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Testing for Linear Autoregressive Dynamics

under Heteroskedasticity

Christian M� Hafner� Helmut Herwartz �

November ����

Abstract

One puzzling behavior of asset returns for various frequencies is the of�

ten observed positive autocorrelation at lag �� To some extent this can be

explained by standard asset pricing models when assuming time varying

risk premia� However� one often �nds better results when directly �tting

an autoregressive model� for which there is little economic foundation�

One may ask whether the underlying process does in fact contain an au�

toregressive component� It is therefore of interest to have a statistical test

at hand that performs well under the stylized facts of �nancial returns�

In this paper� we investigate empirical properties of competing devices to

test for autoregressive dynamics in case of heteroskedastic errors� For the

volatility process we assume GARCH� TGARCH and stochastic volatility�

The results indicate that standard QML inference for the autoregressive

parameter is negatively a�ected by misspeci�cation of the volatility pro�

cess� We show that bootstrapped versions of a likelihood ratio andWhite�s

t�statistic have better size properties and comparable power properties�

Applied to German stock data� the alternative tests in many cases yield

very di�erent p�values�

Keywords� autoregression� heteroskedasticity� bootstrap� GARCH� stochastic
volatility
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� Introduction

Standard models of �nance theory assume that �nancial returns have two com�
ponents� a risk premium plus noise� If the risk premium is assumed to be
time�varying� as e�g� in Engle� Lilien and Robins ����	
� then returns will in
general exhibit some autocorrelation� An example is the capital asset pric�
ing model �CAPM
 with time�varying covariances as investigated by Bollerslev�
Engle and Wooldridge �����
 and Hafner and Herwartz �����
� A competing
device is to directly model the autocorrelation structure by using autoregressive
models� In general� there is no economic interpretation of such models because
the conditional mean may become negative and thus fails the interpretation of
a risk premium� As empirical practice has shown� however� the �t of autore�
gressive models very often outperforms the one of risk premium models� This
may be due to the strong autocorrelation reported for stock returns on various
frequencies� see e�g� Chapter � of Campbell� Lo and MacKinlay ����	
�

As there may be doubts about the prevalence of autoregressive components
in the mean� there is no doubt about the observation that volatility is time�
varying for �nancial assets� The predominant models in this domain are the
GARCH �Engle� ���� and Bollerslev� ����
 and stochastic volatility �Taylor�
����
 models� which will serve as the volatility generating processes throughout
our paper�

The R� of autoregressions for return data is typically small such that the
inclusion or exclusion of autoregressive dynamics has only a minor e
ect on pa�
rameter estimates of the volatility model such as GARCH� However� the volatil�
ity process itself may be more a
ected by the choice of linear dynamics because
relative to noisy returns an autoregressive speci�cation of the return series yields
a di
erent estimate of the history of the volatility process� Thus� whether or
not to have an autoregressive component is particularly relevant for applications
where the estimated volatility is used� for example option pricing�

In this paper� we examine the empirical properties of competing devices
testing for signi�cant autoregressive dynamics of order one in conditionally het�
eroskedastic time series models� The quasi maximum likelihood �QML
 ap�
proach as introduced in the GARCH�framework by Bollerslev and Wooldridge
�����
 is compared with inference techniques based on least squares �LS
 proce�
dures which cope with conditional heteroskedasticity� The correction of standard
t�ratios given by White �����
 and a pseudo likelihood ratio �LR
 statistic are
investigated� Additionally� we use the so�called wild bootstrap introduced by
Wu �����
 to obtain bootstrap replications of the White and likelihood ratio
statistic� Whereas for QML inference a parametric description of the volatility
process is necessary� the latter devices concentrate only on the speci�cation of
linear dynamics� We show that the bootstrap tests show in many cases supe�
rior size properties and that QML inference is negatively a
ected by volatility
misspeci�cation� In particular� assuming the popular GARCH����
 model when
the true process is stochastic volatility yields severe size distortions and� hence�
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invalid QML inference� If the true process is of the SV type� our bootstrap tests
are still valid but lose power especially for the case of very high persistence�

The test statistics were applied to German stock returns� giving in many
cases di
erent decisions about acceptance or rejection of the null hypothesis of
no autocorrelation�

The remainder of the paper is organized as follows� In Section � the time
series framework of our analysis is provided and competing devices for inference
against an uncorrelated series are encountered� A simulation study which is
given in Section � sheds light on the empirical properties of the di
erent inference
procedures� Section � provides an application to German stock data� In Section
� we give a brief summary of our results and conclude�

� Testing for AR��� dynamics in case of het�
eroskedastic error terms

An autoregressive time series model of order one� AR��
� with conditionally
heteroskedastic error is conveniently speci�ed as

yt � c� �yt�� � et� et j Ft�� � N��� ht
� t � �� �� � � � � T� ��


where Ft�� denotes the information set generated by the process yt up to and
including time t � �� Complementary to autoregressive dynamics c captures
deterministic in�uences governing the evolution of yt� Within the so�called
autoregressive conditionally heteroskedastic model of order q� ARCH�q
� intro�
duced by Engle �����
 ht is assumed to be completely determined by a time
invariant component � and innovations obtained up to time t� �� i�e�

ht � � � ��e
�
t�� � � � �� �qe

�
t�q� ��


Bollerslev �����
 generalized ��
 introducing autoregressive dynamics of ht
de�ning the GARCH�p� q
 model�

ht � � � ��e
�
t�� � � � �� �qe

�
t�q � ��ht�� � � � �� �pht�p� ��


In applied work the GARCH����
 model turned out to be particularly useful to
describe a wide variety of �nancial market data �see e�g� Bollerslev� Engle and
Nelson� ����
� Therefore we concentrate in the following on this parsimonious
speci�cation of conditional heteroskedasticity� As given above the GARCH����

model is characterized by a symmetric response of current volatility to posi�
tive and negative lagged innovations et��� From the empirical literature on
the analysis of stock market returns the so�called leverage e
ect might be seen
as a stylized fact of return volatility �see e�g� Black� ��	�
� To allow for dif�
ferent impacts of lagged positive and negative innovations one may favour a
so�called threshold GARCH �TGARCH
 model which was proposed Glosten�
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Jagannathan and Runkle �����
 for the variance and by Zakoian �����
 for the
standard deviation� The TGARCH����
 model for ht takes the following form�

ht � � � ��e
�
t�� � ��

� e
�
t��Iet���� � ��ht��� ��


In ��
� I��� denotes an indicator function� The leverage e
ect describes that
current volatility is more a
ected by negative lagged innovations relative to
positive ones� This characteristic is obtained for ��

� � �� Many extensions of
the standard GARCH models have been proposed to capture the leverage e
ect�
the most popular being the exponential GARCH �EGARCH
 model of Nelson
�����
� We refrain from using the EGARCH model for two reasons� �rst� there
are only few results on the asymptotics of QML estimates� and second� when
applied to stock market data many studies showed that EGARCH tends to
overestimate the impact of outliers on volatility� see e�g� Engle and Ng �����
�

Error sequences following a GARCH volatility process complicate the spec�
i�cation of the log�likelihood function of a time series model like ��
� Whereas
the QML estimation of the parameters of the variance model ��
 always requires
nonlinear optimization routines the parameters governing linear dynamics may
still be estimated using standard LS procedures� However� standard inference
e�g� against signi�cance of estimated autoregressive parameters in ��
 is no
longer valid�

Heteroskedasticity consistent inference by means of t�ratios requires the
computation of second and �rst order derivatives of the log�likelihood function
with respect to the autoregressive parameter of interest �see e�g� Bollerslev and
Wooldridge� ����
� A simultaneous analysis of linear and higher order dynam�
ics might be cumbersome in applied work for at least three reasons� First� the
performance of the nonlinear optimization may be negatively a
ected by large
dimensions of the parameter space� In addition� increasing the number of pa�
rameters may reduce the power of inference techniques� Second� inference on
linear dynamics within such a framework always depends on the speci�cation of
the variance process� Since there is a variety of possible variance speci�cations
there is also a variety e�g� of t�ratios that may be used to indicate signi��
cance of model parameters governing linear dynamics� A third disadvantage
of QML inference which is related to the argument given before is its lack of
robustness� Inference on autocorrelation should be valid for alternative types
of heteroskedasticity especially if the assumed volatility model� GARCH say�
amounts to a misspeci�cation of the volatility process�

Due to the di�culties listed above standard LS techniques are often used to
infer on linear dynamics of �nancial time series� In a second step of the analysis
the interest concentrates on the speci�cation of the variance process of residuals
obtained from �rst step residuals� LS estimation bears the advantage of hav�
ing a unique solution which is straightforward to compute� However� inference
along standard lines ignoring the potential of heteroskedasticity involves invalid
empirical levels of tests derived under i�i�d� assumptions� White �����
 intro�
duced a correction of standard t�ratios in case of heteroskedastic error terms
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which is easily implemented� In addition� bootstrap procedures designed for
heteroskedastic innovations may be seen as a reasonable framework to retain
the convenience of LS procedures�

In the following� we outline alternative inference procedures against signi��
cance of the autoregressive parameter in heteroskedastic time series models such
as ��
�

��� QML inference

Iterative QML estimation of � requires a parametric description of the volatility
process� Let � denote the vector of parameters describing a time series model
like ��
� In case of a GARCH����
 model one has � � �c� �� �� ��� ��


�� The
log�likelihood function conditional on a starting value y� is obtained as�

l��
 �

TX
t��

lt��
 � �T

�
log���
� �

�

TX
t��

log�ht
� �

�

TX
t��

�yt � c� �yt��

�

ht
�

The parameter vector � is conveniently estimated by nonlinear optimization rou�
tines� e�g� using the BHHH�algorithm �see e�g� Judge et al�� ����
� Under some
regularity conditions the estimator converges at rate

p
T and is asymptotically

normally distributed�

p
T ��� � �


d� N��� D��SD��
� ��


In ��
 S is the expectation of the cross�product of �rst order derivatives of lt��

with respect to � and D is the negative expectation of the matrix of second
order derivatives� In case of normally distributed errors one has D � S and the
asymptotically valid covariance matrix is

p
T ��� � �


d� N��� S��
� ��


For the symmetric GARCH����
 model both matrices are known to be block�

diagonal� such that inference on signi�cance of �� involves only the upper left
elements of D and S in the case of nonnormal errors and of S alone in case of
normally distributed errors� For the autoregressive model of order one the rele�
vant elements of D and S can be estimated as follows using the QML estimate
�� �see e�g� Bollerslev� ����
�

�S� �
�

T

TX
t��

�
etyt��

ht
�

�

�ht

	ht
	�

�
e�t
ht
� �

���

� �	


�D� �
�

T

TX
t��

y�t��

ht
�

�

�h�t

�
	ht
	�

��

�
�etyt��

h�t

	ht
	�

�
�
e�t
ht
� �

�
	

	�

�
�

�ht

	ht
	�

�
� ��
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Note that for the GARCH����
 model one has�

	ht
	�

� ����yt��et�� � ��
	ht��

	�
�

��� Inference based on least squares

Ignoring the heteroskedasticity of model errors in ��
 one may compute along
standard lines the t�ratio of the LS estimate of ��

t � ��
�
TX
t��

�y�t��

�����

TX
t��

�yt���yt
�

where �yt � yt � T��
PT

t�� yt and �
� is obtained from LS residuals �et as �

� �

T��
PT

t�� �e
�
t � In presence of �conditionally
 heteroskedactic error terms the

standard t�ratio loses its asymptotic N����
�distribution and fails to be pivotal�
To infer against linear dependence in higher order autoregressive models

it may be more convenient to use a likelihood ratio type statistic �see e�g�
L�utkepohl� ����
� Essentially this statistic compares the log�ratio �times T 

of sums of squared residuals of the model under the null hypothesis �RSS�
 and
under the alternative �RSS�
� For the AR��
�model it can be shown that as�
suming independent and identically distributed error terms the likelihood ratio
statistic is almost equal to the squared t�statistic given in ����
� In presence of
heteroskedasticity� however� the true likelihood ratio cannot be computed from
sums of unweighted squared LSresiduals� Thus we refer to this statistic in the
following as the pseudo likelihood ratio statistic �PLR
�

QPLR � T log

�
RSS�
RSS�

�
� ��


Note that the ratio RSS��RSS� is easily augmented to obtain a �pseudo
 F�
statistic�

To derive the asymptotic variance of the LSestimator in the presence of
heteroskedasticity knowledge of the underlying true variances 
�t is necessary�
From standard theory on generalized linear models asymptotic normality can
be derived for the modi�ed t�statistic�

�t � �

TX
t��


�t �y
�
t��


�����

TX
t��

�yt���yt
�

In practice� however� 
�t is unknown� White �����
 proposed to replace this
unknown quantity by squared residuals obtained from consistent estimation of
the linear model in ��
�

tWH � �

TX
t��

�e�t �y
�
t��


�����

TX
t��

�yt���yt
�
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Su�cient conditions for tWH to follow a standard normal distribution asymp�
totically are provided by White �����
 and in Chapter � of White �����
� Es�
sentially these conditions concern the existence of fourth moments of yt which
for our model ��
 means that E�e�t � is �nite and j�j � �� For GARCH�type
processes the existence of unconditional fourth order moments depends on the
particular parameterization of the process� Since the probability limit of �e�t is
e�t and by de�nition E�e�t j Ft��� � 
�t the construction of tWH still appears to
be reasonable irrespective of the existence of fourth order moments�

��� Inference using bootstrap methods

Except for White�s corrected t�ratio the asymptotic distribution of all LS based
test statistics given above is at least cumbersome to derive analytically in the
presence of heteroskedastic error terms� In this case bootstrap methods become
a convenient means to estimate the distribution e�g� of the pseudo LR statistic
if the resampling scheme allows for heteroskedasticity� Wu �����
 introduced
the wild bootstrap coping with heteroskedastic error distributions� This proce�
dure is advocated by Mammen �����
 to estimate the distribution of F�type
statistics in parametric regression models with random explanatory variables
under heteroskedasticity� Adopting a nonparametric framework� Neumann and
Kreiss �����
 show that the validity of regression type bootstrap procedures is
often maintained for autoregressive models if yt � E�yt j Ft��� follows a mar�
tingale di
erence� For the application we have in mind here it can be shown
that bootstrap inference in parametric autoregressive models is analogous to the
regression case as discussed in Mammen �����
� In Herwartz �����
 the wild
bootstrap procedure is used to mimic the stochastic behaviour of the pseudo
LR statistic in the framework of so�called periodic autoregressive time series
models�

Since a resampling scheme is easily implemented under the null hypothesis
of uncorrelated observations yt� bootstrap inference is regarded as a promising
alternative to nonlinear estimation and inference techniques designed for het�
eroskedastic error distributions� For the present investigation we use the wild
bootstrap to estimate the distribution of the pseudo LR statistic� It is known
from asymptotic theory on bootstrap procedures that with respect to interval
estimation the bootstrap procedure is especially fruitful if the simulated quan�
tity is �asymptotically
 pivotal �see e�g� Hall� ����
� Thus� we also evaluate the
distribution of White�s corrected t�ratio by means of bootstrap techniques�

An appropriate resampling procedure is given as follows�

�� LS estimation of ��
 provides test statistics QPLR and the absolute value
of tWH � i�e� jtWH j� Under the null hypothesis H� � � � � the model reads
compactly as�

y � c� � e�� ���


In ���
� the T�dimensional vector y collects the available observations on

	



yt� c� is a constant vector and e� contains the error terms implied by the
null hypothesis� LS provides estimates of c� and e� denoted as �c� and �e��
respectively�

�� The residuals obtained under the null hypothesis are used to generate a
wild bootstrap sample as follows�

y� � �c� � e��

The elements e�t of e� are obtained from residuals �e�t by mimicing their
low order moments� For the present analysis two procedures generating
e�t are considered�

First� imagine for each t � �� � � � � T a random variable Z and a distribution
Ft satisfying

E�ZjFt
 � ��

E�Z�jFt
 � �e��t�

E�Z�jFt
 � �e��t�

A convenient way to construct Ft is to use a two point distribution such
that

prob

�
Z � ���

p
�

�e�t
�

�
�

p
� � �

�
p
�

�

prob

�
Z � �� �

p
�

�e�t
�

�
� ��

p
� � �

�
p
�

�

The distribution Ft may serve to sample e�t � the low order moments of
which reproduce those of the estimated error sequence� Wild bootstrap
sampling as outlined above bears the advantage of mimicing the moments
of �e�t up to order �� To obtain e�t � however� estimated �rst step residuals
are scaled down by a factor ���p�
�� with a probability of about ��	��
This suggests that the estimated conditional bootstrap variance may in
these cases underestimate the true conditional variance�

A symmetric version of the wild bootstrap is easily implemented by sam�
pling e�t directly from a normal distribution with mean zero and time
dependent variance� i�e�

e�t � N��� �e��t
� ���


In the following we refer to the sampling scheme in ���
 as the symmetric
wild bootstrap� Another possible scheme using the normal distribution is
to generate standard normal and independent random variables Ut and Vt
and construct Zt � Ut�

p
���V �

t ��
��� thus having E�Zt� � �� E�Z�
t � � �

and E�Z�
t � � �� Multiplying with �e�t� one obtains the accordance of the
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�rst three moments� as above for the two�point distribution� We tried
both bootstrap procedures based on normal distributions� but no major
di
erence was detected for any of the investigated processes� Therefore
we only document the results for the symmetric bootstrap given in ���

and for the two�point distribution�

�� From the generated series y�t it is easy to obtain bootstrap estimates of
the pseudo LR statistic and the corrected t�ratio which are denoted as
Q�

PLR and jt�WH j respectively�
�� Steps ��
 and ��
 are performed R times with R su�ciently large� For

each bootstrap sample the statistics of interest are recorded� For the
experiments discussed in the next section R � ���� was used�

�� The hypothesis H� � � � � is rejected with signi�cance level � if QPLR

�jtWH j
 exceeds the ��� �
 quantile of Q�

PLR �jt�WH j
�
Note that in principle one may also adopt QML based bootstrapping schemes� In
this case one would �rst specify and estimate a volatility process� a GARCH����


say� and obtain standardized residuals �
t � �e�t�
p
�ht� Drawing innovations with

replacement from �
t one may easily build up a bootstrap sample of yt using
the speci�cation of the dynamic model under the respective null hypothesis�
Whereas the wild bootstrap samples by construction show the same clustering
of volatility as the estimated error sequence a model based bootstrap bears
the advantage that di
erent patterns of volatility clustering are generated for
a given sample� Since bootstrap QML inference again requires the estimation
of a volatility model we did not follow these lines to discuss robust inference
procedures�

� A Simulation Study

To provide insight into the empirical performance of the alternative inference
procedures discussed above we performed a Monte Carlo investigation�

��� The Employed Time Series Models

To characterize empirical size properties we generated white noise sequences

yt �
p
ht
t� 
t � i�i�d� N��� �


and to estimate the empirical power of competing procedures we used

yt � ���yt�� �
p
ht
t�
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The parameter � � ��� was selected for two reasons� First� one may expect
only weak autoregressive dependence in real return data� and second� stronger
dependence may be trivial to detect by statistical inference�

For the volatility process we concentrate on two basic speci�cations� on
the one hand we have the GARCH model class� on the other we have stochas�
tic volatility �SV
� In particular� we used the following speci�cations for the
GARCH model class� letting et �

p
ht
t�

I� Symmetric GARCH����
 models

GARCH�� ht � ��� � ����e�t�� � ���ht���

GARCH�� ht � ��� � ����e�t�� � ���ht���

GARCH�� ht � ��� � ���e�t�� � ���ht���

II� Threshold GARCH����
 models

GARCH�� ht � ��� � ����e�t�� � ����e�t��Iet���� � ���ht���

GARCH�� ht � ��� � ����e�t��Iet���� � ���ht���

GARCH�� ht � ��� � ����e�t�� � ���e�t��Iet���� � ���ht���

GARCH	� ht � ��� � ���e�t��Iet���� � ���ht���

The deterministic components of the volatility processes �� � ���
 were
used only to generate the volatility path� After the generation step each of
the obtained sequences et �

p
ht
t was standardized to have a sample variance

of �� The employed volatility models cover a wide range of scenarios� All
volatility models are characterized by a high degree of persistence� measured in
the symmetric GARCH case as � � � and in the TGARCH case� assuming a
symmetric error distribution� as �����

� ����� If these degrees are smaller than
one� the unconditional variance is �nite� If they are equal to one� we have the
important case of a model integrated in variance� In this case the unconditional
variance of et does not exist� We deal with three processes which are integrated
in variance� GARCH�� which is the integrated GARCH �IGARCH
 model of
Engle and Bollerslev �����
� GARCH� and GARCH	� which may be regarded as
integrated TGARCH models� For the TGARCH models� the asymmetric impact
of lagged innovations on current volatility was chosen relatively small which is
in accordance with many results in the empirical literature� From Bollerslev
�����
 it is known that under normality the unconditional fourth moment of a
GARCH sequence exists if and only if

��� � ����� � ���� � �

holds� For the TGARCH models with ��

� �� �� the condition extends to

��� � ����� � ���� �
�

�
���

� 

� � ����

�

� � ��� � �

��



which is a consequence of Theorem � of He and Ter�asvirta �����
� For the pro�
cesses considered here� it can be veri�ed that the unconditional fourth moment
of et exists only in the cases GARCH� and GARCH�� It may be interesting
to investigate how the non�existence of fourth or even second moments� respec�
tively� a
ects the performance of the test statistics applied to the integrated and
threshold GARCH models�

For SV models� we consider AR��
 speci�cations for log volatility� as it is
standard in the literature since Taylor �����
� i�e�

log ht � � � � loght�� � ��t� ���


In ���
� �� �� and � are �xed parameters� and �t is independent standard nor�
mally distributed and independent of 
t� Since for SV models we have two
random sources� one needs to determine the noise to noise ratio� The volatility
ht is lognormal with mean � � E�ht� � exp�������
������������

� To gen�
erate sequences of errors with stochastic volatility� � was chosen alternatively
� � ���� � and �� thus giving three di
erent levels of the volatility process while
leaving the unit variance of 
t unchanged� For the persistence parameter � val�
ues close to one are frequently reported for �nancial time series� so we choose
���� and ����� Since we have two remaining parameters� � and �� we �x one�
i�e� � � ����� and solve for �� This gives us the following processes SV� to
SV��

I� � � ����

SV�� loght � ���� � ���� loght�� � ������t�

SV�� loght � ���� � ���� loght�� � ��	���t�

SV�� loght � ���� � ���� loght�� � ������t�

II� � � ����

SV�� loght � ���� � ���� loght�� � ������t�

SV�� loght � ���� � ���� loght�� � ������t�

SV�� loght � ���� � ���� loght�� � ������t�

As above � � ���� was only used to generate the volatility path� Each obtained
error sequence et was standardized to have a sample variance of unity�

All processes under study were generated using initial values of e��� �
y��� � � and 
�

��� � �� Observations running from t � ��� to t � � were
deleted from each sample to have the empirical model under study less a
ected
by the initial conditions�

��



��� Competing Test Procedures

To test the hypothesis H� � � � � for the simulated processes we used alterna�
tively the standard t�ratio obtained from LS estimation and the heteroskedas�
ticity consistent t�ratio proposed by White �����
� The asymmetric and sym�
metric version of wild bootstrap inference was employed to estimate the distri�
bution of the pseudo LR statistic and White�s t�ratio� In order to get insights
into the e
ects of volatility misspeci�cation� we performed QML inference in
all cases under the assumption that the et sequence follows a GARCH����

model� Note that this speci�cation does not match the true volatility process
for the threshold GARCH models and the SV models under study� Each of the
employed time series models was generated ���� times� To provide empirical
small and large sample properties of the test procedures under study we used
alternatively T � ��� ���� ���� ���� as sample sizes�

��� Empirical Results

Standard t�ratios obtained from LS inference have empirical signi�cance levels
that di
er signi�cantly from their nominal counterparts in all cases under study�
The strongest violations of the nominal level are obtained for the SV�models�
In large samples �T � ����
 the empirical rejection frequencies of H� � � � � for
this model class vary between �	� and �	� with respect to a nominal level of
��� Size distortions for this procedure increase with the sample size and with
the assumed persistence ��� � �� or �� � �����

� � ��
 of the volatility process�
Integrated GARCH�type processes yield empirical rejection frequencies at the
�� nominal level of about ���� To economize on space we do not provide
further results concerning empirical size and power of standard LS inference�

Selected results characterizing empirical size and power properties of the
remaining test procedures are given in Table � and Table � for the GARCH and
SV models respectively� We only report the empirical signi�cance levels and all
power estimates with respect to the nominal level � � ����� The results for
� � ���� and � � ��� were very similar� Violations of the nominal level which
are signi�cant with signi�cance level ���� are indicated by an asterisk�

In a �rst step we discuss empirical results obtained for GARCH�type data
generating processes�

� Using heteroskedasticity consistent t�ratios the empirical signi�cance lev�
els come close to their nominal counterparts especially in larger samples
�T � ���� ����
� However� numerous signi�cant violations of the nominal
level are encountered in small samples �T � ��� ���
 for which the em�
pirical levels vary between ��	� and ����� For the �nearly
 integrated
processes GARCH�� GARCH� and GARCH	 the empirical levels are sig�
ni�cantly di
erent from �� using White�s t�test even for samples of size
T � ����
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� QML inference under the assumption that the underlying volatility process
is GARCH����
 yields empirical rejection frequencies which are equal to
their nominal counterparts at the �� level for almost all GARCH�type
processes and sample sizes� The GARCH� and GARCH	 processes are
characterized by the strongest threshold e
ects� Misspeci�cation of the
volatility process� however� only weakly a
ects the empirical size of QML
inference� For T � �� empirical rejection frequencies of about ���� are
obtained for these processes which di
er signi�cantly from the nominal
signi�cance level�

� Wild bootstrap inference shows superior size properties relative to all other
test procedures� For all GARCH�type processes the obtained empirical
signi�cance levels are not signi�cantly di
erent from the nominal level�
Both versions of the wild bootstrap procedure used to simulate White�s
t�statistic behave similarly� Results for the symmetric bootstrap applied
to the pseudo LR statistic are thus omitted� It turns out that the sym�
metric version of the wild bootstrap yields empirical signi�cance levels
which are slightly larger compared to those obtained from its asymmetric
counterpart� The latter result holds for almost all processes �even the
SV models
 and samples sizes� In addition� asymmetric versions of the
wild bootstrap obtain similar results in simulating the pseudo LR statistic
compared to White�s t�ratio�

� QML inference assuming a GARCH����
 error sequence has superior power
properties relative to the remaining inference procedures� In large sam�
ples �T � ����
 the hypothesis H� � � � � is rejected in about ��� of
the performed experiments irrespective of the underlying true volatility
process�

� Relative to QML inference the remaining procedures are slightly inferior
with respect to the GARCH� model� For the remaining models� which
are either asymmetric� integrated or nearly integrated� power estimates
are considerably less than those obtained from QML� In the worst case�
i�e� for the GARCH	 process which is characterized by strong asym�
metry and non�existing unconditional variance� power estimates of the
bootstrap procedures are about ��� less than QML estimates� Since the
power estimates for bootstrap procedures are increasing with the sample
sizes considered one may still conjecture that bootstrap inference is still
consistent�

� Power estimates of wild bootstrap inference are slightly less compared to
those obtained for White�s t�test� Since the empirical size of the lat�
ter is larger compared to bootstrap inference one may not expect both
procedures to have di
erent power properties conditional on a common
empirical size�

��



A number of results discussing empirical size properties given above does not
carry over to inference against linear dependence if error terms are generated
by stochastic volatility� First� QML inference shows empirical signi�cance levels
which are up to nine times larger compared to the nominal level of ��� Empirical
rejection frequencies of QML inference increase and are mostly severe for the
highly persistent processes SV� to SV��

Second� White�s t�test provides empirical levels up to ��� which are signif�
icantly di
erent from �� for all but one experiment� Compared to QML based
inference� however� the empirical size of White�s t�test is decreasing with the
sample size such that one may conjecture this test to be valid for very large
sample sizes in the case of error terms exhibiting stochastic volatility�

Third� for the processes SV� to SV� the empirical size of bootstrap pro�
cedures is signi�cantly less than the nominal level in a few experiments� The
symmetric version of the wild bootstrap used to estimate the distribution of
White�s t�ratio yields empirical sizes that do not di
er from the nominal level�
Using the asymmetric wild bootstrap technique both test statistics under study
show empirical sizes of ���� to ���� in a number of experiments amounting
to a conservative testing device� Signi�cant violations of the nominal level are�
however� more often observed for bootstrap inference via White�s t�test�

The estimated power of the competing procedures mirrors to some extent
the size properties given above� QML inference shows highest power estimates
which is not surprising in the light of the observed size distortions� White�s t�test
is also characterized by higher power estimates relative to bootstrap inference
but regarding the empirical size di
erences of both procedures� di
erences in
empirical power may be neglected� Bootstrap procedures have almost no power
at all for samples of size T � �� for which power and size estimates are close to
each other� Power estimates increase with the sample size for all investigated
processes� With respect to the highly persistent speci�cations SV� to SV��
however� even for T � ���� the obtained power estimates are only about ����
For the remaining SV�models bootstrap power estimates are at most ����� for
T � �����

� Empirical Application to German Stock Data

The alternative test procedures discussed in the previous sections were applied
to the daily returns of �� major German stocks at the Frankfurt stock exchange
from January �� ���� to December ��� ����� which amounts to �	�� observations
for each stock� All prices are adjusted for dividends�

As discussed in the introduction� an often observed feature of daily stock
returns is a positive autocorrelation at lag �� In this section� we want to test
whether this feature is due to an autoregressive process of order �� Table � and �
present estimation results for the TGARCH����
 model with AR��
 component�
Only for Siemens and Thyssen the estimate of the autoregressive parameter is
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negative� for all others positive� The same result was obtained for a TGARCH�
M model� Note that in the latter case the parameter � was signi�cant according
to QML p�values less frequently than the autoregressive parameter �� Although
positive for most stocks as predicted by �nance theory� the signi�cance of � is
even less clear than the signi�cance of �� The asymmetry parameter ��

� for the
estimated AR��
�TGARCH����
 models is positive for most cases� supporting
the frequently reported leverage e
ect� However� �� signi�cance according to
QML p�values is obtained for only nine stocks�

The results concerning p�values for � using di
erent test procedures are
presented in Table �� As the bootstrapped versions of White�s t�ratio and
the pseudo LR statistic yield relatively similar results� we will mainly compare
the QML statistics with the bootstrap statistics� Taking a nominal level of
��� the QML statistic rejects H� in twelve cases� whereas the symmetrically
bootstrapped White statistic only rejects in �ve cases� For a nominal level of
�� there are seven stocks �Allianz� Bayerische Vereinsbank� Dresdner Bank�
Hoechst� MAN� RWE and Schering
 for which QML suggests to reject the null
hypothesis and the bootstrap tests do not reject� For a level of ��� there are
�ve stocks �Daimler� MAN� RWE� Schering and Veba
 where this occurs� The
reverse case of a rejection by the bootstrap tests and no rejection by QML does
not occur� except for Bayer when setting a level larger than ����

For all estimated models the conditions for existing unconditional variances
are satis�ed� The stocks with highest persistence in volatility as measured by
�����

� ����� in the TGARCH����
 model are Allianz� Bayerische Vereinsbank
and Commerzbank with a value of ����� whereas the smallest degree of persis�
tence is found for Linde with a value of ����� The mean degree of persistence is
����� Recall from Section � that the bootstrap tests lose power for the case of an
integrated GARCH process or an SV process with � � ����� If we assume that
the stock return volatility is well described by TGARCH or SV�type models�
we have to conclude that only in a few cases the bootstrap tests will not have
enough power to reject the null hypothesis�

On the other hand� recall that QML with the assumption of GARCH����

is not a valid inference procedure if the true volatility process is stochastic� As
there are many claims in the literature that SV models describe real data better
than GARCH models �see e�g� Shephard� ����� for an overview
 and only lack
the simplicity of estimation� we conclude that for our data the QML statistics
may reject the null hypothesis too often� We clearly prefer the bootstrapped
versions of LS based statistics� since for all scenarios investigated we have valid
test statistics that lack power in cases that do not seem to occur frequently for
our data�

When comparing the three estimated models� we can say that for many
stocks the inclusion of an AR��
 component substantially increased the value of
the likelihood function� This was true somewhat less for the inclusion of the risk
premium parameter �� This tends to give stronger support for autoregressive
models than for risk premium models� as discussed in the introduction� Nev�
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ertheless� we showed that the statistical signi�cance of these puzzling e
ects
are much less evident when taking into account possible misspeci�cations of the
volatility process�

� Conclusions

In this paper� we investigate the inference on linear AR��
 dynamics under het�
eroskedasticity� We compare several test procedures including standard QML
inference and an LS based wild bootstrap test via Monte Carlo simulations�
For the volatility process we allow for both threshold GARCH and stochastic
volatility dynamics� It is found that among all tests the wild bootstrap inference
delivers empirical levels that are closest to the nominal levels� The power of the
bootstrap tests is low in the situation of an SV process with very high persis�
tence� However� standard QML inference assuming GARCH����
 completely
fails for all scenarios of underlying SV processes� where the null hypothesis of
no AR dynamics is rejected too often� QML inference is less a
ected by mis�
speci�cation with respect to the volatility asymmetry� Applying the alternative
tests to German stock returns� we show that in many cases di
erent decisions
would be taken with respect to acceptance or rejection of the null hypothesis�
Our conclusion is the following� In practice one does not know whether the
true volatility process is better described by GARCH or SV� so for estimation
convenience one very often prefers GARCH� Keeping in mind possible misspec�
i�cations of the volatility process� one should be careful interpreting standard
QML inference results�

We observed that in general the volatility parameters remained relatively
stable irrespective of the inclusion or exclusion of an autoregressive component�
However� the estimated volatility processes di
ered in many cases substantially�
As volatility estimates and predictions may be used in many �elds of empirical
�nance� this observation appears to be of broad relevance� For example� in a
related work we investigate the impact of these e
ects on option pricing �Hafner
and Herwartz� ����
�
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Table �� Empirical rejection percentiles of H� � � � � for competing tests
against signi�cant autoregressive dynamics in GARCH�type series of length T
at a nominal level of ��� QML is quasi maximum likelihood using GARCH����
�
WH White�s heteroskedasticity correction� LRB is a bootstrapped pseudo LR
statistic and WHB and WHS are two bootstrapped versions of WH�
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Table �� Empirical rejection percentiles of H� � � � � for competing tests
against signi�cant autoregressive dynamics in SV�type series of length T at a
nominal level of ��� QML is quasi maximum likelihood using GARCH����
�
WH White�s heteroskedasticity correction� LRB is a bootstrapped pseudo LR
statistic and WHB and WHS are two bootstrapped versions of WH�

��



Stock TGARCH����
�AR��
 TG�M TG�M� AR��


�� ��� �� �� �� �� ��
ALLI ���� ���� ���� ���� ����� ���� ����

� ����
 � ����
 � ����
 � ����
 � ����
 � ����
 � ����

BASF ���� ���� ��	� ���� ���� ���� ����

� ����
 � ����
 � ����
 � ����
 � ����
 � ����
 � ����

BAYE ���	 ���� ���� ���� ���� ���� ����

� ����
 � ����
 � ����
 � ����
 � ����
 � ����
 � ����

BAYH ���� ����� ���� ���	 ���� ���� ����

� ����
 � ����
 � ����
 � ����
 � ����
 � ����
 � ����

BAYV ���� ���� ���� ���	 ���� ���	 ����

� ����
 � ����
 � ����
 � ����
 � ����
 � ����
 � ����

BMW ���� ���� ���� ���� ���� ���� ����

� ����
 � ����
 � ����
 � ����
 � ����
 � ����
 � ����

COMM ���	 ����� ���� ���� ���� ���� ����

� ����
 � ����
 � ����
 � ����
 � ����
 � ����
 � ����

DAIM ���� ���� ���� ���� ���� ���� ����

� ����
 � ���	
 � ����
 � ����
 � ���	
 � ����
 � ��	�

DEUT ���� ���� ���� ���� ���� ���� ����

� ���	
 � ����
 � ����
 � ����
 � ����
 � ����
 � ����

DEGU ���� ���� ���	 ���� ���� ���� �����

� ����
 � ����
 � ����
 � ����
 � ����
 � ����
 � ����

DRES ���� ���� ���� ���� ���� ���� ����

� ����
 � ����
 � ����
 � ����
 � ����
 � ����
 � ����

HENK ���� ���� ���� ���� ���� ���� ����

� ����
 � ����
 � ����
 � ����
 � ����
 � ����
 � ����

HOEC ���	 ���� ��	� ���� ���� ���� ����

� ����
 � ����
 � ����
 � ����
 � ����
 � ����
 � ����


Table �� Parameter estimates and QML p�values �in parentheses
 of the
TGARCH����
 model for the German stocks ��nd to �th column
� Column
� reports the estimates of � for the TGARCH����
�M model� and the last two
columns the estimates of � and � for the AR��
�TGARCH����
�M model�

��



Stock TGARCH����
�AR��
 TG�M TG�M� AR��


�� ��� �� �� �� �� ��
LIND ���� ���� ���� ���� ���� ���� ����

� ����
 � ����
 � ����
 � ����
 � ���	
 � ����
 � ����

MAN ���� ���� ���� ���� ���� ���� ����

� ����
 � ����
 � ����
 � ����
 � ����
 � ����
 � ����

MANN ���� ���� ���� ���� ����� ���� �����

� ����
 � ����
 � ����
 � ����
 � ��	�
 � ����
 � ���	

MUEN ���� ���	 ���� ���� ���� ���� ����

� ����
 � ����
 � ����
 � ����
 � ����
 � ����
 � ����

PREU ���� ���� ���� ���� ���� ���� ����

� ����
 � ����
 � ����
 � ����
 � ����
 � ����
 � ���	

RWE ���� ���� ���� ���� ���� ���	 ����

� ����
 � ����
 � ����
 � ����
 � ����
 � ����
 � ����

SCHE ���	 ����� ��	� ���� ���� ���� ����

� ����
 � ��	�
 � ����
 � ����
 � ����
 � ����
 � ���	

SIEM ����� ���� ���� ����� ���� ����� ����

� ����
 � ����
 � ����
 � ����
 � ��	�
 � ����
 � ��		

THYS ���� ���� ���� ����� ���	 ����� ����

� ����
 � ���	
 � ����
 � ����
 � ����
 � ����
 � ����

VEBA ���	 ���� ���� ���� ����� ���� �����

� ����
 � ����
 � ����
 � ����
 � ����
 � ���	
 � ����

VIAG ���	 ����� ���� ���� ���� ���� ����

� ����
 � ��	�
 � ����
 � ����
 � ����
 � ����
 � ����

VOLK ���� ���� ���� ���� ����� ���� �����

� ��	�
 � ����
 � ����
 � ����
 � ����
 � ����
 � ����


Table �� Parameter estimates and QML p�values �in parentheses
 of the
TGARCH����
 model for the German stocks ��nd to �th column
� Column
� reports the estimates of � for the T GARCH����
�M model� and the last two
columns the estimates of � and � for the AR��
�TGARCH����
�M model�

��



Stock QML PLR WH LRB LRS WHB WHS
ALLI ���� ���� ���� ���	 ���� ���� ����
BASF ���� ���	 ���� ���	 ���� ���� ��	�
BAYE ���� ���� ���� ���� ���� ���� ����
BAYH ���� ���� ���� ���� ���� ���� ����
BAYV ���� ���� ���� ���� ���	 ���� ����
BMW ���� ���� ���� ���� ���� ���� ����
COMM ���� ���� ���� ���� ���� ���� ��	�
DAIM ���� ���� ���� ���� ���� ���� ����
DEUT ���� ���� ���� ���� ���� ���� ����
DEGU ���� ���� ���	 ���� ���	 ���� ����
DRES ���� ���� ���� ���� ���� ���� ����
HENK ���� ���� ��	� ���� ���	 ��	� ��	�
HOEC ���� ���� ���� ���	 ���� ���� ����
LIND ���� ���� ���� ���� ���� ���� ����
MAN ���� ���� ���� ���� ���� ���� ���	
MANN ���� ���� ���� ���� ���� ���� ����
MUEN ���� ���� ���� ���� ���� ���� ����
PREU ���� ���� ���� ���� ���� ���� ����
RWE ���� ���� ���� ���� ���� ��	� ��	�
SCHE ���� ���� ���� ���� ���� ���� ����
SIEM ���� ���� ���� ���� ���� ���� ����
THYS ���� ���� ���� ���� ���� ���� ����
VEBA ���� ��	� ��	� ��	� ��	� ���� ����
VIAG ���� ���� ���	 ���� ���� ���� ����
VOLK ���� ���� ���� ���� ���� ���� ����

Table �� P�values of the AR��
 coe�cient for German stocks� QML is quasi max�
imum likelihood� PLR pseudo likelihood ratio and WH White�s heteroskedas�
ticity correction� The last four columns report bootstrapped versions of the
LR and WH p�values� where B uses the two point distribution and S a normal
distribution�

��


