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VARIANCE ESTIMATION FOR HIGH-DIMENSIONAL
REGRESSION MODELS

SPOKOINY, V.

Weierstrass Institute for Applied Analysis and Stochastics,
Mohrenstr. 39, 10117 Berlin, Germany
Tel. (+49 30) 208 77 550. Fax (+49 30) 204 49 75

email: spokoiny@wias-berlin.de

ABSTRACT. The paper is concerned with the problem of variance estimation

for a high-dimensional regression model. The results show that the accuracy

n~'/? of variance estimation can be achieved only under some restrictions on

smoothness properties of the regression function and on the dimensionality of

the model. In particular, for a two times differentiable regression function, the

1/2

rate n~"/* is achievable only for dimensionality smaller or equal to 8. For higher

—4/d -1/2

dimensional model, the optimal accuracy is n which is worse than n

The rate optimal estimating procedure is presented.

1. Introduction

In this paper, we consider the problem of variance estimation for the regression

model

Y, = f(Xi) + & (1.1)
where Xi,...,X, are deterministic design points in the Euclidean space R¢,
f : R* — R is an unknown regression function and ¢i,...,s, are individual

random errors which we assume independent and satisfying the conditions FEe; =

0, Ee? = 0% and Ee? < Cg < oo for all 7 <n. We aim to estimate the unknown

error variance o2 .
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2 SPOKOINY, V.

Wahba (1983) and Silverman (1985) proposed to use for estimating o? usual
nonparametric residuals obtained by substracting an appropriately smoothed curve
from the observations. Difference-based were thoroughly discussed in Gasser et al.
(1986), Siefert et al. (1993) among other. Hall et al (1990) found asymptotically
optimal differences. Choosing the curve estimation with respect to extracting resid-
ual variance has been studied by Buckley et al (1988) and Hall and Marron (1990).
We refer to Seifert et al (1993) for more detailed descriptions and comparison of
different procedures for variance estimation. Neumann (1994) discussed an appli-
cation of data-driven procedure for nonparametric smoothing. Hall and Carroll
(1989), Hardle and Tsybakov (1997), Ruppert et al (1997), Fan and Yao (1988)
discussed the problem of estimating the heteroscedastic conditional variance.

The majority of the mentioned results focus on the mean squared error of the
variance estimation in the univariate regression model and claim the possibility to

1/2 - Some extensions to the two-dimensional case are

estimate o2 at the rate n~
discussed in Hall et al. (1991) and Seifert et al. (1993).

We show that this result can be extended to the case of a multivariate model
but only if the dimension d is not too high, more precisely, if d < 8.

It is worth noting that the variance estimation is relatively rarely the target of
statistical analysis. Typically it is used as a building block for further procedure
like adaptive estimation (Rice, 1984; Gasser et al, 1991) of hypothesis testing (Hart,
1997), Spokoiny (1999), where some pilot variance estimation is required. This en-
forces to study not only the risk of estimation but also some deviation probabilities

which are presented in our results.

2. The estimate

Our approach is a multidimensional analog of the proposal from Hart (1997, p.123)
which gives an unbiased estimate of the variance for a linear regression function.
The idea is to construct for every design point X; a locally linear fit f(XZ) of
the unknown regression function f and then to use the pseudo-residuals € =
Y, — f(XZ) for variance estimation.

The main problem comes from design sparseness and non regularity in the mul-
tidimensional situation. This makes difficult the choice of the local neighborhood
for constructing the locally linear fit. We propose below two approaches how this
choice can be done. One utilizes a uniform bandwidth and another one allows the

bandwidth to vary from point to point.
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2.1. The locally linear fit

First we describe the locally linear fit we apply. Let Up(z) denote the ball with
the center z and the radius h and Np(z) stand for the number of different design
points in Up(x): Np(z) = #{X; € Up(z)}.

Let K be the uniform kernel function K(u) = 1(Ju| < 1). Introduce linear
functions o(z) =1, Yp(x) =20, £=1,... ,d.

Lemma 2.1. For every i <n and every h > 0 define the (d+1)x(d+1) matric
Wi n with elements Y7, o(X;) ¥e(X;) K (X];Xl) , L,k =0,...,d. If this matriz
is non singular, then there exist coefficients a;jp, 7=1,...,n, depending on the

design Xi,...,X, only and such that a;j, =0 if | X; —X;| > h and
u X, - X;
Sropr (S22
. ’ h
J=1

S X, - X;
D aintbe(X; — X)) K (JT> =0 L=1,...,d

j=1
Proof. This is the system of d + 1 linearly independent equations of n variables
a;;, and hence a solution exists (it is usually non-unique) provided that the cor-

responding characteristic matrix W, is non degenerate. O

Remark 2.1. The coefficients a;;, can be calculated from the locally linear fit

n d 2
é\h(Xz) = arginfz (Y} — Zeli@bE(Xj)) K <¥>
J=1 £=0

aeRd-i-l -

see Katkovnik (1985), Tsybakov (1986), Fan and Gijbels (1996). This is a quadratic
optimization problem with respect to the vector of coefficients § = (6;)¢=o,.. 4 Which
can be solved explicitly and the solution is a linear combination of the observa-
tions Y; with the deterministic coefficients depending on the design X;,..., X,
only. In particular, the first coefficient can be represented in the form @\o,h(Xi) =
2?21 a;;,nY; and it is easy to check that such defined coefficients a;;, fulfill the
conditions of Lemma 2.1.

A necessary and usually sufficient condition for non singularity of the matrix
U, , is that the ball U,(X;) contains at least d + 1 design points.

2.2. Procedure with a variable bandwidth
For every ¢, define the bandwidth h; by the condition

h; = inf {h : ¥, ;, is non singular}
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where VU, ), is the (d+ 1) x(d+ 1) matrix introduced in Lemma 2.1.

Next define the locally linear estimate
FXG) = Fr (X)) =) aign Vs
7j=1
and pseudo residuals €;
&=FX)-Yi=) cY;
j=1
with Cij = Q4j,h; for _] 7é 7 and Ciz = Q4i,h; — 1. Flnally we set

n
57 = Zc?j, 1=1,...,n,
j=1
NI
52 = _Z‘e’i. (2.1)
n < S;
=1 ?

2.3. Procedure with a fixed bandwidth

Define the subset A}, of the set Xi,...,X, by
Xy, ={X, : ¥, , is non singular}

and let M) stand for the number of design points in X} : M), = #AX) . Then, with
a given o > 1/2, we define the bandwidth A as the minimal value which satisfies

the condition
Mh, Z na,
that is, there are at least na points X;, for which ¥, is non singular. Next we

define the locally linear estimate f(X,) by f(X,) = > i1 GijnY; and the pseudo

residuals €; by

e =f(Xi)-Y:= Z%‘Y}
j=1

with ¢;; = aip for j # i and ¢; = a5 — 1. Finally the variance estimate o2 is

defined by
s; = ZC%,
i=1
1
~2 _
O = Mh.Z
2

X;€Xn

Sl R
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3. Properties

In this section we state some useful properties of the estimate o2 from (2.1). The

2
v

Gaussian errors ¢; and then we discuss the general case.

estimate 0> can be studied similarly. First we present the result for the case of
The estimate 02 assumes some smoothness of the regression function f at a
small neighborhood of each design point X;. When formulating the result, this

local smoothness will be characterized by the value

L;=05sup sup 5
u€R? €U, (X;) ‘U"

where f” denotes the dxd matrix of second derivatives of f .

Theorem 3.1. Let the observations Y1,...,Y, follow the regression model (1.1)
with 1.1.d. Gaussian errors g; ~ N(0,02) and a two times differentiable regression
function f. Introduce nxn-matriz R with elements

T

Tij = Cz'ijk,’l,,j = 1, , N,
ns;s; 1

and define the values A and S? by

n 2
A? = %ZL?hfsiZ (Zlc,ﬂ) :
=1

J#i
n n
S* = 20 R =2) > 1l
i=1 j=1
: oy trR? :
Then for every nonnegative A\ with A\ < G and any t > 0, the variance
estimate 02 fulfills
P (£(6% — 0%) > A2+ MA SY%0 4 (A + 1)S0?) < 2e7V/47M2, (3.1)

Let also
1 n n 2
52 = ﬁ 28;2 (Z Cijgj) (32)
i=1 j=1
be the variance estimate corresponding to the "no-response” model with the vanish-

ing regression function f(x) =0 and hence, Y; =¢;. Then for any A\ > 1

P (£(3% —5%) > A’ + AA §Y20) < eX/2, (3.3)
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Remark 3.1. The norm of the matrix R can be very roughly estimated as follows:
n
2 2
IR < iglg?fn;w-
J:

3.1. The rate of estimation

Here we discuss some corollaries of Theorem 3.1 concerning the rate of estimation.
For this we have to bound the quantities A and S. This can be easily done for
a regular (equispaced) or random design. So we consider here two different model

assumptions widely used in applications.

RD (Random design) The design points X;,..., X, areii.d. random variables
from a distribution with a density p(z) which is supported on a compact set
X and it is continuous and positive on X .

ED (Equispaced design) The design points X, ..., X, form the regular grid
in the unit cube [0, 1]¢ with the step 4, such that 4! is an integer number

and §,¢=n.

We now aim to bound the quantities A and S under ED or RD. The following
two simple technical statement will be useful. Recall that each bandwidth h; is
defined as the smallest radius h providing a non degenerated linear fit in the ball
Un(X;) . This implies that the number Nj(X;) of design points in the ball U, (X;)
is at least d + 1. Define N = max; N, (X;).

Lemma 3.1. Under RD, it holds P (N =d+1) = 1. Under ED, it holds N =
2d +1.

Further, let h; be the smallest radius providing at least d + 1 point in the
n 1/4
ball Uy, (X;) with the center at X;, and let h = (n_l 3 hf) . Under ED, one
i=1

clearly has h; = n~='/¢ forall i, so that h =n /%, Under RD, the following result

can be proved:

Lemma 3.2. Under RD, it holds for some positive constant k > 1 depending on

d and design density p(x) only such that
P (E < /m_l/d) <nL

Both lemmas are straightforward and we omit the proofs.
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Now we bound A under ED or RD. Since s? = c;;, the Cauchy-Schwarz

inequality implies

(Z \%‘\) < Nuy(X3) ) 6 < Ni(Xo)s

JFi J#i
and hence, if the function f has a bounded second derivative, i.e. if || f’|| < L,
then L; < L for all ¢ and

PNy -
Z LZhi Np, (X;) < Z hi = L2R'N < k2L2n /"
n N

with k from Lemma 3.2.
Next we bound S. The definition of the stochastic terms & implies E&; = 0

and

2

n 2

1 o
Eff =n 1SZ- 2E (Z Cij6j> = ;

j=1
Therefore, for all 4,7, it holds v;; = E&&; < 0®/n and moreover, if |X; — X;| >
hi + hj, then & and &; are independent and E§&; = 0. This implies for every
1< n

n

§ 2 -2 4

J=1

with

Similarly to Lemmas 3.1 and 3.2 one can bound under ED

1 & i}
ﬁi:leiSN

with some fixed constant N* depending on d only. Under RD, a similar bound
holds with a probability exponentially close to 1 and the constant N* depends also
on the design density. Therefore,

= 20_4221)1] <

i=1 j=1

On the other side,

n n

§ : 2 2 :
v2_7> Uy =0
1 j=1

1=
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that is, 2 < nS? < 2N*. This and the inequality A < Len~?/% yield in view of

(3.1) the following rate of estimation: with a probability at least 1 — e=>"/4-/2

+ (32 -0%) < A?+NASY%0 + (A +1)So?
< KLY 4 A L(2N*)V4on=2/4=14 1 (X + t)o®V2N*n /2,

We observe that for d < 8, the first two summands in this bound are smaller in
rate than the last one which is O(n~'/2). If d = 8, then all three summands are
of order n=*/? and for d > 8, the first term (which is of order n~*/¢) starts to

dominate. Given a loss function w, define the risk of estimation

RE) Ew (n'?67%(5% - 6%)), d<38,
o) =
Ew (n*4c72(5% — 6%)), otherwise.

The above considerations lead to the following

Theorem 3.2. Let 62 be the variance estimate from (2.1). Let the quantities A
and S defined in Theorem 3.1 and depending on n, the design Xi,...,X, and

on the smoothness properties of the regression function f, satisfy the conditions

A < Bn7%4
§? < 2N
n

with some fixed constants B, N*. Then for every continuously differentiable loss
function w which obeys the conditions w(0) =0, w(z) = w(—z), w'(x) >0 for
z>0 and [w'(z)e**dz < oo for every a > 0, the corresponding risk R(5?)
remains bounded by some constant C' = C(B, N*,w) depending on B, N* and the

function w only:

R(G*) < C(B,N*,w).

3.2. Non-Gaussian case

Here we discard the assumption that the errors €; are normally distributed. Instead
we assume that that they are independent identically distributed with 6 finite
moments.

Our variance estimate allows for the following representation, cf. (2.1):

n n 2
= Z (bz + ZO!U&"])
1 j=1

1=

2

= [ ;i {f(X;) + €5}

=1
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where the coefficients a;; = c¢;;/s; satisfy Y7, of; = 1/n sothat Y32, 3% of; =
1,and b =}, a;; f(X;) fulfill
% b7 < A? ) see the proof of Theorem 3.1. Clearly

ZbQ + QZZan gj + ZZ@J&ZE]

i=1 j=1 i=1 j=1

with
n
ij — E Qi O -
k=1

Theorem 3.3. Let the errors e; from (1.1) be i.i.d. random variables with Ee; =
0, Ee? =02, E(e?2 —0?)% < C?0* and E|e? — 02> < Cgo® for all i. Let also

7

value C4 be such that

2
n lnax Z iJ . max 2
=L j=1 i=1,..,n "
n n ) S CA: n < CA'
PIDINCH >
i=1j=1

_n_

Then there exists an absolute constant C such that for every X\ > 0 with \? < 50,

every t > 0 and every 0 with 0 <6 <1
P (£(6% — 0®) > A? + 2A5"%0 + (A +t + 6)So” + (A + 1)S"0?)
< 2€—A2/4—At/2 + Cn_1/26_3

where A and S are defined in Theorem 3.1, |S"|* = Z = and the constant C
depends on Cy,Cg and Cy only.

This result clearly implies an analog of Theorem 3.2 for non-Gaussian errors

under the conditions of Theorem 3.3.

3.3. Rate optimality

Here we show that the critical dimension d = 8 appears not only for our particular
estimator. Actually, no estimator achieves the rate n='/2 for d > 8 uniformly over
any class of smooth functions with the smoothness degree 2.

To simplify the construction, we suppose hereafter that n'/¢ is an integer num-
ber, and Xi,...,X, form the regular grid in the unit cube [0,1]?. Define the
following Sobolev type class F,(2, L) :

n

f"@’L):{f O ||f"(ac)||2SL2}'

imt @lo—Xi|<n=1/4
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Let Py,> denote the measure on the observation space which corresponds to a

2

regression function f and the variance o and let E;,» denote the expectation

w.r.t. Pf,g2 .

Theorem 3.4. Let Xi,...,X, be the equispaced design in the unit cube [0,1]%
and the the observations Yi,...,Y, be generated from the regression model (1.1)
with 1.1.d. Gaussian errors g; ~ N (0,0?) . For d > 8, sufficiently large L and for

every continuous bounded loss function w,

lim inf sup sup E¢ . w (n4/d(572z - 02)) =r>0
n00 G feFa(2,L) 02€S,

where the infimum is taken over the set of all possible estimates of the parameter
o? and %, is the three points set of the form %, = {1,1+n=*4 14 2n=4/4}

4. Proofs

In this section we present the proofs of Theorem 3.1 through 3.4.

4.1. Proof of Theorem 3.1

Define
I (X5) = Zaij,hif(Xj)
j=1
so that
Zcz’jf(Xj) = zaij,hif(Xj) — f(X3) = fr, (X3) = f(XG).
j=1 7j=1
The model equation (1.1) implies for every i < n
& = Y Y
j=1
= D el f() +e5}
7j=1

= > aif (X)) + ) cie
j=1 j=1

which leads to the following representation for the estimate &2 :

n

5 I &?
=0y =D e
i=1 "t

i=1
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with
b = n Vs (Xa) — F(X0)}

_ -1/2 —1 2 :
£,~ = n /Sz' Cz'jé‘j.
=1

The smoothness assumption on the function f implies for every j with |X,;—X;| <
hi
F(X5) = F(X3) = f1(X)(X; — Xa)| < Lik?.

The properties Y7, cij =0 and >77; ¢;;(X; — X;) = 0 provide

[fa:(Xi) = F(X3)] = Z cii f(X;) — f(Xi) Z cij — f'(Xi) ch (X; — Xi)

= Zcij{f(Xj) — f(Xy) = fI(X) (X, — X’i)}‘

j=1
J#
Therefore

n n 2
dow< %Zth;*s;Q (Z |cij|) = A2 (4.1)
=1 =1

J#1
We now apply the following general statement from Spokoiny (1999, Proposi-
tion 6.2). Let V denote the covariance matrix of the vector & = (&,...,&,),
that is, V = (E&¢;, 4,5 = 1,...,n). Then for every positive v > 0 with

v < |IVII7'y/tr V2/2 and every ¢ > 0
P (:I: (Z ‘§z|2 —tr V) > (v + t)m) < o2 /A-t/2 (4.2)

i=1

and
p (i (Z [b; + &I* = [1Bl* — tx V) > A|bll(2tr VYA 4 (v 4 £)V2 trV2>
=1
< 2e /A2,

Here ||b||?> = 3.7 ,0? and trV (resp. trV?) denotes the trace of the matrix V

i=1"1

(resp. V?). Since E&? = o?/n, then clearly

rV =Y E=o%
=1
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Next, for ¢ # j

0’
— _ 2
Egifj = E CikCjk = O Tij
nsisj 1\

so that

n n n

2trV? = 222 (Egg;)? = 20 Zir% = o*S5%

i=1 j=1 i=1 j=1

This implies the required assertion in view of (4.1).

4.2. Proof of Theorem 3.2

This result is an easy corollary of Theorem 3.1. Indeed, application of this result

with d < 8, v=1 and varying ¢ yields
P (n1/20_2|82 —0?|>C+ tW) < 2e7U2,
where C' = B%0~%2 4 B(2N*)'/*0~! + v/2N* . Therefore
R(G*) = Ew (n1/20_2(82 — %))

< —/ w(z)dP (n**07%5% — o?| > z)
0

< w(C)+/ Wt + O)P (n'0%[3% — 0*| > t + C) dt
0

oo t
< C+/ "t+C (— >dt
< w0+ | wt+Cexp (s

and the assertion follows. The case of d > 8 can be treated similarly.

4.3. Proof of Theorem 3.3

. n . n n 2 _ . ~9 2 .
Since Y i_, i = Y iy ;- &;; = 1, the difference 5° — 0 can be represented in

the form
n n n n n
-0’ = Y h+2) (Z a’jz’bj) g+ Y Balel =)+ ) Byeie
i=1 i=1 \j=1 i=1 i=1 j#i
n
= > B +Q+Qs+Qu
=1

We now estimate separately each term in this expression. Note first that

i b < A?
i=1

see the proof of Theorem 3.1.
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Let £1,...,¢, be a sequence of i.i.d. random variables from the normal law
N(0,02). Define the sums Qs,Qs, Qs similarly to Q2,Q3, Qs with &;’s in place
of &;’s. The idea is to show that the distribution of every @ only weakly depends
on the particular distribution of &;’s and therefore, the bounds for @k are valid
for Qr as well (in some asymptotic sense if n is large enough), k£ =2,3,4.

First we estimate the sum
n n n
Q2 =2 Z Z b,’a/ijé‘j =2 Z CjE4
i=1 j=1 j=1
with ¢; = Y" , o;;b;. Define the nxn-matrix A with elements «;; and the

vectors b (resp. c¢) with elements b; (resp. ¢;) and note that
D =[ATH> =b"AATH < || AAT| [b* < | AAT||A%
7j=1

Note also that ||[AAT|| = ||ATA| = ||R|| with the matrix R defined in Theo-
rem 3.1. By the Cauchy-Schwarz inequality

P( y Asma) LT R

A25¢02 — S
and by the conditions of the theorem, see also Remark 3.1, n||R||?/S? < C4, so
that

n

E CiEg

=1

P (|Qo] > 2A5'%5) < 4Cy*n~/2.

Next, it holds for )3

n 2 n
EQ%ZE (Zﬂu(83—02)) :CZOAZﬂZ
i=1 i=1

and the Berry-Essen inequality, see Petrov (1975), applied to ()3 yields with S” =

o’ VEQS
P(Qs>28"0%) < P(Qs>u8"0%) +p5 s ZE |Bi(e? = o?)[°
< P (@3 > (z — 5)5"02> + Cepd3(S") 3 i B3
i=1
The conditions of the theorem provide

n n
Z 1Bil” < z'znfaxn’@"i Z 185> < C48"n112
— ~
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and hence
P(Qs >z5"0%) < P <@3 > acS"aQ) + Cepd 3Cun~ 12,

In addition, the use of (4.2) yields for every A with A\* < ;2

P (@3 > (/\+t)S"02) < e N N2,
For estimating @4, we apply the following general result from Spokoiny (1999,
Corollary 6.2). Let U = (uj;, 3,7 = 1,...,n) be a nxn symmetric matrix with

ui = 0 for all 4. By Uley,...,e,) we denote the corresponding quadratic form

of i.i.d. random variables ¢1,...¢, , that is,

n n
U(Sl, e ,Sn) = ZZuijsiej.

i=1 j#i
Let also €,...,2, be a sequence of independent Gaussian r.v.’s with Eg; = 0
and Eg? =02, i=1,...,n. Define another quadratic form
n
UG- 58) = D) ui&id;.
i=1 j#i

Clearly EU(Ey,...,e,) =0 and E|U(Ey, ... ,en)|*> = E|U(e1,. .. ,&0)|?.

Proposition 4.1. Let Ee} < Cy0* for some fized constant Cy > 3. Let, for a
symmetric matriz U with u; =0 for i =1,...,n, and for a normalizing constant
G, the value Cy be defined by

n
Cy = max nG 2o E ufj
i=1,...,n -
Jj=1

Then, for each § >0 and every x
P(G7'U(er,...,en) >2) < P(GT'UE,... ,&n) > 1 —0)
+p(C4CU)3/2n—1/25—3

with an absolute constant p .

We now apply this result to Q4 with w;; = 3;;, ¢ # 7 and

n n 1/2
6= (Y304
i=1 j=1
Since

n n

Z Z ,2] == tI‘(AAT)Z = tr R2 — SQ

i=1 j=1
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we derive
P(Qi>(A\+t+0)0’S) <P (@4 > (A + t)o2S) + p(CLC )3 P 12673,

n

The bound (4.2) applied to @4 provides for every A with A2 < o, and every
t>0

P (@4 > (A + t)o2S) < e N2
Summing up everything, what we have got so far, leads to the bound
P (£(6% — 0%) > A+ 2A5%0 + (A +t + 6)So? + (A + 1)S"0?)
< P(|Q2] > 2A8"%0) + P (£Q3 > (A +1)S"0%) + P (£Qs > (A +t + 6)So?)
< 2e7N/ATN2 4 o125

where C' depends on Cy4,Cs and C4 only.

4.4. Proof of Theorem 3.4

The idea of the proof is as follows. We first change the minimax statement for a
Bayes one. For a prior measure 7 on the set F, define the corresponding marginal

measure P, ;. by

Po(4) = [ Proa(4)m(dr),

We intend to show that there exists a sequence of random functions f,, with prior
distributions m, satisfying m, (F,(2,L)) — 1 and such that

E., »w(n''G2 —0%)) =r>0

for n large enough. For the latter, it suffices to show that the measures P
—4/d

n 02
with of =1 and P, . with 02 =0 +n are not asymptotically separableo.

The priors m, are selected on the base of the following consideration. We de-
fine the values of random functions f,, either identically zero or i.i.d. normally
distributed at each design point X;. If d is sufficiently large and if the vari-
ance of this distribution is small enough, then this random function will be with
a large probability in the class F,(2,L). Then clearly this random function f,
introduce some additional noise in the observations Y; and we cannot distinguish
whether this noise comes from the errors ¢; only (this would be the case when
fn = 0) or there is some contribution from the random regression function f, .
More precisely, let &, ... ,&, be ii.d. standard Gaussian r.v.’s and 6, = n=%/¢.

We will show that there exist random functions g, with g¢,(X;) = 6,& and with
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P (g, € F(2,L)) > 1 as n — oo for d > 8. The random functions f, are con-
structed as follows. With probability 1/2, we set f,, = 0 and with probability 1/2,
the function f,, coincides with g, . Then, for ¢ = gy the marginal distribution of
the observations Y; = f(X;) +o¢; is with probability 1/2 i.i.d. from AN (0,02) and
with probability 1/2 i.i.d. from N (0,02). Similarly, for o = o, , the marginal dis-
tribution of the observations Y; corresponds with probability 1/2 an i.i.d. sample
from N(0,02) and with probability 1/2 an i.i.d. sample from N(0,02 4+ n=*/%).
Hence, with a positive probability, these two marginal distributions coincide and
therefore any estimate has a non-vanishing risk.

Now we present a formal description. Let h = n~ /¢ . Define for every grid point

X; a function ¢; of the form

¢i(z) = ﬁ@ (M_TXM)

=1
where (@ is a smooth symmetric nonnegative function supported on [—1,1]. Clearly

all functions ¢; have non-overlapping supports and for every 1

[¢i(z)| < 1,
o0,(x)| _ 1@
0Ty - h '’
& pi(x) max{||Q'||*, |Q"]|}
895@ axk hZ
so that
n C
It < 52 (4
with Co = Vdmax{[|Q'|>, [|Q"|1} -
Let also {&,4i = 1,...,n} be a collection of independent standard Gaussian

random variables. Define the random function g, of the form
i=1

Finally, for an independent of g, Bernoulli random variable v, with P(v, =0) =
P(v, =1)=1/2, define
fn = Unfgn-

The property (4.3) provides for every i < n

sup  |lg(2)|* < Coh™'6  max £<Co Y &

dp— X, —1/d j: X;€UR(X; .
zil—X|<n -1/ JX;EUR(X:) JiX;EUL(X2)
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and hence, using N,(X;) < 2d+1

Ca (2d +1) En:gf

1 n
=3 sup lgh(@)|” <
n /d i—1

i—1 Tilz—X;|<n~1 n

so that, for L? > (2d 4+ 1)Cq, by the law of large numbers,

n

1
P| - Z sup gt (z)||* > L* | — 0, n — 0.
n i—1 Tilz—X;|<n—1/d
This means that the random functions g, belong to F,(2, L) with a probability
close to 1if L? > (2d+ 1)Cq and clearly the same holds for f,’s.
Let now P™ denote the product measure in R" corresponding to the model

Y; = 0¢; with i.i.d. standard normal errors ¢;. Then clearly
Py = (PW+P0) /2,
P, = (P +PY) /2

with s2 = o2 + n™%4 = 02 + 2n%/4. Next we show that all three sequences

of measures (Pg’g ), (P™) and (sz)) are pairwise asymptotically singular, if

On

d > 8. Then the required assertion follows from the next general result.

)

Lemma 4.1. Let three sequences Pj(n , 7 = 0,1,2,, of probability measures be

pairwise asymptotically singular, that is,
w _ dpm B
l(ca)': k(n)]—>0, n — 00, k # j.
2 d-Pj

Then for any continuous bounded function u(z), it holds

(n) (n)
H, = %/u (dPO + dh ) A (PP + P {u(0) +u(D} /2, (44)

dP™ + dP"

dP{™+ ap™

that is, the likelihood 95—
dP™ +dPy

with parameter 1/2.

converges weakly to the Bernoulli distribution

Proof. One obviously has
Z§ +1 ACRAL)
o0H, = [u| =2 "= | aP™ + [ w222 2"12 ) qP™ 5 u(1) 4 u(0)
(n) ! (n) 2
Zyy +1 Zip +1

as required. O
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It remains to check (4.4) for the sequences P™ with o € {09, 0p,5,}. We con-
sider the derivative Zé?l) = de,’f)) / dP((,"n) , the other cases can be treated similarly.
The definition 02 = 02 + 62 =1+ 62 clearly yields

n =

dp{
(n) ._ 0]
LO’1 : log dPS,Z)
— 1 " § : 1 § : 1
n log(om/o0) — 207 202

Under the measure P | it holds Y; = 0,,; with i.i.d. standard normal r.v.’s ¢;.
Therefore

(n) n 2 5721 . 2
LO,l = 9 log (1 + 5n) ) ZCZ
i=1

_n AR S WS
_n oy N0y \/ndy
= 2log (1+47) 5 5

no?2
= \/; (Tn - nn)

where the random variables 7, = ﬁ > (¢2 — 1) are asymptotically standard

normal and

2 4
- glog(wréﬁ)—\/ﬁg—\/ﬁ{%"—%”}

—4/d —8/d

2 3

if d > 8. Since also \/nd2 = n'/2~*/% — oo, this implies Lgfl) — —oo and hence
Z(gﬁ) = exp L((fl) — 0 as required.
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