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Asymptotic equivalence of discretely observed
geometric Brownian motion to a Gaussian shift

Cristina Butucea, Michael Nussbaum
SFB 373, Humboldt-Universitiat zu Berlin,
Weierstrass Institute Berlin, Germany

Abstract
Financial models consider often stochastic processes satisfying certain
differential equations. We show that the solution of a particular geometric
Brownian motion observed in discrete time is asymptotically equivalent
with a Gaussian white noise model.

1 Introduction

In finance, stock prices are modelled by geometric Brownian motion since the
well known Black-Scholes model, classically written as follows

dSt = ,UJStdt + O'Stth,

where {W;,t € [0,1]} is a Brownian motion, with appreciation rate y € IR and
volatility ¢ > 0. The process S; describes the evolution of the stock price at
continuous time .

This model is further used in computing the price of derivative securities
(e.g. option valuation). Thus, a good knowledge of the volatility structure, in
particular, is needed in the analysis of financial analysis and forecasting. For
further details of financial calculations we refer to Musiela and Rutkowski [4].

We also put an accent here on the study of the time-dependent volatility. The
following geometric Brownian motion is considered

dSt =0 (t) Stth, (1)

where the volatility function o is time-dependent, ¢ € [0, 1], belongs to some set
H and is bounded away from 0 (o (t) > & > 0 for all ¢ in [0, 1]). Without loss of
generality we assume that the initial value is Sy = 1.

Consider Y; = log S; and substitute in equation (1). The volatility is a con-
tinuous function and then a solution to this last equation is known to satisfy

dy; = _022(,5) dt + o (t) dW,. 2)



Remark that, from a practical point of vue, the continuous time model (2) is
obviously unrealistic. We have at our disposal discrete time observations. There-
fore, we consider discrete observations of the process Y; in (2) at times t; = i/n,
for2=1,...,n and the following normalized independent increments
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We show that the statistical experiment (as defined later on) induced by
observations in (3) has the same asymptotic behavior as the following white noise
shift model:

dX; = % logo (t) dt + %th, (4)
with ¢ € [0, 1].

The approach is in the sense of Le Cam theory of asymptotic equivalence of
statistical experiments, in a nonparametric setup. We assume that the volatility
belongs to a Holder class of functions, H (8, L), with g € (1/2,1] of functions
that are bounded away from O0:

H(ﬂ,L):{a:[O,l]—)[s,oo) e>0, |o(@)—o(y) gL\x—y\f’}.

Note that we prove the asymptotic equivalence without indicating constructive
procedures (Markov kernels) which allow to pass from one model to the other (see
Nussbaum and Klemeli [6] for such results).

In this paper, we obtain the result that the geometric Brownian motion (1),
observed over a regular grid is asymptotically equivalent with the white noise
model drifted observations in (4), in the sense of Le Cam’s deficiency measure
tending to 0 with n — oo. In Section 2 we introduce briefly the asymptotic
equivalence notion and the main tools in our proofs. Results are stated and
proven in several consecutive steps in Section 3.

2 Notation, definitions

Let E;, = {0 A, (P, =P,,(0):0€ H)}, i = 1,2 be two statistical experi-
ments defined on the same probability space (£2,.4) and indexed by the same
parameter space.

In order to evaluate how close the two experiments are, we consider Le Cam
deficiency measure or the A-pseudodistance. The experiments E;, are said to
be asymptotically equivalent if this distance, A (Ey,,, Ey,,), tends to 0 with n.
For more details about the asymptotic equivalence theory we refer to Le Cam
and Yang [3], Nussbaum [5]. In the following, we describe upper bounds of this
distance by means of Hellinger distance.



Assume that there exists oy in H such that the associated probability measure
dominates all other probability measures of the same experiment. If the likelihood
processes A; , (0) = dP,, (0) /dP;, (0p) are defined on the same probability space
(or have such versions), then the A-distance satisfies

1
A (El,na E2,n) < ESUPE |A1,n (‘7) — Aoy (‘7)‘ .

occH

This upper bound can be expressed by means of Hellinger distance as follows.
The Hellinger distance between two likelihood processes is by definition

1 2
H? (Al,n: AZ,n) = §E (\/ Al,n —V A2,n) .

Then we deduce easily that

A (El,na EQ,n) S SupH (Al,na A2,n) . (5)

ccH

In particular, we use the following formulas, where N (u, 02?) denotes the Gaus-
sian law with mean p and variance o2,

(N (1, %) N (o)) < Vo F2l ©)
H? (N (1,07) N (1,02)) < 2%. )

3 Equivalence results

Let P;” and P, denote the distribution of {Y; = Y;,},_, in (2) and {X; (n)},cq
in (4), respectively, and EY = {[o, 1", B3, (PY (0),0 € H(B,L)) } EX =
{C[O,l], Bei 1y (PX (0),0 € H (B, L))} the associated experiments. We prove

n
that these experiments are equivalent in a few steps.

Consider the following random variables

Zz* _ _02 (tl)
2\/n

where &; are independent, having standard Gaussian law.

+0 () &, (8)

Lemma 1 If B, is the experiment generated by {Z;},_, , in (3) and E7, by
{Z;}iZL...,n in (8), then these experiments are asymptotically equivalent, i.e.

lim A (B, Ef ) =0.

n—oQ



Proof. Let us remark that observations Z; and Z; in (3) and (8) are inde-
pendent and have Gaussian law,

. 2 ti
hi (o) hi (02)> , where h; (0*) = n/ o? (u) du,
ti—1

2y/n "’
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respectively,

PN (—";\%),02 (t,-)) .

In order to prove that A (Eqy, Efn) — 0, when n — oo, it suffices by (5)
to prove that H? (P, P,) — 0, as n — oo, where P, = @, P; and Py, =
R:_, Pr. We have

H? (P, Pl,) < 2) H’(P,P))

i=1
< 2 |H*(P,P)+H*(P,F)|,
S [ (1. 2) 0 (7.7
where .ﬁ, denotes the law of the following independent random variables
~ h; (o

2/m

Using formulas (6) and (7), we get

(V@ -o@) 1 -y

(o) 1o’ h) 107 (1) in

H* (P, Pr,) < 2) |2
=1

< () - 0[5+ g

: €2 8ne2
=1

Remark that for the continuous function o there exists a value u; € [t;_1,t;] such
that h; (6%) = 02 (u;) and then

|hi (0%) —o” ()| = |0 () — o (&:)]
< 2B(B,L)|u; —t;]° =0 (1)n?,

where B (3, L) is an upper bound of functions ¢ in H (3, L). Finally,
H2 (P, Pry) < (14 0(1),

which tends to 0 for all 5> 1/2. =



Remark 1 In addition to the main result we notice the following facts. Similarly,
let us consider the process M, satisfying

th =0 (t) th

and discrete observations of this process at times t; = i/n, for i = 1,...,n,
together with

Ui = \/ﬁ (Mti - Mti—l) = \/ﬁ/ttl g (u) qu' (9)

Analogously to Lemma 1, it is stated in the following Lemma that the Gaussian
random variables

Uf =0 ()& (10)

introduce an equivalent experiment to (9). Via the same steps as for the observa-
tions Z; we obtain in our Theorem the equivalence of (10) to observations X; in
(4). This proves the fact that the drift part of the discrete observations Y; in (2)
18 asymptotically non significant.

Lemma 2 If By, is the experiment associated to {U};_,
{Ui*}izl,...,n in (10) then

in (9) and E3,, to

n

lim A (Eyy, E;,) = 0.

n—oo

Proof. The proof goes similarly to that of Lemma 1, by writing the laws of
{Uitich,. nand {U iy 0 Pon t @iy N (0,54 (07)) and Py, : @iy N (0,07 (t:)),
respectively. By inequalities (6) and (7) on the Hellinger distance and using the
Holder property of the volatility function o, we conclude immediately. m

The following result states that the solution Y; of the geometric Brownian
motion, discretely observed and the Gaussian drifted model X; are equivalent.
Moreover, the non random expectation term in (8) is asymptotically non informa-
tive and all the information can be ’extracted’ from the variance term, in model

(10).

Theorem 1 The experiments E, and E associated to {Yi},_;
{X; (n)}te[o’l] in (4), respectively, are asymptotically equivalent, i.e.

in (3) and

lim A (EY, E)) = 0.
n—oo

Moreover, the drift part of observations {Y;},_, . in (3) is asymptotically non
significant in this model.



Proof. We use several times the transitivity property of the asymptotic
equivalence property. It is sufficient to prove that £}, (see Lemma 1), respectively
E3,, (see Lemma 2) are equivalent with the same global experiment E,Y.

Let us consider first Ej, = {[0, 1]",6[76’1], (P3n(0),0€H (ﬁ,L))} and re-
mark that Py, = @, Pg(m can be written as a product measure of distributions
from an exponential family having parameters o (¢;). By following the same steps

as in Grama and Nussbaum |[2| (see Example 4.2, p 189), we deduce that this
model is equivalent to

logo (t;)
= T &
V2
where 0 € H (8, L) and ¢; are i.i.d. standard normal distributed.

The proof that E,, = {[0, 1", By, (Pi, (0),0 € H (B, L))} with P}, (o) =
R, P;(ti) is asymptotically equivalent to (11) follows the same arguments slightly
differently, as given below.

The final step is immediate and consists of applying Brown and Low [1] in or-
der to deduce that the experiment induced by observations Z;* is is asymptoticaly
equivalent to EX in (4).These facts finish the proof of our theorem.

The global experiment EY, has to be reduced to the local experiment of the

same observations with o € Hy, -, (3, L), a shrinking neighborhood of ¢,. For a
fixed function oq in H (8, L) define

HUO,’Yn (ﬁ?L) = {0 € H(ﬂa L) : ||0 - 00||oo S fY’H}v

where v, = (n/logn)?/@*Y,
Observations Z7, (8), have a normal density written as an exponential model
as follows

7 = (11)

PR SRS S S S AN
pz() O’(ti)\/Q_ﬂ' p{ 202(751-)( + 2\/7—7’)}

B )\xQ x N 1 +11 \i
- PN Tovm e 2 8\ e ) [

where \; = —1/0? (t;). We write this exponential model as

pi (x) = exp{\NU (z) — V,, (A\;) } exp {—

where U (z) = /2 and
1 Z- 1
Va0 = g (-5 -

)

2 o7 ) " ®n’
1

! AZ — o -

Vn () 2n 8

" 1 1
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Via Theorem 3.2 in Grama and Nussbaum [2], the local E7,, is equivalent to the
discrete GGaussian experiment:

2 =0 (t:) + In (00 (t)) ™" &is 7 € Hops, (,L). (12)
Denote I (\;) = 1/ (2)?) and consider the variables

Zi(Q) =0 (t:;) + I (o0 (tz‘))_l/2 €, 0 € Hyypy, (6, 1) (13)

We prove that the experiments generated by Z(!) = {Z-(l)} and Z® =
i=1,...,n

7

{Zi@)} are asymptotically equivalent, in order to bring our problem back
i=1,...,n

to the case of Grama and Nussbaum [2]| and apply the variance-stabilizing trans-
formation .
We show that the Hellinger distance tends to 0 with n, as follows

B2 (20, Z79) < 22[—_{2 (N (o (t;), I (00 (t:)) ") , N (0 (t:) , I (00 (t:)) 7))

(I (o0 ()2 = 100 (1))
<
T H L(oo() T+ (o0 ()

. —1/2 2
((1 - 2n0’0(t¢)) o 1)

—1
1
(1 - Znao(ti)) + 1

If we denote a; = 1/ (2noy (t;)) then

<(1 - ai)—l/2 B 1>2 (1 _a- ai)_l/2)2

(l—ai)_l—f-l 2—aq -

IN

iy
i=1

and

The last step is to apply a variance-stabilizing transformation I", solution of
the differential equation I (\) = +/I ()\), which gives T'(\) = logA\/v2. We
obtain the equivalent local Gaussian experiment

3 3
Zz()_T €i70-€H0'07’Yn( ) )

By globalization arguments of Grama and Nussbaum 2] (Theorem 3.8) we obtain
the global experiment in (11) (where o in the class H (5,L)). =

7
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