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Abstract
We give here a simulation study of a density estimator, issued from sharp adaptive
estimation. This nonparametric estimator was previously proved to have interesting
theoretical properties. In this paper we describe the method and apply it successfully
to i.i.d. simulated data issued from different densities.
Keywords: pointwise density estimation, adaptivity, kernel estimator, Lepski’s
criterion, simulation study

1 Introduction

We consider X1, ... ,X,, n independent, identically distributed observations with a com-
mon probability density f : IR — [0,+00). We want to estimate f at a real point z, by
a modified kernel estimator, which was proved to be adaptive to the local smoothness of
the density, in the sense described below, in Butucea (1999) [4].

Kernel estimators for densities were introduced by Rosenblatt (1956) and Parzen
(1962). For a kernel function K (usually a symmetric density function) and a bandwidth
h > 0, we define the kernel estimator

fn(m,h,K):%gK(X’;“T). (1)

For an introductory study in density estimation and further developments we refer to
Devroye and Gyorfi (1985), Silverman (1986) and Scott (1992). It is well known that
drastic improvements of kernel estimator are obtained by a good choice of the bandwidth,
rather than of the kernel.

A modification in that sense of (1) consists in choosing variable bandwidths kernel
estimators. There are two possibilities to vary the bandwidth. The first is to write
h = h(z), as a function of the estimation point. The corresponding estimator is known
in the literature as the balloon estimator (see Terrell and Scott 1992 for a study of its
improvements). A second possibility is the data-dependent variable bandwidth, giving the
estimator

fule) = ;%K (F)- 2



Thus, Breiman, Meisel and Purcell (1977) proposed a bandwidth h; proportional to
(f (X)) . Abramson (1982) proposed h; proportional to (f (X;)) /2, for multivariate
observations, and found better behavior of this estimator in pointwise estimation. Abram-
son’s estimator works for densities that are bounded away from 0 and feasible estimators
of f(x) use preliminary estimators clipped away from 0 in the bandwidth expression.

A global implementation of Abramson’s estimator was done by Hall and Marron (1988),
but deficiencies of this methods were found in Terrell and Scott (1992), precisely for the

Gaussian density a bias of O ((h/ log h)2> instead of the expected O (h4). Those results

were confirmed by Hall, Hu and Marron (1995), where the bias was explicitly quantified
for laws with exponentially decreasing tails and was found to be much greater than for
the case of polynomially decreasing tails of the probability distribution.

Various methods were explored, concerning the data-based variable bandwidth selec-
tors. The cross-validation was much developed since it was introduced by Rudemo (1982).
Stone (1984) proved that, for one fixed density, the adaptive kernel estimator having
bandwidth obtained by cross-validation is asymptotically equivalent to the best kernel
estimator having fixed bandwidth.

Other data-dependent bandwidths are based on cross-validation (see Hall and Marron
1988), local cross-validation (Hall and Schucany 1989, Mielniczuk, Sarda and Vieu 1989),
smoothed cross-validation (Hall, Marron and Park 1992).

Different methods include solve-the-equation bandwidth (Sheather 1986 and Sheather
and Jones 1991), bootstrap bandwidth (Sain and Scott 1996) and smoothed bootstrap
bandwidth (Hazelton 1996). For a review of these methods and comparative theoretical
and numerical studies see Berlinet and Devroye (1994), Wand and Jones (1995) and Jones,
Marron and Sheather (1996).

An adaptive kernel estimator which aims at detecting underlying features in curves by
looking at estimators with different levels of resolution (i.e. bandwidths) is introduced by
Chaudhuri and Marron (1997).

In another approach, Devroye and Lugosi (1996) found a data-based bandwidth whose
performance, in L; error with respect to the optimal non random, global bandwidth and
over the set of all densities (universal smoothing factor) is less than a factor 3. The method
was improved in Devroye and Lugosi (1997) and Devroye, Lugosi and Udina (1998) to that
it provides non asymptotic bounds and it allows us to select automatically the bandwidth
and the kernel order. This proves the supremacy of data-driven smoothing factor over the
fixed bandwidth.

Recently, Devroye and Lugosi (1998) showed that optimization between all bandwidths
depending on data can not be solved. Even when restriction over the class of estimated
densities is done, the class of variable kernel estimates is too large to be optimized when
comparing their L; errors.

Here, we implement the exact adaptive estimation procedure (adaptive to the smooth-
ness of the density) described in next section. This estimator is issued from kernel es-
timators via the Lepski type adaptation procedure (introduced by Lepskii 1990). The
bandwidth selector is both local, i.e. for estimation at a point x the bandwidth depends
on x, and data-dependent. Note also that in our method the choice of K depends on x
and on the data, but it is matched with the choice of h. In this paper, we give a simulation
study of this sharp pointwise adaptive density estimator.



2 Estimation procedure

The estimation framework is nonparametric, which means that the density to estimate
belongs to a very large class of functions. In our case, these functions are mainly described
by a smoothness parameter 3 (e.g., the number of continuous derivatives). More precisely,
we consider, for § a positive integer and L > 0 the class

W(ﬁ,L):{f:]R—>(0,oo):/Iszl,/lR<f(5)(x))2dm§L2}.

This class can be generalized for non-integer 3 > 1/2, by introducing the Fourier transform
F(f)(x) = [ f(y)e~™¥ dy, for any x in IR. The Ly Sobolev class, allowing non-integer
values of 3 > 1/2 can be written as

W(B,L) = {f: R — (0,00) : /Rf _1, /R F(f) ()2 |2 de < 2712}

In a slightly different way to Abramson (1982), we need the additional assumption that
the density is bounded away from 0 at the estimation point. We shall write that our
densities belong to W, (8, L),

Wn (8, L) ={f e W(B,L) : f(2) = pn},
where p,, is a sequence of positive real numbers that satisfies

lim p,, = 0 and liminf (p,, logn) > 0.
n—oo n—oo
As we study the estimator asymptotically, this means that nearer to 0 is the estimated
value, more observations are needed. In practice we take p,, = 1/logn.
The quality of the approximation of an estimator f,(z) of f(x) at fixed x shall be
quantified by the maximal risk over W,, (3, L)

Rup(fostng) = sup By [0,4fulx) = ()], (3)
FEWR(B,L)

where g > 0.

We are interested in finding the asymptotically best estimator f;; independent of /3,
provided that (3 belongs to a set By,,. More precisely, the set By, = { B, -3 Nn} is such
that 1/2 < f; < ... < By, < 400 and more technical conditions have to be verified.
For example, an equidistant grid of points with the largest value 3y _tending to co when
n — 00, slower than logn, is fulfilling this conditions.

Let us define B = By, \ {8y, } and for all 3 in B

B—1/2
a(lﬁi—") * forBeB
wn,ﬁ - 8-1/2 ’ (4)
(%) % ’forﬁ:ﬁNn
where the constant a is function of 3, L, g and f (z), a = a (3, L,q, f (x)) > 0 and satisfies

0 <liminf a (8, L,q, f (z0)) V3 <limsup a(B,L,q, f (z0)) v/ < co.
—00 B—o0




Theorem 1 (Butucea, 1999) There exist an estimator fy independent of (3 in By, and
an eaplicit constant a = a (3, L, q, f (x)) > 0 associated to 1, 5 in (4), such that

- . )
i, 3 U B (s ) = Jing, Sup B (Fs i) = 1

and
limsupRy g, (fr, wn:ﬁNn) < 00.
n—oo

This result translates in density estimation the results for Gaussian white noise model
by Tsybakov (1998). Differently from the Gaussian white noise model, the density model
that we considered is heteroscedastic. In particular, the variance of the kernel estimators
described below is proportional to the unknown value f(x), value that appears conse-
quently in the expression of the asymptotic uniform risk and in the adaptive estimator
[ (x). This is the reason for introducing a preliminary estimator in our estimation pro-
cedure and for considering the clipping of our densities in the class W, (3, L).

The theorem means that for all densities in our class, we can find the estimator f} (),
described in the next subsection, and the proper normalization such that its maximal risk
converges to 1, uniformly in 3 over B. The same procedure attains the faster optimal rate
at the last point 3y, . This is a sharp asymptotic result, because it distinguishes among
estimators attaining the rate 1,, 3. Theoretical properties of adaptation in 3 were briefly
described in Butucea (1999) [5] and studied in more details in Butucea (1999) [4].

As in the most part of the literature, we shall consider ¢ = 2 that corresponds to the
mean squared-error criterion.

2.1 Adaptive estimator

We describe here the simulation algorithm of estimation at each point z of the support of
the density. We define the set By, = {1,2,...,6} of integer regularities (3. For each 3 in
By, we compute the expressions:

L 1 1/(28)
ﬂ_<5@ﬁ—DLJ ’

' 26 1 [ 1
b% =-— [ —————=duand IJ% = — / ———du.
. 23
R (1 + Jul )

The pilot estimator:

We have to choose a preliminary estimator of f (). In simulations, the final esti-
mator proves to be very little dependent on the choice of this pilot estimator. We
use the kernel estimator f, (z) with bandwidth h,, = 1/logn and Gaussian kernel

K (x) = exp {—2?%/2} /\/2m:

fn(x) = fn(I,hn,K) = %ZK <th_$) 5
n i n



see formula (1). For technical reasons, this value is clipped away from 0 at p,, and
we set here p,, = 1/logn:

1
an () :max{fn(m),@},
(cf. Abramson’s (1982) clipped estimator). The last quantity appears in the expres-
sion of the random bandwidth below.
The kernel estimator with regularity (3:
The kernel is defined for each integer 3 as the function
1 [ cos(zu)
Kg(x) = —/ ﬁdu.
mJo 14 ul

We remark that ||K5||§ = y% =(26-1) b% and that we can write it as a finite sum,
(see Gradshteyn and Ryzhik 1994, formula 3.738.2):

X, <>—5z{|| - 0a])

. { (2k 2—;) T lafcos { (2k 2—51) 7 }} |

In particular, for 5 =1 we get Kg = exp (— |z|) /2 and for 3 = 2 we get the familiar
Silverman’s kernel. Figure 1 shows that the kernel is fluctuating more as 3 grows
from 1 (the sharp peaked function) to 6 (where it may also take negative values).
We introduce the bandwidth

~ a, () log n) 1/

hn,g () :ﬁnﬁ (¢, X1,...,Xp) =kg < p

and define the kernel estimator

)= o (s 0:16) = S ().
n, i=1 n,

The Lepski type estimator of 3 and the final adaptive estimator:

At each estimation point & we choose among these kernel estimators as follows. Let
and define

R 1 [ay,(2)logn (8B-1/2)/(28)

B =max{B € By, : |far(®) = fap(@)| <7y (@), V7 € Br,, v < B}

This is an iterative algorithm which was introduced by Lepskii (1990). It starts
with the first value of our set By,. It suffices to choose among the estimators

{fnﬁ (x),B € BNn} the one corresponding to regularity B The adaptive estimator
is



N
Figure 1: Kernels for 3 =1, 2 and 6

In theory, we supposed L known, in simulations we put L = 10, but it may also be
tuned in practice. Its choice plays a role only in the expression of the asymptotic constant,
it does not affect the estimation rate.

2.2 Test densities

We consider the following test densities:

1. Standard Gaussian density ¢ (0,1);

2. Mixed Gaussian densities f (z) = 0.7¢ (=2, 1.5) 4+ 0.3¢ (2,0.5);

3. Cauchy density f (z) =1/ (7 (14 2?));

4. The extreme value distribution f (z) = exp {—exp{—z} —x};

5. The logistic density f (x) = exp{—x} /(1 4+ exp {—z})%;

6. Laplace density (or the symmetrized exponential) f (x) = exp{—|z|} /2;

7. The claw density (see Marron and Wand 1992, Berlinet and Devroye 1994)
F(#) = 75 50 (0,1) + 9 (-1,0.1) +(~05,01)

+¢(0,0.1) + ¢ (0.5,0.1) + ¢ (1,0.1)] ;

8. The smooth comb (see Marron and Wand 1992, Berlinet and Devroye 1994, Marron
and Tsybakov 1995)

fla) =22, (3L 32) 16 (17 16) 8 (41 8
637\ 21°63) T637\21763) T 637 \ 21763
1

LA (B AN 2 (592 L 62 1Y
63¥ 21763 ) T 63¥ 21763 3¥ 2163 )°



Figure 2: Adaptive estimator of the standard Gaussian density

9. The triangular density f (z) = (1 — |z])_

10. The saw tooth (see Berlinet and Devroye 1994),
g@)=f@+9)+fl+N+...+fl@-7)+ f(x-9),

where f is the previous triangular density, number 9.

3 Numerical results

We consider samples of size n = 1000 from each test density and a grid of estimation of
step 0.1. The set By, = B is {1,...,6}. At each estimation point x, we compute the
preliminary estimation and for each 8 in B the variable bandwidths and the corresponding
kernel estimators. Then we estimate regularity (3 of our density and give the adaptive
estimator.

3.1 The Gaussian density

~

For the Gaussian density, ((x) is constantly equal to 6 and the adaptive estimator in
Figure 2 coincides with ‘]/‘.;1’6 (x) = fa (:c,?zn,g (x) ,Kg). We shall denote from now on

Lierror, Loerror and Loerror the discrete norms L1, Lo and, respectively, Loo of the
cliﬂ“erence between the true density and its estimated value over the estimation grid. For

fne (z) we get:

Lierror = 0.045, Loerror = 0.022 and Lyerror = 0.0197.
Numerical comparison with Hall and Marron’s (1988) variable kernel estimator was per-
formed next. This method also uses a preliminary kernel estimator, f}, with fixed band-
width computed, for example, by Silverman’s rule of thumb. The variable bandwidth is

proportional to (1/ n)l/ 2 /fI(X;) at each observed point X; and the kernel is Gaussian.
Its estimated errors are

Lierror = 0.0764, Loerror = 0.0411 and Lyerror = 0.0389.



As we know from Silverman (1986), we can compute precisely the M ISE (h) (Mean In-
tegrated Squared Error) for kernel estimators with fixed, non random bandwidth of Gaus-
sian densities. We shall write in a very similar way the Mean Squared Error M SE(x,h),
for a kernel estimator with square integrable kernel K and bandwidth h, at a point x, as
follows

MSE (z,h) =

Ry 4 x 2
<(K)nf>( )+<1_%) (k"5 £) (@) = 2f (@) (K" 5 1) (@)

+ f (z),

where K" (z) = K (z/h) /h. This is precisely computed and plotted, for n = 1000 and
standard Gaussian density number 1, in Figure 3. For each x of the estimation support,
we proceed to minimization in h, and get the ”oracle” bandwidth (which is supposed to
know the right amount of smoothing corresponding to our optimality criterion)

hyse () = arg hglé.%lMSE (x,h).

We see in Figure 3 and more detailed on its superposed sections in Figure 4, that those
functions have local minima. Our procedure takes for harsg () the least h > 0.01 corre-
sponding to the first local minimum of the M SE (z,h). The value of MSE (x, hpysg (x))
and the bandwidth hprsg (x) are plotted with continuous line in Figures 5 and 6, respec-
tively. We remark that

maxhysp (v) = 1.1.

The value of hysg (z) explodes at the inflection points © = £1 of the Gaussian density.
This corresponds well to the fact that the bandwidth which is optimal for the AMSFE
(Asymptotic Mean Squared Error) criterion contains f”(x) in the denominator (under
the hypotheses that f” is continuous).

We compare the ”oracle” with the ideal adaptive bandwidth (containing the true den-
sity instead of the preliminary estimator):

1/12
hap @) 2 b () = kg (max{f (x).1/ logn} logn> |

since B (x) = 6, in simulations, for all z, and where f () is the Gaussian density at point .
The MSE (xz,hap (x)) is computed for a kernel estimator having Gaussian kernel instead
of Kg which is considered in the simulations. This function and hap () are plotted with
dots in Figures 5 and 6, respectively. Our bandwidth selector, hap (x), and hysg () are
quite different and the mean squared error of our bandwidth does not always descend to
the theoretic minimum. It is interesting however that the visual quality of our estimator
does not suffer from that. Moreover, outside the neighborhoods of the inflection points,
our selector reproduces remarkably well the optimal MSE curve.

The random bandwidth A, ¢ plotted in Figure 7 used in the adaptive estimator is quite
close to the ideal hap (), despite the rough preliminary estimator that it contains.

Except for the vicinity of the inflection points, hap is greater than harsg, which is
quite natural in view of the theoretical results: 3 (respectively hap) with high probability
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Figure 3: MSE(z,h)

overshoots the true value (3 (respectively hyrgg). The reason why this rule does not hold
near the inflection points is that our set B is too small. We have to include into B the
values that are much greater than 6 in order to track correctly the hjsgp near these points.
It is not very profitable to do this since it would make the numerical computations very
long for a very modest gain in the estimation accuracy.

We proceed to a Monte Carlo study. Let us consider 500 samples of size n = 150 of
i.i.d. observations of Gaussian law. For each sample, we compute the kernel estimator
having Gaussian kernel K and the ”oracle” bandwidth hygg (corresponding to n = 150).
We obtain vectors of size 500 of estimation errors for f, (x, hyrse (), K), see formula (1),
and we consider the median value of each vector:

M (Lyerror) = 0.094388, M (Lgerror) = 0.0508582, M (Logerror) = 0.048295.

We compute, for each sample, the adaptive estimator, f, <a:,/i\zn 3 () ’KE (a:)) and because

of the low sample size these estimators are less regular, i.e. the estimated regularity E(a:)
is no more constantly equal to 6. The median values of estimation errors are close to the
previously obtained median errors:

M (Lyerror) = 0.125978, M (Lgerror) = 0.0721679, M (Loerror) = 0.0954043.

Marron and Wand (1992) gave exact formulae for MISE (h) of a kernel estimator,
with Gaussian kernel function, as a function of the bandwidth A and in the case where
the estimated densities are Gaussian mixtures. Similar studies can obviously be done on
MSE (z,h), for Gaussian mixtures and other densities. The practical problem that was
already observed for MISE (h) is that, as a function of h, MSE(x,h) has more local
minima and the study becomes tedious.



Figure 4: MSE (z,h), for v € {0.5,0.75,1,1.25,1.5}

0. 000},

Figure 5: MSE (x,hpse (x)) and MSE (xz,hap (x))

Figure 6: hysg (x) and hap (x)
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Figure 7: Random bandwidth of fnﬁ (x)

3.2 Gaussian mixtures

For the Gaussian mixture density number 2 in Section 2.2, we compare on the same
simulated sample, two preliminary kernel estimators with different bandwidths in Figures
8 and 11. We consider first a relatively ”good” preliminary estimation and an obviously
"bad” one. They have the following errors, respectively:

Lierror = 0.0865, Loerror = 0.0378 and Lyerror = 0.0335
Lierror = 0.3116, Loerror = 0.127 and Ly.error = 0.12.

The estimated regularities B = B(m) are plotted as functions of x in Figures 9 and 12. We
conclude that a change in the preliminary estimator has small influence on the quality of
the final adaptive estimators in Figures 10 and 13, respectively, that have errors:

Lierror = 0.091, Loerror = 0.0369 and Lo.error = 0.028
Lierror = 0.0855, Loerror = 0.0345 and Lyerror = 0.0384.

Nevertheless, in order to get a smoother adaptive estimator, the pilot estimator should be
chosen with some care.

An interesting example of mixture, difficultly estimated with kernel estimators, is the
claw density number 7. Among the 6 kernel estimators f, g with fixed regularity 3, there
is one that minimizes simultaneously the L1, Lo and Ly errors. It corresponds to 8 = 2,
with respective errors

Lierror = 0.0902, Loerror = 0.0519 and Lyerror = 0.0577.

The estimated B is plotted in Figure 14. The corresponding adaptive estimator has the
CITOIS:

Lierror = 0.102, Leerror = 0.055 and Lycerror = 0.0689.

This adaptive estimator is given in Figure 15 and is visually very satisfactory. It looks
better than the estimator with fixed kernel 8 = 2, in spite of the fact that its L1, Lo and

11



0.25

Figure 8: Good pilot estimator (1)

()]

4.5

Figure 9: Regularity estimator (1)

0.25

Figure 10: Adaptive estimator (1)
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Figure 11: Bad pilot estimator

Figure 13: Adaptive estimator (2)
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Figure 16: Kernel estimator with 3 = 2, ﬁl72
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0.3

Figure 17: Smooth comb density, number 8

Lo errors are slightly greater. The kernel estimator with § = 2, ﬁl,g, is plotted in Figure
16.

Because of its very close peaks, the smooth comb density, number 8, was estimated on
a grid with step 0.01 instead of 0.1, see Figure 17. We remark in this case that, among the
estimators with fixed regularity 3, the kernel estimator with # = 2 (Figure 18) minimizes
errors

Lierror = 0.195 and Loerror = 0.1178

and the kernel with 8 = 3 the error: Looerror = 0.17. Because of the high irregularity
of the estimator with 3 = 1 we started the regularity estimation from § = 2. For the
estimation of the regularity also, we enlarged the confidence intervals associated to each
kernel estimator by considering 1.3, 5 instead of 7, 5 (see Section 2.1, The Lepski type
estimator of 3). This is done in order to increase the smoothness of the adaptive estimator.
Its errors are

Lierror = 0.1487, Loerror = 0.088 and Ly.error = 0.1823.

Plots of the estimated regularity and the corresponding adaptive estimator superposed to
the theoretic underlying density (plotted with dots) are in Figure 19.

3.3 Other densities

We remark that the ”worst-case” densities in the minimax sense (and Gaussian mixtures
can reproduce them well) are not so badly estimated. On the other hand, functions like
triangular distribution, number 9, (Figures 20 and 21) or saw tooth distribution, number
10, (Figure 22, #(x) = 6, for all x) have no particular difficulties except for a set of
Lebesgue measure 0 and, however, our estimator seems not very preforming. Adaptive
estimators errors are, respectively:

Lierror = 0.116, Leerror = 0.106, Loerror = 0.211
Lierror = 0.14, Laerror = 0.0403, Ly.error = 0.0278.

15



Figure 18: Kernel estimators of smooth comb density (3 = 2 and 3 = 3, respectively)

Figure 19: Regularity estimator and adaptive estmator, smooth comb density

16
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Figure 20: Regularity estimator, triangular density

Figure 21: Adaptive estimator, triangular density

Such a behavior corresponds to the theoretical results since these functions have a low
regularity 3 in a neighborhood of ”difficult” points, and therefore their rate is smaller.

It is also recommendable that compactly supported functions, like these, or positive
distributions should be estimated with one-sided kernels in order to avoid boundary effects.
There are methods in the literature for obtaining such boundary kernels that we do not
discuss here (see, e.g. Wand and Jones 1995). Also, one-sided kernels seem to be helpful
in treating the vicinities of the ”difficult” points where there is a jump of the derivative,
in the case where these jump points of the derivative are known or expected.

Laplace density or the symmetric exponential, number 6, is also an extremely regular
function except for a single point, a set of Lebesgue measure 0. This density is particularly
hard to estimate since any usual method tends to oversmooth at the peak. Our method
shares this drawback (see Figure 24), although the regularity plot, Figure 23, shows that
in some neighborhood of 0 the empirical values of 3 have a slight tendency to drop down.

Good results are obtained for the Cauchy density, number 3, logistic density, number
5 and extreme value distribution, number 4. Their estimation errors are, respectively,

17



Figure 22: Adaptive estimator, saw tooth density

»

(6]

(6]

Figure 23: Regularity estimator, Laplace density

Figure 24: Adaptive estimator, Laplace density
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Figure 26: Adaptive estimator, logistic density

relatively small:

Lierror = 0.0672, Loerror = 0.0309, Lyerror = 0.0244
Lierror = 0.0702, Loerror = 0.0289, Lyoerror = 0.0234
Lierror = 0.0295, Loerror = 0.0143, Loerror = 0.0108.

Regularity estimators and adaptive estimators are in Figures 25, 26, 27, and 28, respec-
tively. For the Cauchy and logistic density (3 (x) is constantly equal to 6 and those graphics
are skipped.

3.4 Further studies

We performed further studies and modifications of the sharp adaptive procedure, briefly
detailed here. Adaptation was tried on larger sets of regularities, B = {1, ... ,10}, corre-
sponding to choosing between more kernel estimators, on the Cauchy density.

Another modification was to consider a sharper grid on the set of regularities, like B =
{0.75,1,1.25,1.5,... ,6} for the logistic density, number 5 and Laplace density, number
6 (Figures 29 and 30). Here, we considered the kernel corresponding to rounded /3 (the

19
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Figure 27: Regularity estimator, extreme value distribution

Figure 28: Adaptive estimator, extreme value distribution

Figure 29: B(m) € B={0.75,1,...,6}, Laplace density

20



Figure 30: Adaptive estimator, Laplace density

closest integer value), since the sum expression for K in Section 4.2.1 holds for integer 3.
The kernel modification has, indeed, very small influence on the estimation, see Silverman
(1986), Wand and Jones (1995).

Finally, the procedure was reiterated for the Gaussian mixture number 2, that means
the procedure was started again having as a preliminary estimation the later adaptive esti-
mator. All these modifications proved to be a plus in computing time, without significant
improvements in the quality of the estimation.

4 Conclusion

The sharp adaptive density estimation method was designed in a framework of point-
wise estimation. In theory, we search an estimation procedure which is uniformly well
performing over Sobolev classes of functions and especially on their worst-case densities.
In practice, the method works well for many densities, like Gaussian mixtures, extreme
value distribution and other densities studied above. Besides, the adaptive estimator is
particularly robust with respect to the preliminary estimation.

From a numerical point of view, we compared the Li, Lo and L., distances between
the true and the estimated function. There seems to be often a kernel which is the most
performing in terms of those three considered distances. This kernel is sometimes the most
regular kernel (3 = 6) or Silverman’s kernel (8 = 2). The estimated regularity [ varies
around the very same value, which means that the adaptive procedure detects, indeed,
the right kernel estimator.

Fxcept for the Gaussian distribution, all our calculations were done for one given
sample. Thus, the comparison with the ideal MSE are certainly subject to a random
effect. However, they should be rather precise since the sample size is very large. A
further study including Monte-Carlo simulations would be of interest here.

There are also other risk functions that may be used to measure the estimation quality.
The MISE was thoroughly studied in Silverman (1986), Wand and Jones (1995), the
MIAE (Mean Integrated Absolute Error) was studied by Devroye and Gyorfi (1985).
Those risks are not always visually satisfactory and this has motivated the introduction
of other risks, based on Hausdorff distances between graphs of functions, in Marron and
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Tsybakov (1995). Here, we plotted the true and estimated functions and let to the reader’s
appreciation the visual estimation error.

The method is asymptotically efficient and it works well with high sample sizes. Nev-
ertheless, for lower sample sizes, we should tune the parameters of our procedure. When
looking for a rather smooth underlying density we may change our test between kernel
estimators, for example, by considering 27, 3 instead of 7, g, in the definition of 3. This
will enlarge confidence intervals associated to each kernel estimator and allow us to stop at
higher regularities 3. On the contrary, less regular estimators will be obtained when this
gauge is diminished. Adjustments of L go in the same direction, with less rapid results.

The clipping may be done at a lower level, for example at 1/n instead of 1/logn. This
has an undersmoothing effect, since the bandwidth is proportional to this level.

In conclusion, the method works well for a large variety of densities and our results so
far are satisfactory. We may think next of applying this method to real data, issued from
different domains. Further theoretical studies should extend this method to the problem of
dependent data like the estimation of marginal density of a discrete time mixing stationary
process.
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