~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Chen, Song Xi

Working Paper
Local linear smoothers using asymmetric kernels

SFB 373 Discussion Paper, No. 1999,100

Provided in Cooperation with:

Collaborative Research Center 373: Quantification and Simulation of Economic Processes,
Humboldt University Berlin

Suggested Citation: Chen, Song Xi (1999) : Local linear smoothers using asymmetric kernels, SFB 373
Discussion Paper, No. 1999,100, Humboldt University of Berlin, Interdisciplinary Research Project
373: Quantification and Simulation of Economic Processes, Berlin,
https://nbn-resolving.de/urn:nbn:de:kobv:11-10046875

This Version is available at:
https://hdl.handle.net/10419/61788

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:kobv:11-10046875%0A
https://hdl.handle.net/10419/61788
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Local Linear Smoothers Using Asymmetric Kernels
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ABSTRACT. This paper considers using asymmetric kernels in local linear smooth-
ing to estimate a regression curve with bounded support. The asymmetric kernels are
either beta kernels if the curve has a compact support or gamma kernels if the curve
is bounded from one end only. While possessing the standard benefits of local linear
smoothing, the local linear smoother using the beta or gamma kernels offers some
extra advantages in aspects of having finite variance and resistance to sparse design.
These are due to their flexible kernel shape and the support of the kernel matching

the support of the regression curve.
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1. INTRODUCTION

In recent years, local polynomial smoothing (Stone, 1977; Cleveland, 1979; Cleve-
land and Delvin, 1988) has been shown by Fan (1993), Fan and Gijbels (1992), Hastie
and Loader (1993), Ruppert and Wand (1994) and others to be an effective smoothing
method in nonparametric regression. It has the advantages of achieving full asymp-
totic minimax efficiency and automatically correcting for boundary bias. An excellent
review of local polynomial smoothing is given in Fan and Gijbels (1996). The stan-
dard application of the local polynomial smoothing has been focused on employing
symmetric kernels, among them the compact kernels are popular choices. However,
local polynomial smoothers using a compact kernel have a problem as the variance
is unbounded in finite sample as revealed in Seifert and Gasser (1996). Seifert and
Gasser also find that using the Gaussian kernel has attractive variance behaviour.
This is because the Gaussian kernel has unbounded support that leads to a key ma-
trix in local polynomial smoothing being non-singular, thus making the finite sample

variance bounded.

When the curve under consideration has a bounded support, kernels whose support
matches the support of the curve should have the same attractive variance properties
as the Gaussian kernel, and are more appealing as no weights are allocated outside
the support of the curve. Recently, beta kernels, which are densities of some beta
distributions, have been proposed to smooth the Bernstein polynomials in Brown and
Chen (1999), to construct Gasser-Miiller estimator in Chen (1999a) and density esti-
mators in Chen (1999b). Related gamma kernels are proposed for density estimation
in Chen (1998). These beta and gamma smoothers are free of boundary bias, achieve
n~*5-order convergence for their mean integrated square errors and have attractive
finite sample properties. It is also found, however, that their asymptotic mean square
errors are of a larger order near the boundary. Even though this happens only in a
small boundary area so small that it registers no effect on the mean integrated square

error, it does pose an “asymptotic” hiccup for this nice idea of smoothing.

In this paper we consider local linear smoothing using the beta and gamma kernels.

It turns out that local linear beta or gamma kernel smoothers remove the problem



of increased mean square error near the boundary, while maintaining the usual good
properties of standard local linear smoothing with a fixed symmetric kernel. Using
the beta or gamma kernels offers some extra benefits. Firstly, it is a kind of adaptive
smoothing as both the beta and the gamma kernels have varying shapes and varying
amounts of smoothness. Secondly, it has finite sample variance as long as there are
two different design points not on the boundary of the support. The third is that
the effective sample size is increased and thus the finite sample variance of the curve
estimates can be reduced. These features are due to the fact that the support of the
kernels matches the support of the regression curve. And the latter can make the
local linear smoother having smaller variance when the curve has sparse areas. It
has been shown that a local linear smoother using a symmetric kernel implicitly uses
asymmetric kernels as well. However, the support of the kernels does not match that

of the curve. This can produce problem in the variance when the design is sparse.

The paper is structured as follows. Section 2 introduces the local linear smoother
using either beta or gamma kernels. The general properties using beta kernels are
studied in Section 3, whereas those using gamma kernels are given in Section 4.
Section 5 considers finite sample variance properties. A data set from a line transect
survey is analyzed in Section 6. Section 7 presents some simulation results. Some

derivations are given in the Appendix.

2. BETA OR GAMMA KERNEL BASED LOCAL LINEAR SMOOTHER

Let Yi,...,Y, be the responses of n design points Xi,..., X, from a regression
model

where m(-) is an unknown regression function with bounded support S and the resid-
ual ¢; are uncorrelated random variables with zero mean and variance o?(X;). We
consider in this paper that S is either [0, 1] or [0, 00) which are two typical forms of

bounded supports.
The kernel we use to smooth at z is either
tm/b(l _ t)(l—z)/b
- B{z/b+1,(1—2)/b+1}

Ky p(t) I(teS) ifS=][0,1]
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or
Kop(t) =T a/b+ )b/~ [(t € S)  if S =0, 0)

where B and ' are the beta and gamma functions respectively, and b is a smoothing
parameter. Clearly, the kernel is the density of Beta{z/b+ 1,(1 — z)/b+ 1} or
Gamma{z/b+ 1,b} distribution. Both beta and gamma kernels have varying kernel
shapes and become more asymmetric as  moves towards the boundary. Both beta

and gamma kernels have § as the support, matching that of the regression curve.

The local linear smoother for m using either the beta or the gamma kernel K,

is obtained by finding a and b that minimize
Y AY) —a— bz — X;) P Ko (X))
j=1

Let Sy(x) = n™' X7 (x — X;)Kyp(X;) for I = 0,1,2. The local linear smoother

m(z) = a, the solution of a to the above optimization, and has a detailed form
() = w;(@)Y;/ Y wj(z) (2)
7j=1 7j=1
where the local linear weight
wj(z) = n"{Sa(2) — Si(2)(z — X;) } Kz p(X;).

Let f be the density function of the design points. We assume throughout the

paper that, for some positive constants f. and o2,
(1) m® e C(S), f(-) and 6°(-) obey a first order Lipschitz condition in S;

(ii) f(x) > f. > 0and o?(x) < o> for all z € S;

(iii) b — O and nb* — coasn — oo; (3)

Let & be the beta or gamma random variable with K, as its density, p;(z) =

E(¢ —x) for1=0,1,2... and

{ B{2z/b+1,2(1—x)/b+1} if S =10,1];

BX{z/b+1,(1-z)/b+1}

T b .
b22x/b(flw1<2al/)b+1) ZfS = [0’ OO)

Ab($) =




We first present the following general theorem, whose proof is given in the ap-

pendix.

Theorem 1. Assume the conditions given in (3). Then for any z € §

Bias{m(z)} = 3m®(2)ps(z) + o{p2(z)} + O{n'A4,(z)} and (4)
Var{m(z)} = n'Ay(z)o?(z)f " (z) + o{n " A(z)}. (5)

Remark. The magic power of the local linear (polynomial) smoothing is to make
the leading bias term free of the first derivatives of m and f. This power is maintained
in beta or gamma kernels. It is this missing first derivatives in the bias that removes
the increased mean square error near the boundary which was associated with the

earlier beta/gamma kernel smoothers.

3. ASYMPTOTIC PROPERTIES USING BETA KERNELS

We study the asymptotic properties of the local linear beta smoother m(z) as-
suming S = [0, 1] in this section. To simplify notations, we define z € S to be

a

“interior z” if “x/b and (1 —x)/b — c0” and

“boundary x” if “c/b or (1 —z)/b — K”

where k is a nonnegative constant. Clearly any fixed z € [0, 1] which is free of n is

an interior point.

From the basic properties of beta random variables, F(§;) = (x +b)/(1 + 2b) and
Var(€,) =b(z +1)(1 — z + 1)/{(1 + 2b)2(1 + 3b)}. Thus,

br(l —z) +0*{2 —4z(1 —x)} + b3{4 — 12z(1 — x)}
(1+2b)%(1 + 3b)
{ bz(1 —z) + O(b?) for interior x; (6)
(2+ K)b>+ O(B®)  for boundary .

pa(z) =

Chen (1999a) shows that for small b

Viny/z(1—x) (7)

b’1$% +o(b7 ) for boundary x.

b 12— 4 o(b7Y2)  for interior x;
Ay(z) =



From the Theorem 1, (6) and (7), we have

1z(1 — z)m® (2)b+ Ob%) for interior z;
Bias{m(x)} = (8)
(2 + k)m® (2)b? + O(b%)  for boundary x

N [—

and

n’lb’l/Q#L o(n~'b"12)  for interior x;
Var{m(z)} = Viry/a(l-a)f(a 9)

nth” 1% o(n v 1) for boundary x.

In the boundary areas, in terms of the order of magnitude of b the bias is of
a smaller order whereas the variance is of larger order than those in the interior.
However, b does not represent the total amount of smoothing used; rather, py(z) is
the real amount of smoothing used at z. The trade-off between the bias and the
variance is directly due to py(x) having different orders between the boundary and
the interior as shown in (6).

By adjusting b so that py(z) is of the same order within [0, 1], the mean square
error can be made of order n=%/°

that

everywhere within [0, 1]. To appreciate this, notice

,1b71/2% L32(1 — 2)2{m® (z)}2? or
MSE{m(z)} = Voo Tt () {mP (@)}

n-lh- 122”12;;(&1) +1 (2+m)2{m(2)($)}2b4

respectively in the interior with error terms of o(n~'67'/2 + b?) or in the boundary

with error terms of o(n='6~! + b*). The optimal bandwidth is

/5
a?(z) —2/5 for interi )
\/E$5/2(1—$)5/2f(.’13){m(2) (z)}2:| n oT tniLerior I,
b*(JT) = P2t 1)? (@) 1/5 (10)
[22m+1I‘2(n+1)f(m)(2—|—n){m(2) @)}2] n~ % for boundary x.

The optimal mean square error, with an error term of 0(n’4/ %), is

5,-4/5 [ o2(x)m® (z) 4/5 . . ]
MSE*{m(x)} _ 4TL { Varf(z) } fO’f‘ intertor x, (11)

5, —4/5 1/5 [ T2r+1)o?(@)m® (2) | */°

Zn (2 + K:) { 225+11’*2(K+1)f(w) } fOT boundary xX.

Hence, the optimal mean square error is of order n~*/> throughout [0,1]. This im-

proves the beta kernel estimator considered in Chen (1999a) whose mean square error
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is of order n 2/ in the boundary areas and is of order n~*/ in the interior. The op-
timal bandwidth given in (10) prescribes a larger b value in the boundary to offset
a reduced value of bz(1 — z) as x approaches the boundaries. By doing so, the total

amount of smoothness py(x) = O(n=2/%) throughout [0, 1].

It may be shown in a manner similar to that given in Chen (1999a) that the
bias and the variance in the boundary areas have negligible contribution to the mean

integrated square error, that is with an error term of o(n=1b=/2 + b?)

MISE(m

dz + b*L [} 22(1 — 2)?{m® (z)}?dz.

) = n~lpl/2 /1 o’(x)
0 Vir/2(1 - z)f(z)
The optimal global bandwidth
b* = {L Iy ﬂdaﬁ}w5 {/l{x(l — z)m® (x)}2da:}_2/5 n~%/5 (12)
VT 10 fa(1-a) () 0 ’
and the optimal mean integrated square error is

_4/5
/ n=4/5,

(13)

It is interesting to see that the optimal mean integrated square error and the optimal

iy a1 [l o’a) Yo @ ()12

mean square error for interior x coincide respectively with those of the local linear
smoother using the Gaussian kernel. So, the beta kernels are asymptotically equiva-
lent to the Gaussian kernel in a global sense within [0, 1], and in a point-wise sense in
the interior of [0, 1]. However, they are not asymptotically equivalent in the boundary

areas and their finite sample handling of the smoothing may be quite different.

4. ASYMPTOTIC PROPERTIES USING GAMMA KERNELS

In this section, we investigate the asymptotic properties of the local linear gamma

smoother assuming I = [0, 00). We define x € S to be a
“interior z” if “x/b— 00” or “boundary x” if “x/b— K”. (14)

As &, is the Gamma(z/b+1,b) random variable, E(£;) = z+b and Var(&,) = bz +b2.
Thus,
po(7) = bx + 2b%. (15)
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According to Chen (1998) for small b, when S = [0, 00),

b2 {\/Am\/x} + o(b1/?) for interior x;
Ay(z) = -1 2K+172 -1 (16)
b—'T'(2k + 1) /{2t T (k + 1)} +0(b™") for boundary x.
This is almost the same as that of the beta kernel given in (7) except that /1 —z
does not appear when x is in the interior as = 1 is no longer a boundary point.
Substituting (15) and (16) into Theorem 1, we will reproduce the formulae from
(8) to (13) except that 1 — = does not appear in these formulae when z is in the

interior and the integration interval is S = [0, c0).

However, using the gamma kernels produces some unique and interesting proper-

ties. Notice that

Lam®@ (z)b + O(b?) interior T
o _ )3
Bias{m(z)} { 224 k)m® (2)b? + O(b*) z in boundary (17)
and )
—1p-1/2__o%(x —1p=1/2Y jppor
n~th Virver@ T o(n=tb~Y*%) interior x
Var{m(z)} = (18)
0'2 T K — —
n_lb_1% +o(n~tb71) boundary x.

So, the variance decreases when x increases as 2~ /2 appeared in the leading term of
the asymptotic variance. This property is highly desirable when estimating curves
with sparse regions in the upper tail of the design density f. This is a property not
shared by using other fixed symmetric kernels including the Gaussian kernel. The
reduced variance for large z is gained at the price of increasing bias. This is equivalent
to the strategy of using larger bandwidth values in areas where the design is sparse
to increase the bias in return for reduced variance. The gamma kernel carries this

strategy automatically in a natural manner.

5. FINITE SAMPLE VARIANCE

One problem with a compact kernel based local polynomial smoother, as revealed
in Serfeit and Gasser (1996), is that its finite sample variance can be infinite. This
is because, in the case of the local linear smoother Y w;(z) = Sa(x)So(z) — S?(x),
the denominator of (2) has a positive probability of being zero. To avoid a zero

denominator, Fan (1993) added n 2 in the denominator. It is shown in the following

9



that using the beta or gamma kernels can eliminate the problem. The results are

valid for local polynomial smoothers rather than just local linear smoothers.

Let

X,=| o and W = diag (K.4(X;)) .

Lemma. If there are at least p + 1 < n different design points not being on the
boundary of S = [0, 1], then XTW X is non-singular.

Proof: The condition of the lemma implies that rank(W) > p+1 and rank(X,) =
p+1. So, rank(X]WX,) = p+ 1. Therefore, X W X, is non-singular.

In the case of local linear (p = 1), it may be shown by some matrix algebra that
> wi(z) = X, WXy = 5 T (Xi — X;)2 Koy (X3) Koy (X;), (19)

which is a weighted measure of the spread of the design points. So, if there are two
different design points not being on the boundary of S Y- w;(x) # 0 as maintained
in the Lemma. Note in passing that (19), which is valid for symmetric kernels and
appears has not been noticed before, is useful in computation as recursive formula

can be developed.

Based on the lemma, it is readily true that the probability of XpT WX, being
singular is zero if the design variable is either continuous or fixed but there are at
least p + 1 different points not being on the boundary of S. The later case includes
any equally spaced design as long as n > p+3. The condition on the design variable is
very weak and is satisfied in almost all the practical cases. Therefore, in finite samples
the local polynomial beta or gamma smoother has finite variance with probability 1.
This revises a corollary in Serfeit and Gasser (1996) which maintained that local linear

fits have finite variance if and only if the kernel function has noncompact support.

6. AN EXAMPLE

In this section we analyze Laake’s (1978) stake data, a well known data set in
line transect survey. Line transect survey (Seber,1982; and Buckland et al., 1993)

is a popular methodology for estimating the abundance of biological populations. It

10



has been an important tool for wildlife management and conservation. To estimate
size of a population, an observer traverses a distance L along randomly allocated
non-overlapping transect lines within the survey area. Each object sighted from the
transect lines is counted and its perpendicular distance z from the line is measured.
In 1978 when the theory of line transect survey was still in its maturing stage, Jeff
Laake placed 150 wooden stakes randomly in a rectangular area. Eleven observers
were asked to traverse a transect line of 1000 meters long, cut through the middle of
the rectangle, to detect the stakes. The purpose of the experiment was to study the
performance of some line transect estimators as the real population size in almost all

the applications of line transect surveys is unknown in practice.

Let Y; = 1 if the i-th stake which is distance X; away from the transect line; and
Y; = 0 otherwise. Let m(z) be the conditional probability of detecting an object given
that the object is at distance z from the transect line. Then, Y; is binomial{l, m(X;)}

distributed, and thus m(z) is the mean function and o?(z) = m(z){1 — m(z)}.

An essential assumption in conventional line transect surveys is that m(0) = 1;
that is, certain detection can be achieved for objects situated right on the transect
line (the walking path). Other assumptions are that g is monotone decreasing and
m(z) exhibits “ a shoulder” near z = 0; that is, m'(0) = 0. The interest of the current
analysis is on estimating the detection function m(z) for two of the eleven observers
to see if m obeys the above assumptions. knowledge on the detection pattern is also
vital in providing possible models for the line transect data, and is useful in training

observers to detect properly.

Local linear estimates of the detection functions using the beta kernels are given in
Figure 1 (panels (b) and (d)) together with the data sets (panels (a) and (c)). To apply
the beta kernel based smoother, the x; were first linearly transformed from [0, 20] to
[0,1]. A smoothing bandwidth was obtained by the so-called plug-in method based on
the optimal bandwidth given in (12). As we know the stakes were placed randomly,
f(z) = 1 for x € [0,1]. Estimates of m(x) were obtained via fitting a quadratic
polynomial to each of the two data sets, similarly to the rule of thumb bandwidth

selection method outlined in Fan and Gijbles (1996,p111f). The estimate of o(z)

11



was obtained by substituting the estimate for m(z). From (12), we had b = 0.143
for observer 1 and b = 0.119 for observer 2. The curve estimates employing these
bandwidth values (in solid lines) were in fact very similar to those of the quadratic
polynomial fits (in dotted lines). While this was quite remarkable, it did indicated
that the above bandwidths were perhaps a little bit too large. The curves in dashed
lines were estimates using only a quarter of the above bandwidths, which picked up

more local features such as a bump at © = 4 for the second observer.

The estimates reveal quite different detection patterns between the two. They
show that the first observer had better ability of detection than the second as 7, (0) ~
1 and 77y maintained a higher level than 7, throughout. That 7, () was much larger

than 0 even when z was towards the right boundary was the most impressive.

The two beta kernel estimates of m2(0) were all much less than 1, indicating that
there is some evidence that my(0) < 1. This was hardly believable as the survey was
run on land under good weather condition and the observer still had poor detection
for objects which were very close to him. Notice that the polynomial fit did not
reveal this problem at all as it was a global fit and tended to miss some local features.
Of course, to vigorously prove that mo(0) < 1, we have to construct an one sided
confidence interval for my(0), which will not be discussed here. Also the estimates of
mg did not exibit any shoulders near x = 0 at all. The above analysis indicates that
we cannot take the assumptions of line transect surveys for granted, and analyses
are needed for each data set to check their validity before they are incorporated in

various models.

7. SIMULATION RESULTS

A simulation study was carried out designed to investigate the performance of
the beta or gamma kernel based local linear smoother. For comparison purposes,
the local linear smoother using the Epanechnikov and the Gaussian kernels are also

considered.

The data were generated according to two regression models based on:
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where ¢; are independent N (0,0.05%) random variables. In the first model, m(z) =
(r —0.5)%2I(0 < x < 1) and X; were independent |N(0,0.3?)| random variables trun-
cated on [—1,1]. In the second model, m(z) = exp(—z) + exp{—4(x — 1)?} for z > 0
and X; were independent Gamma(2) random variables. So, in both models the design
density was relatively sparse towards the right end of the support. As the regression
curve is compactly supported in the first case, the gamma kernel based local linear
smoother is not considered here. And similarly, the beta kernel based smoother was
not considered in the second case. The simulation results were all based on 1000
simulations with the random variables generated using the algorithm given in Press
et. al. (1992). The sample sizes used in each model were n = 100,200 and 400.

The performances of the smoothers were evaluated over a gird of equally spaced
points within [0, 1] in the first and [0, 5.5] in the second model. In each simulation for
each smoother at each point, the bandwidth that minimizes the average squared error
was chosen by a golden search algorithm given in Press el. al. (1992), and was then
used to compute the curve estimate. After 1000 simulations, the average squared bias

and variance were obtained as measures of performance.

The simulation results are summarized in Figure 2 for the first model and Figure
3 for the second model. Both figures show that local linear smoothers using the beta
or gamma kernels had the best variance for almost all the sample sizes considered
across the entire range. They had significantly smaller variance when z > 0.8 in the
first model and when z > 3 in the second where the design density was sparse. The
Gaussian kernel based smoother performed better than that based on the Epanech-
nikov kernel, which confirmed the results of Seifert and Gasser (1996). The variance
of the compact kernel based smoother towards the boundary of the support was a

serious concern in the second case.

The increase in both bias and variance as z increases in Figure 2 was due to (i)
m’ () being constant and (ii) the design density is monotonic decreasing within [0, 1].
The U-shape of the variance in Figure 3 was due to the Gamma(2) design distribution
used which has a mode at = 1. The increase in bias in Figure 3 when z € [1, 2] was

due to the fact that {m’(z)}? peaks at z = 1.5. The rise in bias at z = 0 was due

13



to the combination of the boundary effect and the relatively lower level design. It is
quite interesting to see the gamma kernel based smoother had both their bias and
variance drop at x = 0. As expected, the bias of the gamma kernel based smoother
was the largest in the sparse area, but was a good price paid in return for a much
larger reduction in the variance. It was a little surprising to see the good performance

of the gamma kernel based estimator at x = 0.
APPENDIX: PROOF OF THE THEOREM

We only prove the theorem for the case of beta kernels as that for the gamma

kernels can be derived in a similar way.

Let ju(z) = B{S (@)}, Ti(@) = 0! £, (a—X,)'m(X;) K (X;) and v, = E{Ti(x)}
for 1 =1,2,3, and r(z) = m(z)f(z). It can be shown that

p) = (1 E 0@+ olpa (@) end (A1)
ulw) = ()T @y (@)/5!+ ofpa(a)} (+2)

Notice that

Cov{S,(2), Si(2)} = n™" / K2, (@ —y)" " f(y)dy — n™"
= 0 A@)E{(z — )" f ()} —n s (A3)
where 7, is the Beta{2z/b+1,2(1 —z)/b+ 1} random variable. From Chen (1999a),
Ay(w) = O{072a™ (1 —2)71/?}. Also E{(z —7,)" ™ f(72)} = O{puy 42, (2) }. Thus,

it may be shown that the second term on the right hand side of (A.3) is of a smaller

order than the first term. Therefore,

O{n_lAb(:v)} ifly+15=0;
CoviSy (@), Si(@)} = { o{n A 2)} b1

In general, we have

Cont (o), @)} = { Of o W= (A4

where H; can be either S; or 1].
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Let 7(x) = Sy(x)To(x) — S1(x)To(z) and §(z) = Sy(x)So(x) — S7(x). Then 7in(x) =
7(z)/q4(x) and based on (A.4) we have

. _ e(z)ro(z) — (@) (2) n YA (¢
PO = te) — i)+ O AT

Substituting (A.1) and (A.2), and using the standard derivation for the bias of local

linear smoothers, we may derive (4) of the theorem.

Note that
Var{m(z)} = Va [E{Zw’E())”|X1 Xn}]+E[var{zzw;§2§/f|xh..., X0
B N > w?(z)o*(X;)
= Var{f(z)/§(x)} + E w0 ] (A.5)

as Yw;(z)m(X;) = 7(z) and Y w,(z) = ¢(z).
Let n(z) = pa(z)po(z) — p3(z) and B(x) = pa(z)ro(z) — p(z)vi(x). Then,
Var{i(z)/q(z)} = n*(2)Var{i(z)} - 2n7%(z)B(z)Cov{i(z), 4(x)}
+ 0 4 (2)B (@) Var{§(2)} + o{n " Ay(2)}
(@) 3 () |Var{To(2)} — 27 (2)B(2)Cov{To (), So(=)}

+ (@) B @)V ar(So(@)}| + ofn Ay(a) ).

We use (A.4) in the derivation of the last equation. It may be shown in a similar

fashion to that for deriving (A.4) that, with error terms of o{n'4(z)},

Var{To(z)} = n'Ay(z)f(x)m?(z), Cov{Ty(x), So(z)} = n ' Ay(x) f(x)m(z) and
Var{So(z)} = n~"'Ay(z)f(2).

These and the fact that n~*(z)8(z) = m(z) + o(1) lead to

Var{#(z)/4(z)} = o{n ' A,(2)}. (A.6)

To work out the second term on the right of (A.5), we define

= ”712 r—Aj x/b+1 (1— w)/b+1(X )UQ(XJ)
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for non-negative integer [. It may be shown that

one) — EWi(a)} — { A@)o?(@)f (@) +o{Aa)} =0 o

o{ Ay(z)} if 1> 1.
Then
> wi(z)o* (X))
e
_ n—lE[S%(m)WO(CU) — 251(x) S () Wi () + Sf(x)Wg(x)]
{S(x)So(z) — St(z)}?

_ o (1B@)we(@) =2 (@)pa(@)w (@) + it (@)ws (o)
- ( {p2(z)po(z) — pf () }? > {1+0M)}
= n ' Zy(x)/ug(x) + ofn  Ay(2)}

= n ' Ay(x)o?(x)/f(z) + o{n " Ay(z)} (A.8)

Combining (A.6) and (A.8) we prove (5) in the lemma, and thus finish the proof of

the theorem.
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(a) Data Observer 1 (b) Estimates of m_1(x)
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(c) Data Observer2 (d) Estimates of m_2(x)
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Figure 1. Local linear estimates of the detection functions for the Stake Data using
the beta kernels: solid lines with b = b* and dotted lines with b = b*/4, and
quadratic polynomial fits: dotted lines.
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(a) Square Bias n=100

(b) Variance n=100
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Figure 2. Squared Bias and Variance of the local linear smoother using the beta

kernels (solid lines), the Epanechnikov kernel (dotted lines) and the Gaussian kernel

(dashed lines); m(z) = (z — 0.5)?I(0 < z < 1) and the design points z; are

truncated N (0, 0.3?).
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(a) Square Bias n=100 (b) Variance n=100
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Figure 3. Squared Bias and Variance of the local linear smoother using the gamma
kernels (solid lines), the Epanechnikov kernel (dotted lines) and the Gaussian kernel
(dashed lines); m(z) = exp(—z) + exp{—4(x — 1)*}I(z > 0) and the design points

z; are Gamma(2).
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