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Abstract

Motivated by a nonparametric GARCH model we consider nonparametric additive regression

and autoregression models in the special case that the additive components are linked paramet�

rically� We show that the parameter can be estimated with parametric rate and give the normal

limit� Our procedure is based on two steps� In the �rst step nonparametric smoothers are used

for the estimation of each additive component without taking into account the parametric link

of the functions� In a second step the parameter is estimated by using the parametric restriction

between the additive components� Interestingly� our method needs no undersmoothing in the
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� INTRODUCTION

Additive nonparametric regression models have found wide use in statistics �Hastie and Tibshirani�

������ and remain an area of vigorous research �Opsomer and Ruppert������ Opsomer� ���	� Linton�

Mammen and Nielsen� ����� Linton� ����� Fan� H
ardle and Mammen� ���	�� This paper explores

a variant of the problem in which the components of the additive model are linked parametrically�

Let Y be a scalar response and X � �X�� � � � �XJ �T a vector of regressors� In the ordinary

additive model�

E�Y jX� � E�Y � �
JX

j��

mj�Xj�� ���

where for identi
ability the component functions satisfy Efmj�Xj�g � ��

Hafner ����	� describes a problem in 
nance where the component functions m����� � � � �mJ���
are linked by a parameter� see Section � for more details� Speci
cally� for a scale parameter ���

and for j � ��

mj�x� � �j��� m��x�� ���

Our purpose here is to estimate both the parameter �� and the base function m��x�� Among the

many possibilities� one stands out as relatively straightforward� namely to estimate the component

functions in the general model ��� and somehow �shrink� them to the model ���� One method we

pursue� which is based on considerations from the 
eld of errors in variables� is computationally

straightforward� with the estimate of �� having an easily estimated standard error� In addition�

the estimator has the pleasing property that the 
t to model ��� can be done in a standard fashion�

without the need for any undersmoothing to insure that the estimate of �� converges at standard

parametric rates� The analysis of this method leads to a second method which is equally simple to

compute�

The paper is organized as follows� In Section �� we de
ne the methods used� Section � states the

asymptotic properties when the additive component functions of ��� are estimated by a nonpara�

metric smoother that allows a stochastic expansion of order oP �n������ Section � provides details

of the motivating example from a nonparametric GARCH model� This model can be approximated

by a nonparametric additive autoregression model� Section � extends our results from regression to

autoregression� In particular� it discusses the set up of the approximating model for our motivating

example in Section �� We discuss conditions under which estimates of the additive component allow

a stochastic expansion of order oP �n������ This is done for the integration estimates �see Linton

�



and Nielsen������ Tj�stheim and Auestad� ������ Furthermore� the asymptotic theory of Section

� is extended to autoregression� All proofs are in the appendix�

� THE METHODS

The data are �Y��X��� � � � � �Yn�Xn�� where Xi � �Xi�� � � � � XiJ �T � We describe here the two meth�

ods used in this paper� Our methods rely on estimates f bm����� � � � � bmJ���g from the model ����

speci
c examples of which are discussed later in this article�

��� A Method from Errors�in�Variables

The 
rst method has a natural interpretation as a functional errors�in�variables method �Fuller�

��	��� To explain this� 
rst 
x x� Then ignoring bias and other technical details� it is generally

the case that for some constants cn � � and functions wj�x�� the functions f bmj�x�gJj�� form a set

of nearly independent� nearly normal random variables� bmj�x� � Normalf�j��� m��x�� cn�wj�x�g�
If one only had this single 
xed x� then the unknowns would be �� and m��x�� and they could be

estimated by minimizing in � and m��x�

JX
j��

wj�x�
n bmj�x�� �j��m��x�

o�
� ���

This is an errors�in�variables model because we have the multivariate �response� f bm��x�� � � � � bmJ�x�g
with means f��m��x�� � � � � �J��� m��x�g� but instead of observingm��x� we only have the error�prone

�predictor� bm��x�� Equation ��� thus proposes estimating �� and m��x� by an asymptotic form of

maximum likelihood� This is exactly the classical functional errors�in�variables estimate�

Continuing with 
xed x� for a given � the minimizer of ��� is Gf bm��x�� � � � � bmJ�x�� �g� where

Gfm��x�� � � � �mJ�x�� �g �
JX

j��

wj�x�mj�x��j���
JX

j��

wj�x���j���

Note that Gfm��x�� � � � �mJ�x�� ��g � m��x� since mj�x� � �j��� m��x��

Hence� if we worked only with a 
xed x� �� would be estimated to minimize

JX
j��

wj�x�
h bmj�x�� �j��G f bm��x�� � � � � bmJ�x�� �g

i�
� ���

Summing ��� over all the data suggests that we estimate � by minimizing

nX
i��

JX
k��

JX
j��

wj�Xik�
h bmj�Xik�� �j��G f bm��Xik�� � � � � bmJ�Xik�� �g

i�
� ���

�



��� A Method Based on Least Squares

A special case is illuminating and suggests a second method� Suppose that J � � and that the

variances of bm��x� and bm��x� are asymptotically the same� so that we can set w���� � w���� � ��

Then ��� reduces to minimizing in �

�� � �����
nX
i��

�X
j��

f bm��Xij�� � bm��Xij�g� � ���

The leading term �������� in ��� plays an important role in the usual errors�in�variables problem�

but here we have a di�erent situation� because the �errors�in�the�variables� are small asymptoti�

cally due to the fact that the �error�prone predictor bm��x�� has an error which is asymptotically

small� This suggests that one might 
nd a reasonable estimate if one simply removes this leading

term and minimizes instead
nX
i��

�X
j��

f bm��Xij�� � bm��Xij�g� � ���

While there are numerical di�erences between our method ��� and the least squares method ���

�generally� the latter yields larger estimates for ���� asymptotically the two lead to the same dis�

tribution for b�� see Section ��� for a sketch�

The method ��� can be obtained alternatively by replacing G��� in ��� by bm����� Thus the least

squares method minimizes

nX
i��

JX
j��

JX
k��

wj�Xik�
n bmj�Xik�� �j�� bm��Xik�

o�
� �	�

For J � �� �	� leads to an estimator which is asymptotically di�erent from the solution to ���� We

explore the di�erences numerically in Section ��

��� Alternatives

There are a host of possible alternative methods�

As we have described in section ���� the component functions can be looked at as if they came

from a �nonlinear� errors�in�variables model� There is a huge literature on the topic of errors�in�

variables� and at least in principle one can develop many alternatives to the two methods we have

described� either based on small error considerations �Amemiya and Fuller� ��		� Carroll� Ruppert

and Stefanski� ����� or on simulation �Cook and Stefanski� ������

Alternatively� the method �	� can be looked upon as regressing bmj��� for j � � on bm����� This

could be expanded to doing all possible regressions of bmj��� on bmk��� for j � k�

�



We have not explored these alternatives� although our methods of argument can in principle be

used to obtain limit distributions for them�

� ASYMPTOTIC THEORY FOR REGRESSION DATA

It is possible to obtain the asymptotic distribution of the estimates of � for di�erent estimates of

the component functions mj�x�� We assume that the estimates ful
ll the stochastic expansion ����

given below� In Section � we will show that this expansion holds for the integration estimate�

Let K��� be a symmetric density function chosen without loss of generality to have variance

equal to one� De
ne � � Y � E�Y � � PJ
j��mj�Xj� and let fj�x� be the density of the Xij �

i � �� � � � � n� j � �� ��J � Let Xi be the vector �Xi�� � � � � XiJ �� Let h� � be the bandwidth� which is

supposed to have the usual rate h � n����� One of the important features of our theoretical work is

that we show that bandwidths of the usual rate can be used to estimate �� and no undersmoothing

�i�e� h� n����� is necessary�

We suppose that the estimators have the asymptotic expansion

bmj�x� � mj�x� � �����h��j��r�x� � n��
nX
i��

Kh�Xij � x�uj�Xi� x��i

�n��
nX
i��

vj�Xi� x��i � n��
nX
i��

tj�Xi� � oP �n������ ���

where r� uj� vj and tj are some functions� Kh�v� � h��K�v�h�� Furthermore� it is supposed that

Eftj�Xi�g � ��

We 
rst consider the least squares estimator b�LS minimizing �	�� Make the de
nitions

H��X� ��� �
JX

j��

�j � ���j���

nh
v�j �X�� �j��� v���X�

i

�
JX

k��

�wj�Xj�m��Xj�fk�Xj�uj�X� Xj�

� �j��� wj�X��m��X��fk�X��u��X�X��
io

�

H��X� ��� �
JX

j��

�j � ���j���

n
s�j

h
tj�X�� �j��� t��X�

io
�

DLS �
JX

j��

JX
k��

n
�j � ���j���

o�
E
n
wj�Xk�m�

��Xk�
o

�

v�j �x� � E

�
JX

k��

wj�Xk�m��Xk�vj�x�Xk�

�
�

�



s�j � E

�
JX

k��

wj�Xk�m��Xk�

�
�

���X� � Var�YjX��

THEOREM � Let h � n����� Then under conditions �A� listed in the appendix� n����b�LS � ���

is asymptotically normally distributed with mean zero and variance

�LS � E
hn
���X�H�

��X� ��� �H�
��X� ���

o
�D�

LS

i
�

Now we turn to the errors�in�variables estimator b�EIV � which minimizes ���� Make the following

de
nitions�

s��� x� � f
JX

j��

wj�x���j��g���

DEIV �
JX
j��

JX
k��

E�wj�Xk�s����Xk�m�
��Xk�f

JX
���

��� j�w��Xk�����j��� tg���

Rj�x� �� �
JX
���

w��x�
n

���� �������mj�x�� �� � j � �����j��m��x�
o

�

M�x� �� � E

�� JX
j�k����

wj�Xk�s���Xk�Rj�Xk� ��w��Xk�f�����vj�x� Xk�

����j��v��x� Xk�g
i

�

T��j� k� �� ��x� � �����wj�xj�w��xj�s��� xj�Rj�xj � ��fk�xj�uj�x� xj��

T��j� k� �� ��x� � ���j��wj�x��w��x��s��� x��Rj�x�� ��fk�x��u��x� x���

Dj����� � E

�
JX

k��

wj�Xk�s���Xk�Rj�Xk�w��Xk�

�
�

G�X� �� �
JX

j����

Dj�����
n
�����tj�X�� ���j��t��X�

o
�

H��x� �� �
JX

j�k����

fT��j� k� �� ��x� � T��j� k� �� ��x�g�

THEOREM � With h � n����� under the same regularity conditions as Theorem �� n����b�EIV �
��� is asymptotically normally distributed with mean zero and variance

�EIV � E
h
���X� fH��X� ��� �M�X� ���g� � G��X� ���

i
�D�

EIV �

While the additive functions are naturally linked in our model through ���� it is conceivable to

have other functions� e�g�� mj�x� � Fjfm��x�� ��g� Our methods can be used to analyze such models

�



should they arise� For example� the analogue of the least squares criterion �	� would minimize

nX
i��

JX
j�k��

wj�Xik�� bmj�Xik�� Fjf bm��Xik�� �g���

Our methods can be used to analyze this estimator� but there is one catch� Unless Fjfm��x�� �g �

ej���m��x� for some function ej���� the bandwidth condition h � n���� no longer su�ces because

the bias in the nonparametric regressions has a role� In our example the 
rst order bias terms

in bmj�Xik� � Fjf bm��Xik�� �g cancel whereas for general Fj they do not� Cancelation of the bias

terms can be forced by replacing Fj by an appropriately �data adaptively� chosen function eFj �

Fj � OP �h��� Otherwise� without replacing Fj � we could require undersmoothing� so that h �

o�n������ In fact� what basically happens in this case is that there exists ��h � �� � O�h�� such

that n����b����h� has a limit distribution similar to that described by Theorem �� By imposing the

condition h � o�n����� we can replace ��h by ���

� NONPARAMETRIC MODELS FOR FINANCIAL TIME SE�

RIES

The recent development of nonlinear time series analysis is primarily due to the e�orts to overcome

the limitations of linear models such as autoregressive moving�average �ARMA� models of Box and

Jenkins ������ in real applications� It has long been recognized that 
nancial time series models that

incorporate clusters of volatilities are more appropriate than ARMA speci
cations� We consider

here as a motivating example an application of nonlinear time series analysis to foreign exchange

high frequency data�

For these data the autoregressive heteroscedastic models �ARCH� by Engle ���	�� have been

extensively studied� An ARCH model for time series fYtg with ARCH error term of order q is

de
ned through Yt � �t�t� where �t are independent mean zero and variance one random variables

and ��t � 	 � 
�Y
�
t�� � 
�Y

�
t�� � � � � 
qY

�
t�q� with 	 � �� 
i � �� i � �� � � � � q�

In foreign exchange data it has been found that the order q has to be selected quite high to


t the model well� see Bollerslev ���	��� The reason are volatility clusters� i�e� the conditional

variances are highly correlated� An ARMA like model for the squared observations was therefore

proposed for ��t in Bollerslev ���	���

��t � 	 �
qX

i��


iY
�
t�i �

pX
j��

�j�
�
t�j � ����

�



Models of this type are called GARCH �p� q� models� For a general discussion of GARCH models

see also Bollerslev� Engle and Nelson ������� Although this model class showed better 
tting

properties it was soon criticized that the dependence of past observations is treated in a symmetric

way� Positive and negative shocks of Yt��� � � � � Yt�q have the same in�uence on the volatility of the

current period� The forced symmetry of past shocks was one of the primary motivations for non�

and semiparametric extensions of ARCH models� Based on the QTARCH model of Gourieroux

and Monfort ������� H
ardle and Tsybakov ������ considered the CHARN model Yt � m�Yt��� �

��Yt����t� which was applied to DEM�USD exchange rates by Bossaerts� H
ardle and Hafner ������

and extended to the multivariate case by H
ardle� Tsybakov and Yang ����	�� In their analysis

volatility clusters and a strong asymmetry of the news impact function ��Yt��� became apparent

and motivated research on the following semiparametric extension of �����

Yt � �t�t� ����

��t � g�Yt��� � ���t��� ����

The model we consider in this paper is motivated by ���� and ����� By repeated use of equation

����� we can write ��t �
P�

j�� �
j��g�Yt�j�� An approximation of this model with a 
nite number

J of lags reads

Y �
t �

JX
j��

�j��g�Yt�j� � �t� ����

with �t � Y �
t � ��t �

We now illustrate the application of model ���� to foreign exchange rates� The behavior of for�

eign exchange �FX� rates has been subject of many recent investigations� A correct understanding

of the foreign exchange rate dynamics has important implications for international asset pricing

theories� the pricing of contingent claims and policy�oriented questions� The foreign exchange mar�

ket is decentralized with the main trading locations being the Far East �mainly Tokyo� Singapore

and Hong Kong�� Europe �London and Frankfurt� and North America �New York�� It is an elec�

tronic market� active �� hours a day� Banks act as market makers and place bid� and ask�quotes

on the screen� Central information collectors such as Reuters provide the quotes for the market

makers� Actual trade takes place over the phone� This is the reason why there is no information

about actual prices and trading volume� High frequency 
nancial data analysis has become a broad

research 
eld during the last decade� This is due to improved real�time information systems� rel�

atively cheap data supply by banks and research institutions and improved storing facilities� The

�



data set HFDF�� on which the following analysis is based was acquired from Olsen and Associates�

Z
urich� It contains bid and ask quotes for the rates Deutsche Mark against US Dollar �DEM�USD��

during the time Oct � ���� and February �� ����� For each pair of bid� and ask�quotes� the time in

GMT� the quoting bank and the location of the bank are recorded� The quotes are collected from

the Reuters FXFX page� which is considered to be a broad but not  complete data supply� For

more information about this data set� see Dacorogna� M
uller� Nagler� Olsen and Pictet ������ and�

more generally for information about FX rate data suppliers and intra�daily FX data� Goodhart

and Figliuoli ������� Figure �� shows a plot of the DEM�USD returns� Our data set contains

����� data values� A kernel density estimate of the returns is shown in Figure ���

For the data set we calculated back
tting and integration estimates� see the next section for a

description of these estimates� As discussed in the last section� in a 
rst step estimation was done in

an additive model �without assumed links on the components gj� given by Y �
t �

PJ
j�� gj�Yt�j���t�

In this model we chose J � � lags� Figures �� and �� show the resulting back
tting and integration

estimates of the additive components� The integration estimate was calculated by 
tting the full

dimensional estimate on a grid of ��� points� This was done to save computation time� For all

kernel estimates we choose the empirical standard deviation as bandwidth� Next we 
tted the

nonparametric GARCH model ���� with mj � �j��g� For the estimation of � we used our method

from errors�in�variables �see Section ���� and our least squares method �see Section ����� The

resulting estimates were ����� and ����� �for the back
tting estimate� and ��	�� and ����� �for

the integration estimate�� respectively� There are some di�erences between these estimates� largely

along the lines of what one would expect from Figures �� and ��� One would expect from these


gures that the least squares estimate of �� would be smaller than the errors�in�variables estimate�

since the latter compares j � �� �� �� � to a weighted average of j � �� ���� �� which is closer to the

results for j � �� �� �� � than to the result for j � ��

The estimates bm�� � � � � bmJ and b� can be used to construct an estimate of m� that takes into

account that the additive components are linked� This can be done by using the averaged estimate

bm�
��x� �

JX
j��

bcj b���j��	 bmj�x��
JX

j��

bcj � ����

where bcj � b���j��	� see also ���� and the discussion following Theorem � in the next section� Hereb� denotes our estimate based on the method from errors�in�variables or the least squares method�

respectively� Figures ��� ��� �� and �� show plots of the estimates bm�
� and bm�

j � b�j�� bm�
�� The

	



plots di�er slightly for the di�erent methods� This must be explained by the fact that model ����

only approximates the underlying model� In particular use of the method from errors�in�variables

leads to more asymmetric news impact functions�

Figure �� shows how the nonparametric estimates depend on the chosen number J of lags� It

compares the back
tting estimates of bm�
� for di�erent number of lags �J � �� ��� ��� ���� In these

calculations� � was estimated by the method from errors�in�variables� The estimated values are

���	� �J � ��� ����� �J � ���� ��	�� �J � ���� and ���		 �J � ���� The nonparametric estimates

�besides small di�erences of the estimate for J � �� are nearly indistinguishable� So� we conclude

that in this data example model ���� approximates the nonparametric GARCH model ���� and

���� reasonably well�

Of course� this analysis should be taken as illustrative� since it focuses on short�term dependen�

cies� For modeling of long range dependencies like daily or weekly dependence� more complicated

models may be needed�

The next section discusses asymptotics of these estimates in an autoregression model�

� ASYMPTOTICS FOR AUTOREGRESSION

In this section we show that for the integration estimate the expansion ��� holds� The integration

estimate has been introduced in Tj�stheim and Auestad ������ and Linton and Nielsen ������

for the estimation of additive nonparametric components mj��� in an additive model� We will do

this for the time series setup of Section �� We suppose that a stationary time series X�� � � � �Xn is

observed� We suppose that E�XJ��jXJ � � � � �X�� � 
 � m��XJ � � �m��XJ��� � � � � �J��m��X���

where for a weight function w the function m� satis
es E w�Xi�m��Xi� � �� For this setup the

expansion ��� is given by

bmj�x� � mj�x� � �����h��j��r�x� � n��
nX

i�J��

Kh�Xi�j � x�uj�Xi� x��i

�n��
nX

i�J��

vj�Xi� x��i � n��
nX

i�J��

tj�Xi� � oP �n������ ����

where Xi is the vector �Xi��� � � � �Xi�J ��

In this section we study the validity of ���� for the integration estimate �see Theorem ��� For

simplicity of notation� we will do this only for the case J � �� Then� we will consider errors�in�

variables and least squares estimation of � using arbitrary estimates of mj that ful
ll ����� We

�



will show that for these estimates of � analogous asymptotic results apply as in the regression set

up �compare Theorems � and � with Theorems � and ��� An improved estimate of m� can be

constructed by use of the estimates of ��m�� � � � �mJ � Asymptotics for this estimate is described in

Theorem ��

We come now to the check of ���� for the integration estimate� In a 
rst step this estimate uses

a full dimensional local linear 
t bmLL of the data� i�e�the preliminary estimate bmLL is de
ned as

�� where the vector � � ���� ��� ���
T is de
ned by

nX
i��

Kh��Xi�� � x�� Kh��Xi�� � x���Yi � �T �i�x���i�x� � �� ����

Here �i�x� denotes the vector ��� Xi���x�
h�

� Xi���x�
h�

�T � The integration estimate bmI
� of m� is de
ned

as

bmI
��x�� � emI

��x��� n��
nX
i��

w�Xi� emI
��Xi��

�

n

nX
i��

w�Xi�� ����

Here� w is a weight function� The estimate emI
� is achieved by summing out an argument of the full

dimensional estimate bmLL

emI
��x�� � n��

nX
i��

w�Xi� bmLL�x��Xi��n
��

nX
i��

w�Xi�� ��	�

For simplicity� here the same weight function has been used as in ����� The estimate emI
� is achieved

by summing out the other argument of the full dimensional estimate bmLL� Our 
rst result shows

that bmI
� and emI

� satisfy �����

THEOREM � Suppose J � �� Under the regularity conditions �B� listed in the appendix� and if

the bandwidths ful�ll that h� � h�� h
�
� � o�n����� and �log n���

p
n h�h��

�� � �� the estimate bmI
�

has a stochastic expansion ���� with h � h� � h� and

r�x� � m��
��x��

Z
wm��

�f �

Z
wf ����

u��Xi� x� � w�Xi���f�Xi���p�x�Xi���
���

v��Xi� x� � �w�Xi���w�Xi���f�Xi���f�Xi���p�Xi���Xi���
���

Z
wf ����

t��Xi� � �w�Xi���m��Xi�����

Z
wf ����

Here� Xi denotes the vector �Xi���Xi���
T � Furthermore� f denotes the density of Xi and p is the

density of �Xi���Xi�� For bmI
� the expansion ���� holds with the same r�x�� the same v��Xi� x� �

��



v��Xi� x� and with t��Xi� � �t��Xi� and with

u��Xi� x� � w�Xi���f�Xi���p�Xi��� x����

In both cases� the expansion ���� holds uniformly for x � B� The set B was introduced in assumption

B �iii��

We conjecture that an expansion of the form ���� holds �uniformly� for the back
tting esti�

mate� In Linton� Mammen and Nielsen ������� for a version of the back
tting estimate bmBACK
j � a

stochastic expansion has been given� Applied to our setup this expansion is

bmBACK
j �x� � mj�x� � �����h��j��r�x� � n��

nX
i�J��

Kh�Xi�j � x�uj�Xi� x��i

�OP �n���� log n�� ����

with an appropriate choice of uj and where r�x� is as for bmI
j � see Theorem �� The OP �n���� logn�

term in ���� can be explicitly given by an in
nite series� see Linton� Mammen and Nielsen �������

However� it seems to be complicated to show that this term is of order OP �n����� and that it has

the form of the terms in ����� For another recent asymptotic treatment of �another version of� the

back
tting estimate� see Opsomer ����	� and Opsomer and Ruppert �������

We suppose now that we have estimates of mj that ful
ll the expansion ����� These estimates

can be used to construct an estimate of �� Asymptotics for this estimate is given in the next two

theorems� The 
rst theorem describes least squares estimation of �� see Section ����

THEOREM � Suppose that the regularity conditions �B� hold� and for some estimates bmj assume

that they ful�ll ���� uniformly for x � B� where r� uj� vj and tj are bounded functions with

E tj�Xi� � � and supx�z j ��

��x	�uj�z� x�j ��� Then the estimate n����b�LS � ��� has an asymptotic

normal distribution with mean � and variance D��
LS

P
k�ZZ cov�U�� Uk� where Uk � H��Xk� ����k �

H��Xk� ����

The next theorem gives the asymptotic distribution of the errors�in�variables estimate of �� see

Section ����

THEOREM � Suppose that the assumptions of Theorem � hold for some estimates bmj�Then

the estimate n����b�EIV � ��� has an asymptotic normal distribution with mean � and variance

D��
LS

P
k�ZZ cov�V�� Vk�� where Vk � fH��Xk� ��� �M����Xk�g �k � G�Xk� ����

Under our model assumption that mj � �j��m� an improved estimate bm�
� of m� can be con�

structed by using the estimates bm�� � � � � bmJ and an estimate b� of �� This can be done for example

��



by putting

bm�
��x� �

JX
j��

bcj b���j��	 bmj�x��
JX

j��

bcj � ����

where bcj are some data adaptive choices of weights� The next theorem gives the asymptotic distri�

bution bm�
��x��

THEOREM � Suppose �B� and assume that bmj are estimates with

bmj�x� � mj�x� � �����h��j��r�x� � n��
nX

i�J��

Kh�Xi�j � x�uj�Xi� x��i � oP �n������ ����

where uj is a function with supz supjx�yj�� juj�z� y��uj�z� xj � � for 
 � �� Furthermore suppose

that b� is an estimate of � with b� � � � oP �n����� and that for some constants cj it holds that

bcj � cj � oP �n������ Then n���� bm�
��x� �m�x�� has an asymptotic normal distribution with mean

�����n���h�r�x� and variance n���h����K�f�x�
PJ

j�� c
�
j�

���j��	s�j�x���
PJ

j�� cj�
�� where ��K� �R

K��u� du and s�j�x� � Ef��J��u�j �XJ � � � � �X�� x�jXJ�j�� � xg� The variance is minimized by a

choice bcj with bcj � c���j��	s��j �x��oP �n������ where c is some constant� In this case n���f bm�
��x��

m�x�g has an asymptotic variance n���h����K�f�x��
PJ

j�� �
��j��	s��j �x��

The asymptotic variance of n����b���j��	 bmj�x��m�x�� is equal to n���h����K�f�x�����j��	s�j�x��

see the proof of Theorem �� Clearly� the asymptotic variance of n���� bm�
��x��m�x�� is strictly smaller

for all j for an asymptotically optimal choice of bcj � Typically� application of asymptotically opti�

mal weights requires estimation of s�j�x�� However� if the weight function w is chosen as indicator

function of an interval ��c� c� with c large enough we conjecture that for the back
tting estimate�

s�j�x� does not depend strongly on j� This motivates in these cases the choice bcj � b���j��	 that

leads to a nearly minimal asymptotic variance of bm�
��x� for all x�

It can be shown that the asymptotic result of Theorem � applies under the conditions of Theo�

rems � and � for the choices b� � b�EIV and b� � b�LS � In particular� this includes estimation of the

additive components by the integration estimate or the back
tting estimate�

� DISCUSSION

The key feature of our model ��� and ���� is that of an additive model with parametrically linked

components� We have illustrated the use of the model in a 
nancial time series context� and

obtained asymptotic results for autoregression as well as for the usual independent error structure

typical in additive models�

��



The methods are relatively simple� One 
rst uses standard additive model techniques to obtain

estimates of the components� and then estimates the linking parameter �� by combining the com�

ponents� It is surprising and pleasing that standard additive model techniques can be used for the


rst stage without the need for undersmoothing which often occurs in semiparametric modeling�

We have illustrated the use of two such combinations of the component estimates� one an intu�

itive least squares approach �Section ����� and one motivated by errors�in�variables considerations

�Section ����� At least in principle one would conjecture that the basic idea of estimating �� should

generalize to such things as generalized linear models� Obtaining asymptotic distributions for such

generalizations is likely to be challenging�

An interesting generalization of the model ���� would be to allow for the addition of other

parametrically linked terms of the form �TZt based on covariates Zt� In the context of the exam�

ple� these covariates might include information about previous market behavior� e�g�� yesterday s

volatility� Again� while the ideas may seem straightforward� actually obtaining asymptotic results

may well prove to be di�cult�

REFERENCES

Amemiya� Y� and Fuller� W� A� ���		�� Estimation for the nonlinear functional relationship� Annals

of Statistics� ��� ��������

Bollerslev� T� ���	��� Generalized autoregressive conditional heteroskedasticity� Journal of Econo	

metrics ��� ���������

Bollerslev� T�� Engle� R� F� and Nelson� D� B� ������� ARCH models� In Handbook of Econometrics�

Vol� IV� editors R�F� Engle and D� L� McFadden� Elsevier Science� ���� � ���	�

Bosq� D� ������� Nonparametric Statistics for Stochastic Processes� Estimation and Prediction�

Springer� New York� Berlin� Heidelberg�

Bossaerts� P�� H
ardle� W� and Hafner� C� ������� Foreign exchange rates have surprising volatility�

In� Athens Conference on Applied Probability and Time Series� Vol� �� editor P� Robinson�

Lecture Notes in Statistics ���� Springer� Heidelberg� Berlin and New York�

Box� G� E� P� and Jenkins� G� M� ������� Time Series Analysis� Forecasting and Control� Holden�

Day� San Francisco�

��



Carroll� R� J�� Ruppert� D� and Stefanski� L� A� ������� Measurement Error in Nonlinear Models�

Chapman and Hall� London�

Cook� J� and Stefanski� L� A� ������� A simulation extrapolation method for parametric measure�

ment error models� Journal of the American Statistical Association� 	�� ��������	�

Dacorogna� M� M�� M
uller� U� A�� Nagler� R� J�� Olsen� R� B� and Pictet� O� V� ������� A geograph�

ical model for daily and weekly seasonal volatility in the foreign exchange market� Journal of

International Money and Finance� ��� ��������

Engle� R� F� ���	��� Autoregressive conditional heteroscedasticity with estimates of the variance

of U�K� in�ation� Econometrica� ��� �	�����	�

Fan� J�� H
ardle� W� and Mammen� E� ����	�� Direct estimation of low dimensional components in

additive models� Annals of Statistics� ��� ���������

Fuller� W� A� ���	��� Measurement Error Models� John Wiley and Sons� New York�

Goodhart� C� and Figliuoli� L� ������� Every minute counts in 
nancial markets� Journal of

International Money and Finance� ��� ������

Gouri!eroux� C� and Monfort� A� ������� Qualitative threshold ARCH models� Journal of Econo	

metrics� ��� ��������

Hafner� C� M� ����	�� Nonlinear Time Series Analysis with Applications to Foreign Exchange Rate

Volatility� Physica� Heidelberg and New York�

Hastie� T� J� and Tibshirani� R� ������� Generalized Additive Models� Chapman and Hall� London�

H
ardle� W� and Tsybakov� A� ������� Local polynomial estimators of the volatility function in

nonparametric autoregression� Journal of Econometrics� 	�� ��������

H
ardle� W�� Tsybakov� A� and Yang� L� ����	�� Nonparametric vector autoregression� Journal of

Statistical Planning 
 Inference� �	� ��������

Linton� O� B� ������� E�cient estimation of additive nonparametric regression models� Biometrika�

	�� ��������

Linton� O� B� and Nielsen� J� P� ������� A kernel method of estimating structured nonparametric

regression based on marginal integration� Biometrika� 	�� �������

��



Linton� O� B�� Mammen� E� and Nielsen� J� ������� The existence and asymptotic properties of a

back
tting projection algorithm under weak conditions� Preprint�

Opsomer� J� D� ����	�� On the existence and asymptotic properties of back
tting estimators�

Annals of Statistics� to appear�

Opsomer� J� D� and Ruppert� D� ������� Fitting a bivariate additive model by local polynomial

regression� Annals of Statistics� ��� �	� � ����

Tj�stheim� D� and Auestad� B�H� ������� Nonparametric identi
cation of nonlinear time series�

projections� Journal of the American Statistical Association� 	�� ���	 � �����

� APPENDIX

��� Assumptions

Condition A

�i	 �X��� � � � �X�J � Y��� � � � � �Xn�� � � � �XnJ � Yn� is an i�i�d� sequence with E�YijXi�� � � � �XiJ� � 
 �

m��Xi�� � � � � � �J��mJ�XiJ �� For identi
ability� it is assumed that E�m��Xij�� � � for

j � �� � � � � J �

�ii	 The weight functions wj have a continuous derivative and a bounded support Bj� j � �� � � � � J �

�iii	 The expansion ��� holds uniformly for x � Bj � j � �� � � � � J with bounded functions r� uj � vj

and tj� The function uj�z� x� has third partial derivative ��

��x	�uj with respect to x� that are

uniformly bounded supx�z j ��

��x	�
uj�z� x�j ���

�iv	 The density p of �X�� � � � �XJ� is two times continuously di�erentiable and on B� 	 � � � 	 BJ

it is bounded away from ��

�v	 The regression function m� is four times continuously di�erentiable�

�vi	 The absolute moments Ej�ijq are 
nite for all q� Here� �i � Yi �E�YijXi�� � � � �XiJ ��

�vi	 The conditional variance ���x� is continuous�

�vii	 The kernel K is a symmetric probability density with compact support� W�l�o�g� we assume

that
R
u�K�u� du � ��

Condition B

��



�i	 X��X�� � � � is a stationary process that is geometrically strongly mixing� i�e�� 
�k� 
 c��
k for

some constants c� and � � � � ��

�ii	 For all q there exists a constant cq such that for all indices i�� � � � � iq the density of �Xi� � � � � �Xiq �

is bounded by cq�

�iii	 The weight function w has a continuous derivative and a bounded support B�

�iv	 The density p of �X��X�� is two times continuously di�erentiable and on B	B it is bounded

away from ��

�v	 The regression function m� is four times continuously di�erentiable�

�vi	 The variables �i have a 
nite Laplace transform� i�e� E exp���i� �� for j�j small enough�

�vii	 The conditional variance ���x� � E���i jXi � x� is continuous�

�viii	 The kernel K is a symmetric probability density with compact support� W�l�o�g� we assume

that
R
u�K�u� du � ��

��� Sketch that ��� and ��� Lead to the Same Limit Distribution for b� When
J � �

It is easily shown that for b�LS � the minimizer of ����

n����b�LS � ��� �
n����

Pn
i��

P�
j��m��Xij� f bm��Xij�� �� bm��Xij�g
E
�
m�

��X�� � m�
��X��

� � oP ����

For b�EIV � the minimizer of ���� a Taylor series shows that n���
�b�EIV � ��

	
� An�Bn �oP ����

where

Bn � n��
nX
i��

�X
j��

� bm�
��Xij� �

���
� � ���

bm��Xij� f bm��Xij�� �� bm��Xij�g

�

�
����

�� �����
� �

� � ���

�
f bm��Xij�� �� bm��Xij�g

�
p� E

n
m�

��X�� � m�
��X��

o
�

and An � An� � An�� where

An� � n���
nX
i��

�X
j��

bm��Xij� f bm��Xij�� �� bm��Xij�g

� n����
nX
i��

�X
j��

m��Xij� f bm��Xij�� �� bm��Xij�g� oP ����

An� �
n

����� � ���
o
n����

nX
i��

�X
j��

f bm��Xij�� �� bm��Xij�g� �

��



Since An� � oP ���� this completes the argument�

��� Sketch of Proof of Theorem �

By a Taylor series expansion�

� � n����
nX
i��

JX
j��

JX
k��

�j � ���j��� wj�Xik� bm��Xik�
n bmj�Xik�� �j��� bm��Xik�

o

� n��
nX
i��

JX
j��

JX
k��

�j � ���j � ���j��� wj�Xik� bm��Xik�

n bmj�Xik�� �j��� bm��Xik�
o
n���

�b�LS � ��
	

� n��
nX

j��

JX
j��

JX
k��

�j � �����j��� wj�Xik� bm�
��Xik�n����b�LS � ��� � oP ����

The middle term is easily seen to be oP ���� The last term is easily seen to be DLSn
���

�b�LS � ��
	

�

oP ���� where DLS �
PJ

j��

n
�j � ���j���

o�
EfPJ

k��wj�Xik�m�
��Xik�g� Finally� the 
rst term has

the same behavior as if the leading bm��Xik� were the same as m��Xik�� Making this substitution

and invoking ���� since m��
j �x� � �j��� m��

��x�� we 
nd that the result is asymptotically equivalent to

R� � R� where

R� � n����
nX
i��

JX
j��

JX
k��

�j � ���j��� wj�Xik�m��Xik�

	
nX
���

��
n
Kh�X�j �Xik�uj�Xl� Xik�� �j��� Kh�X�� �Xik�u��Xl�Xik�

o
�

R� � n����
nX
i��

JX
j��

JX
k��

�j � ���j��� wj�Xik�m��Xik�

	
nX
���

h
��
n
vj�Xl� Xik�� �j��� v��Xl� Xik�

o
�
n
tj�Xl�� �j��� t��Xl�

oi
�

Interchanging the indices i and � and using the fact that K��� is symmetric� the term R� equals

n����
nX
i��

�i

JX
j��

JX
k��

�j � ���j��� n��
nX
���

wj�X�k�m��X�k�

	
n
Kh�X�k �Xij�uj�Xi�X�k�� �j��� Kh�X�k �Xi��u��Xi� X�k�

o
�

Using standard kernel theory� assumption A �iii� and h�n��� � � one shows that the last summation

has the limit

wj�Xij�m��Xij�fk�Xij�uj�Xi�Xij�� �j��� wj�Xi��m��Xi��fk�Xi��u��Xi� Xi���

��



Similarly� R� � R�� � R��� where

R�� � n����
nX
i��

�in
��

JX
j��

JX
k��

nX
���

�j � ���j��� wj�X�k�m��X�k�
n
vj�Xi�X�k�� �j��� v��Xi�X�k�

o

� n����
nX
i��

�i

JX
j��

�j � ���j���

n
v�j �Xi�� �j��� v���Xi�

o
and

R�� � n����
nX
i��

JX
j��

JX
k��

�j � ���j��� wj�Xik�m��Xik�
nX
���

n
tj�Xl�� �j��� t��Xl�

o

� n����
nX
i��

JX
j��

�j � ���j��� s�j

n
tj�Xi�� �j��� t��Xi�

o
�

It thus follows that

n����b�LS � ��� � D��
LSn

����
nX
i��

f�iH��Xi� ��� �H��Xi� ���g� oP ���� ����

This veri
es Theorem ��

��	 Sketch of Proof of Theorem �

The proof is facilitated by noting that

mj�x�� �j��Gfm��x�� � � � �mJ�x�� �g

� f
JX

j��

wj�x���j��g��
JX

k��

fwk�x���k��mj�x�� wk�x��k�j��mk�x�g

� f
JX

j��

wj�x���j��g��
JX

k��

wk�x�
n
��k��mj�x�� �k�j��mk�x�

o
�

Hence� b�EIV is formed by minimizing

n����
nX
i��

JX
j�k��

wj�Xik�s���Xik�

�
JX
���

w��Xik�
n
����� bmj�Xik�� ���j�� bm��Xik�

o��
�

De
ne s���� x� � ������s��� x� and s����� x� � ��������s��� x�� Further de
ne

Qj�x� ��m�� � � � �mJ� �
JX
���

w��x�
n
�����mj�x�� ���j��m��x�

o
�

Rj�x� ��m�� � � � �mJ� �
JX
���

w��x�
n

���� �������mj�x�� �� � j � �����j��m��x�
o
�

�	



Then b�EIV minimizes n����
Pn

i��

PJ
j�k��wj�Xik�s���Xik�Q�

j �Xik� �� bm�� � � � � bmj�� and hence nec�

essarily solves

� � n����
nX
i��

JX
j�k��

wj�Xik�s����Xik�Q�
j�Xik� �� bm�� � � � � bmJ�

� �n����
nX
i��

JX
j�k��

wj�Xik�s���Xik�Qj�Xik� �� bm�� � � � � bmJ�Rj�Xik� �� bm�� � � � � bmJ��

This is an estimating equation� and with an admitted lack of rigor we proceed to analyze it in a

standard fashion� Indeed� n���� times its 
rst derivative evaluated at ����m�� � � � �mJ� is
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However� note that Qj�x� ���m�� � � � �mJ� � �� so that the 
rst derivative of the estimating equation

when normalized and evaluated at ����m�� � � � �mJ� is
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It is immediately obvious that since Q�
j �x� ��� bm�� � � � � bmJ� � oP �n������ then n����b�EIV � ��� is
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Since Qj�x� ���m�� � � � �mJ� � �� n����b�EIV � ��� is asymptotically equivalent to

D��
EIV n

����
nX
i��

JX
j�k��

wj�Xik�s���� Xik�Rj�Xik� ���m�� � � � �mJ�

	
JX
���

w��Xik�



������ f bmj�Xik��mj�Xik�g � ���j��� f bm��Xik��m��Xik�g

�
� ����

��



The proof is completed by using expansion ��� and the fact that m��
j �x� � �j��� m��

��x�� in a manner

similar to that of Theorem �� After some algebra one arrives at
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es Theorem ��
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Here p����	 and p����	 denote the partial derivative of p with respect to x� or x�� respectively� The

expansion in ���� holds uniformly for x � B 	 B� For a proof of ���� one proceeds as in Bosq

������ where uniform rates are shown for kernel density estimates of strongly mixing observations

by using exponential inequalities for mixing sequences� see Theorem ��� in Bosq �������
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We use now that uniformly in x � B 	B�
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For a proof of ���� one uses the fact that m� is four times continuously di�erentiable and for the
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we get that uniformly for x� � B
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For a proof that ���� holds uniformly for x� � B one shows 
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Again� this expansion holds uniformly for x� � B�
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This expansion holds uniformly for x� � B� Using again Davydov s inequality one shows that
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The expansion for bmI
� stated in the Theorem follows by some straight forward calculations� For

the treatment of bmI
� one proceeds similarly�
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��� Sketch of Proof of Theorem 	

Along the lines of the proof of Theorem � one veri
es that the stochastic expansion ���� remains

valid for autoregression� For doing this one proceeds as in the proof of Theorem �� Again� the

main tools are exponential inequalities and Davydov s inequality for mixing sequences� Asymp�

totic normality of n����b�LS � ��� follows by application of a central limit theorem for strongly

mixing sequences� see e�g� Theorem ��� in Bosq������� We have to verify that for some � � �

E j�iH��Xi� ��� �H��Xi� ���j� ��� This follows easily from B �vi� and from the assumption that

the functions wj �m�� vj � fj� uj � tj are bounded for j � �� � � � � J �
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One shows 
rst that the stochastic expansion ���� remains valid for autoregression and then one

proceeds as in the last proof�

��� Sketch of Proof of Theorem �

Proceeding as in the proof of central limit theorems for kernel estimates of strongly mixing se�

quences �see e�g� Theorems ��� and ��� in Bosq ������� and using the stochastic expansion

����� one shows that the vector n���� bm��x� � m��x�� � � � � bmJ�x� � �J��m��x��T has a normal

limit with mean �����n���h�r�x���� � � � � �J���T and covariance matrix equal to a diagonal ma�

trix with diagonal elements n���h����K�f�x� s�j�x�� Note that bmj�x� and bmk�x� are asymp�

totically independent for j �� k� The 
rst statement of Theorem � follows from the fact that
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