 5.17       / 8.01 9.41
Jarque-Bera 49.16*** 51.14***       / 299.35*** 473.16***

Net Sharpe Ratio 0.74
*'###'ϮϮ

0.53
#

      / 0.19 0.27
Net MDD 14.39% 24.59%       / 50.99% 40.59%
Avrg. number of assets 3.12 1.72       / 8.00 8.00
Avrg. turnover p.a. 3.62 4.61       / 0.25 0.29
Tracking Error 2.63% 3.52%       / / /
Information Ratio 2.25 1.27       / / /
Obs. 228 228 228 228 228

 
This table reports the portfolio performance measures for the full sample from 1993-2011 in the base case. In the 
BL and MV approach (subjective) return estimates are mean historic returns using a rolling estimation window 
of 12-month. The variance-covariance matrix is calculated using a 36-month moving estimation window. In the 
BL model the parameter (τ) is set equal to 0.1, (Ω) is computed using the variance of historic return forecast 
errors (12-month rolling estimation window). In the BL and MV optimized portfolios the maximum expected 
volatility is constrained to 5%, 10%, and 15% for the conservative, moderate, and offensive investor type, 
respectively. Benchmark I is computed using the asset weights presented in table 1. In Benchmark II all assets 
are equally weighted (1/N). Benchmark I is the reference portfolio for BL and is used to compute tracking errors 
and information ratios. All portfolios are rebalanced at the first trading day of every month. * / ** / ***, ( #/##/###), 
[Ϯ/ϮϮ/ϮϮϮ] represents a significant higher Sharpe Ratio compared to Mean-Variance, (Benchmark I), [Benchmark 
II] at the 10%- / 5%- / 1%-level, respectively.  
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Table 6:  Robustness Check I 
(I) Variation of maximum allowed portfolio volatility 

BL MV BL MV BL MV BL MV BL MV I (st.w.) II (1/N)

Net Sharpe Ratio 0.92
*'##'ϮϮϮ

0.68
#'Ϯ

0.80
**'##'ϮϮ

0.54 0.75
**'##'ϮϮ

0.49 0.75
*'##'ϮϮ

0.53 0.74
*'##'ϮϮ

0.49 0.32 0.27

Net MDD 5.88% 9.41% 7.58% 11.54% 9.46% 16.18% 11.18% 24.59%16.41% 27.98% 35.10% 40.59%

Avrg. number of assets 3.64 2.69 3.45 2.41 3.26 2.16 3.00 1.71 2.76 1.35 8.00 8.00

Avrg. turnover p.a. 2.00 2.67 2.80 3.79 3.32 4.44 3.91 4.61 4.07 4.36 0.27 0.29

Information Ratio 1.06 0.67 1.50 0.76 1.75 0.86 2.26 1.46 2.36 1.39 / /

(II) Variation of estimation window for variance-covariance matrix

BL MV BL MV BL MV BL MV BL MV I (st.w.) II (1/N)
Net Sharpe Ratio 0.63'#'Ϯ 0.56 0.73**'##'ϮϮ 0.48 0.75**'##'ϮϮ 0.49 0.75**'##'ϮϮ0.46 0.73*'#'ϮϮ 0.47 0.32 0.27
Net MDD 16.13% 18.28% 14.58% 15.73% 9.46% 16.18% 8.97% 16.99% 8.76% 18.26% 35.10% 40.59%

Avrg. number of assets 3.04 1.90 3.14 2.09 3.26 2.16 3.38 2.24 3.41 2.29 8.00 8.00

Avrg. turnover p.a. 4.34 4.63 3.56 4.33 3.32 4.44 3.48 4.60 3.27 4.59 0.27 0.29

Information Ratio 1.65 1.37 1.94 0.90 1.75 0.86 1.59 0.76 1.45 0.76 / /

(III) Variation of estimation window for historic return estimatesx

BL MV BL MV BL MV BL MV BL MV I (st.w.) II (1/N)
Net Sharpe Ratio 0.45 0.23 0.57 0.32 0.75**'##'ϮϮ 0.49 0.56Ϯ 0.33 0.51 0.29 0.32 0.27
Net MDD 14.48% 22.69% 15.65% 24.93% 9.46% 16.18% 17.45% 20.58% 23.99% 32.08% 35.10% 40.59%

Avrg. number of assets 2.97 2.01 3.1 2.15 3.26 2.16 3.38 2.13 3.38 2.12 8.00 8.00

Avrg. turnover p.a. 12.30 15.29 4.76 6.41 3.32 4.44 2.92 4.07 2.49 3.42 0.27 0.29

Information Ratio 0.46 -0.24 1.01 0.17 1.75 0.86 1.15 0.18 0.95 0.04 / /

10% 15% 20% BenchmarkMaximum Volatility p.a. 

Estimation window
 # month 

1 6

5,00% 7,50% 

Estimation window
 # month 

12 24

Benchmark

36 60

12 18 24

Benchmark48

Base Case: Moderate investor maximum portfolio volatility 10% p.a.. Strategic weights: Bonds: 45%, Commodities: 15%; Stocks: 40%. * / ** / ***, (#/##/###), [Ϯ/ϮϮ/ϮϮϮ] represents 
a significant higher Sharpe Ratio compared to Mean-Variance, (Benchmark I), [Benchmark II] at the 10%- / 5%- / 1%-level, respectively. Benchmark I is composed of 45% 
Bonds, 15% Commodities, 40% stocks. In Benchmark II all assets are equally weighted (1/N). Benchmark I is the reference portfolio for BL and is used to compute information 
ratios. 
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Table 7:  Robustness Check II: Variation of BL model parameters 
 
Variation of parameter (τ)

MV BM I (st.w.)

Parameter τ (τ → ∞) 0.3 0.15 0.1 0.05 0.025 (τ → 0)

Net Sharpe Ratio 0.49 0.67
#'Ϯ

0.71*'
##

'
ϮϮ

0.75
**'##'ϮϮ

0.77
**'##'ϮϮ

0.67
##'ϮϮ

0.51 0.32

Net MDD 16.18% 10.01% 9.58% 9.46% 10.34% 20.82% 15.74% 35.10%

Avrg. number of assets 2.16 2.86 3.06 3.26 3.87 4.37 2.34 8.00

Avrg. turnover p.a. 4.44 3.88 3.56 3.32 2.79 2.14 4.45 0.27

Tracking Error 2.50% 2.20% 2.12% 2.03% 1.68% 1.20% 2.40% /

Information Ratio 0.86 1.30 1.58 1.75 2.08 2.10 0.92 /

Variation of estimation window for uncertainty measure of views (Ω)

MV BM I (st.w.)
(Ω → 0) 3 6 12 18 24 36 (Ω → ∞)

Net Sharpe Ratio 0.49 0.52 0.68
#'Ϯ

0.75
**'##'ϮϮ

0.73
*'#'ϮϮ

0.76
*'##'ϮϮ

0.74
*'#'ϮϮ

0.32

Net MDD 16.18% 13.01% 13.66% 9.46% 10.53% 10.64% 11.08% 35.10%

Avrg. number of assets 2.16 2.89 3.15 3.26 3.22 3.26 3.30 8.00

Avrg. turnover p.a. 4.44 6.28 4.28 3.32 3.10 2.98 2.98 0.27

Tracking Error 2.50% 2.17% 2.18% 2.03% 2.07% 2.09% 2.07% /

Information Ratio 0.86 0.86 1.47 1.75 1.61 1.41 1.33 /

Black LittermanEstimation window for 
Ω # month 

Black Litterman 

( ) TPP ∑=Ω τ

 
 
Base Case: Moderate investor maximum portfolio volatility 10% p.a.. Strategic weights: Bonds: 45%, 
Commodities: 15%; Stocks: 40%. * / ** / ***, (#/##/###), [Ϯ/ϮϮ/ϮϮϮ] represents a significant higher Sharpe Ratio 
compared to Mean-Variance, (Benchmark I), [Benchmark II] at the 10%- / 5%- / 1%-level, respectively. 
Benchmark I is composed of 45% Bonds, 15% Commodities, 40% stocks. In Benchmark II all assets are equally 
weighted (1/N). Benchmark I is the reference portfolio for BL and is used to compute information ratios. 
 
 
 
 
 
 
Table 8:  Robustness Check III: Variation of transaction costs 

Variable transaction costs in bp5 10 20 30 40 50 

Net Sharpe Ratio  BL 0.850
*'##'ϮϮ

0.829
*'##'ϮϮ

0.788
*'##'ϮϮ

0.746
**'##'ϮϮ

0.706
**'#' ϮϮ

0.665
**'#' Ϯ

Net Sharpe Ratio  MV 0.605
Ϯ

0.582 0.536 0.490 0.445 0.400

Net Sharpe Ratio BM I (st.w.)0.325 0.323 0.320 0.317 0.314 0.310

Net Sharpe Ratio BM II (1/N) 0.273 0.272 0.269 0.267 0.264 0.260
 

 
Base Case: Moderate investor maximum portfolio volatility 10% p.a.. Strategic weights: Bonds: 45%, 
Commodities: 15%; Stocks: 40%. * / ** / ***, (#/##/###), [Ϯ/ϮϮ/ϮϮϮ] represents a significant higher Sharpe Ratio 
compared to Mean-Variance, (Benchmark I), [Benchmark II] at the 10%- / 5%- / 1%-level, respectively. 
Benchmark I is composed of 45% Bonds, 15% Commodities, 40% stocks. In Benchmark II all assets are equally 
weighted (1/N). Benchmark I is the reference portfolio for BL and is used to compute information ratios. 
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Table 9:  Robustness Check IV: Alternative Reference portfolios  
 

BL-st.w. BL-1/N BL-MinVar MV MinVar BM I (st.w.) BM II (1/N)
Net mean return p.a. 7.81% 7.79% 7.86% 7.29% 6.09% 6.29% 6.08%
Volatility p.a. 5.16% 5.22% 5.13% 6.08% 4.17% 4.86% 11.08%
Net Sharpe Ratio 0.91

ϮϮ 
0.89

ϮϮ 
0.92

ϮϮ 
0.68

Ϯ
0.71 0.65 0.27

Net MDD 5.99% 6.07% 6.17% 9.41% 7.45% 13.99% 40.59%
Avrg. number of assets 3.32 3.79 3.20 2.69 3.71 8.00 8.00
Avrg. turnover p.a. 2.13 2.06 2.11 2.67 0.77 0.18 0.29
Net mean return p.a. 9.58% 9.51% 9.28% 8.21%       / 6.03% 6.08%
Volatility p.a. 8.65% 8.87% 8.05% 10.37%       / 9.16% 11.08%
Net Sharpe Ratio 0.75

**'##'ϮϮ
0.72

*'#'ϮϮ
0.76

**'#' ϮϮ
0.49       / 0.32 0.27

Net MDD 9.46% 11.02% 9.21% 16.18%       / 35.10% 40.59%
Avrg. number of assets 3.26 3.48 2.86 2.16       / 8.00 8.00
Avrg. turnover p.a. 3.32 3.29 3.27 4.44       / 0.27 0.29
Net mean return p.a. 11.72% 11.32% 10.37% 10.35%       / 5.81% 6.08%
Volatility p.a. 11.68% 11.30% 9.85% 13.62%       / 14.27% 11.08%
Net Sharpe Ratio 0.74

*'###'ϮϮ
0.73

*'##'ϮϮ
0.73

'##'ϮϮ
0.53

#
      / 0.19 0.27

Net MDD 14.39% 11.67% 12.10% 24.59%       / 50.99% 40.59%
Avrg. number of assets 3.12 3.21 2.63 1.72       / 8.00 8.00
Avrg. turnover p.a. 3.62 3.83 3.88 4.61       / 0.25 0.29

o
ffe

n
si

ve
co

n
se

rv
a
tiv

e
m

o
d
e
ra

te

 
 
This table reports portfolio performance measures for the full sample from 1993-2011 using different reference 
portfolios in the BL approach. In the BL and MV approaches (subjective) return estimates are mean historic 
returns using a rolling estimation window of 12-month. The variance-covariance matrix is calculated using a 36-
month moving estimation window. In the BL model the parameter (τ) is set equal to 0.1, (Ω) is computed using 
the variance of historic return forecast errors (12-month rolling estimation window). Benchmark I is computed 
using the asset weights presented in table 1. In Benchmark II all assets are equally weighted (1/N).  Benchmark I 
is the reference portfolio for BL-st.w. and is used to compute BL-st.w. and MV information ratios. Benchmark II 
is the reference portfolio for BL-1/N and is used to compute BL-1/N information ratios. In the BL-MinVar 
approach the reference portfolio is the minimum variance portfolio. All portfolios are rebalanced at the first 
trading day of every month. * / ** / ***, (#/##/###), [Ϯ/ϮϮ/ϮϮϮ] represents a significant higher Sharpe Ratio compared 
to Mean-Variance, (Benchmark I), [Benchmark II] at the 10%- / 5%- / 1%-level, respectively.  
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Table 10:  Robustness Check V: Analysis of Sub-Periods  
 

January 1993-January 2001 Black-Litterman Mean-Variance BM I (st.w.) BM II (1/N)
Net mean return p.a. 10.25% 10.41% 7.86% 6.74%
Volatility p.a. 9.16% 11.08% 6.90% 8.30%
Net Sharpe Ratio 0.60 0.51 0.45 0.24
Net MDD 9.46% 12.93% 15.32% 19.41%
Avrg. number of assets 2.95 2.09 8.00 8.00
Avrg. turnover p.a. 4.16 5.48 0.22 0.26
Avrg risk free rate 4.77%
Obs. 96

February 2001-June 2004 Black-Litterman Mean-Variance BM I (st.w.) BM II (1/N)
Net mean return p.a. 7.77% 5.01% 3.71% 5.19%
Volatility p.a. 6.40% 8.05% 8.32% 10.00%
Net Sharpe Ratio 0.92* 0.39 0.22 0.33
Net MDD 6.52% 10.67% 14.19% 17.37%
Avrg. number of assets 2.76 1.90 8.00 8.00
Avrg. turnover p.a. 2.67 4.42 0.30 0.31
Avrg risk free rate 1.85%
Obs. 41

July 2004 - February 2008 Black-Litterman Mean-Variance BM I (st.w.) BM II (1/N)
Net mean return p.a. 13.81% 11.97% 10.51% 12.44%
Volatility p.a. 9.41% 11.35% 5.08% 6.66%
Net Sharpe Ratio 1.08 0.73 1.35 1.32
Net MDD 6.63% 10.48% 34.14% 39.57%
Avrg. number of assets 3.84 2.59 8.00 8.00
Avrg. turnover p.a. 3.45 4.20 0.22 0.25
Avrg risk free rate 3.67%
Obs. 44

March 2008 - December 2011 Black-Litterman Mean-Variance BM I (st.w.) BM II (1/N)
Net mean return p.a. 5.84% 3.00% 0.14% -0.43%
Volatility p.a. 8.63% 9.75% 15.04% 18.10%
Net Sharpe Ratio 0.63* 0.27 -0.01 -0.04 
Net MDD 9.34% 16.18% 35.10% 40.59%
Avrg. number of assets 3.81 2.13 8.00 8.00
Avrg. turnover p.a. 2.02 2.57 0.39 0.38
Avrg risk free rate 0.37%
Obs. 47

 
This table reports portfolio performance measures for the four sub-periods from 1993-2011 for the moderate 
investor type. In the BL and MV approach (subjective) return estimates are mean historic returns using a rolling 
estimation window of 12-month. The variance-covariance matrix is calculated using a 36-month moving 
estimation window. In the BL model the parameter (τ) is set equal to 0.1, (Ω) is computed using the variance of 
historic return forecast errors (12-month rolling estimation window). In the BL and MV optimized portfolios the 
maximum expected volatility is constrained to 10% p.a.. For the BL optimization the strategic weights are set 
according to table 1: 45% for bonds, 15% for commodities and 40% for stocks. These weights are used to 
compute the naïve diversified benchmark I, as well. In benchmark II all assets are equally weighted (1/N). All 
portfolios are rebalanced at the first trading day of every month. * / ** / ***, (#/##/###), [Ϯ/ϮϮ/ϮϮϮ] represents a 
significant higher Sharpe Ratio compared to Mean-Variance, (Benchmark I), [Benchmark II] at the 10%- / 5%- / 
1%-level, respectively.  
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Figure 1:  The Procedure of the Black-Litterman Approach (Idzorek 2005) 
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Figure 2: BL and MV optimized portfolio weights (base case)
 

 
This figure reports the optimized portfolio weights for the full sample from 1993
BL and MV approach (subjective) return estimates
of 12-month. The variance-covariance matrix is calculated using a 36
BL model the parameter (τ) is set equal to 0.1, (
errors (12-month rolling estimation window). 
volatility is constrained to 5%, 10%, and 15% for the conservative, moderate, and offensive investo
respectively. All portfolios are rebalanced at the first trading day of every month. 
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MV optimized portfolio weights (base case) 

This figure reports the optimized portfolio weights for the full sample from 1993-2011 in the base case.
(subjective) return estimates are mean historic returns using a rolling estimation window 

covariance matrix is calculated using a 36-month moving estimation window. 
τ) is set equal to 0.1, (Ω) is computed using the variance of historic return forecast 

month rolling estimation window). In the BL and MV optimized portfolios the maximum expected 
volatility is constrained to 5%, 10%, and 15% for the conservative, moderate, and offensive investo

All portfolios are rebalanced at the first trading day of every month.  

 

2011 in the base case. In the 
rolling estimation window 

month moving estimation window. In the 
puted using the variance of historic return forecast 

In the BL and MV optimized portfolios the maximum expected 
volatility is constrained to 5%, 10%, and 15% for the conservative, moderate, and offensive investor type, 



 

38 

 
Figure 3: Definition of sub-periods 
 

 
 
The figure shows the definition of individual sub-periods conditional on monetary policy signals as well as stock 
market signals. Shaded areas denote down markets/recessionary periods. 
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