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Fakultat, Humboldt-Universitat zu Berlin

Fachbereich Mathematik, Universitat-Gesamthochschule Siegen

Abstract

The necessity to quantify the risk caused by the high volatility of
asset prices, large insurance claims or floods has lead to an increasing
interest in extreme value analysis. Generalized Pareto and extreme
value distributions are well suited to model data which are exceedances
above a threshold or maxima. We describe two statistical software
systems - XploRe and Xtremes - that support a user in performing an
extreme value analysis.

Within both systems, various estimators for the above distribu-
tions are provided. We give an overview of their application and men-
tion visual tools to check the adequacy of a parametric modeling by
means of non-parametric procedures.

Both systems utilize a client/server architecture to provide access
to their resources across a network. While the server version of XploRe
supports an interactive Java client which can be used from a web
browser, the Xtremes system implements a CORBA interface that
exports statistical objects to a client program.

1 Introduction

In extreme value analysis one is interested in parametric models for the dis-
tribution of maxima and exceedances. Suitable models are obtained by using



limiting distributions. In the following lines, we cite some basic results from
extreme value theory. The reader is referred to [4] and [16] for a theoretical
and to [14] for an applied introduction. A more detailed review is given in
[11].

A classical result for the distribution of maxima was given by Fisher
and Tippett in 1928 [6]. Assume that X, X;, Xy, ... are i.i.d. with common
distribution function F'. If for suitable constants a,, and b,, the standardized
distribution of the maximum

P{maX{Xl,...,Xn} -

an

b < x} = F"(anx + by)

converges to a continuous limiting distribution function G, then G is equal
to one of the following types of extreme value (EV) distribution functions.

(i) Gumbel (EV0) Gy(z) = exp(—e™®), z €R,
(ii) Fréchet (EV1) Gy,(x) =exp(—z7%), x>0,a>0,
(iii) Weibull (EV2) Gg4(z) =exp(—(—2)7%), <0, a<0.

By employing the reparametrization v = 1/«, these models can be unified
using the von Mises parametrization

G, (z) = { exp(—(1+72)717), 1+792>0,7#0,
7 exp(—e %), z€eR, v=0.

One says that the distribution function F belongs to the domain of attrac-
tion of the extreme value distribution G, in short F' € D(G). The Gnedenko-
De Haan theorem as well as the von Mises conditions provide sufficient con-
ditions for F' € D(G) (see, e.g., [5] for details). Moreover, the assumption of
independence can be weakened (see, e.g., [10]).

One may also consider the distribution function FlY := P(X < -|X > t)
of exceedances above a threshold ¢, where F' lies in the domain of attraction
of the extreme value distribution G,. Balkema and de Haan [1] as well as
Pickands [13] showed that for suitable a, and b, the truncated distribution
FM(b, + a,z) converges to a generalized Pareto (GP) distribution W,, as
u— w(F) :=sup{z: F(z) < 1}, with

1—(1472)" Y 2>0,7>0

W, (z) = O<z<—-1/7v,7v<0
1—-e* z>0,7v=0.
Again, by using the parametrization & = 1/, one obtains the three
submodels



(i) Exponential (GP0) Wy(z) =1—e7", z >0,
(ii) Pareto (GP1) Wia(z)=1—-2"9, z>1,a>0,
(i Beta (GP2) Woa(z)=1-(-2)%, -1<2<0,a<0.

These limit theorems suggest parametric distributions for data which are
block maxima or exceedances above a threshold ¢. In the next section, we
describe a computational approach for fitting these distributions to data.

2 Computational Resources

A similar extreme value module is implemented in the two software packages
XploRe and Xtremes. We give a short introduction to the systems and
provide an overview of the extreme value methods that are implemented.

2.1 XploRe

XploRe is an interactive statistical computing environment. It provides an
integrated programming language with a large library of predefined func-
tions and interactive tools for graphical analysis. A program written in the
XploRe language is called quantlet. These quantlets are collected in libraries.
The interactive tools include displays, with one or more plots, and low level
GUI elements for user interaction during quantlet execution. To use XploRe
without writing quantlets, it is possible to execute simple instructions on the
command line, such as reading data, loading libraries or applying quantlets
from a library to data.

There are two fundamental versions of XploRe. The first is a standalone
statistical software available on several computer platforms, while the second
one is a client/server system (http://www.xplore-stat.de). As described in
section 3.1.2, the client/server architecture has many advantages. However,
due to the early state of development, the XploRe client does not yet provide
the same functionality as the standalone application.

2.2 Xtremes

The MS-Windows based statistical software Xtremes offers a menu-driven
environment for data analysis. Besides the usual visualization options, there
are parametric estimation procedures for Gaussian, extreme value and gen-
eralized Pareto distributions. Special menus offer applications of extreme



value analysis to problems arising in actuarial and financial mathematics as
well as hydrology. See http://www.xtremes.de for more informations.

2.3

Extreme Value Analysis with XploRe and Xtremes

2.3.1 Estimators for GP and EV

Various estimators for extreme value and generalized Pareto distributions are
implemented. We list the estimators available for GP distributions:

Hill estimator, which is a m.l. estimator for the Pareto (GP1) submodel,
m.l. estimator for the full GP model,
Pickands estimator (see [13]),

Drees-Pickands estimator, which uses a convex combination of Pickands
estimators (see [3]),

moment estimator (see [2]).

Two estimators for the EV distributions are provided:

M.1. estimator for the full EV model,

linear combination of ratio of spacings estimator, a construction similar
to that of the Pickands estimator.

More details on the estimators are given in the cited literature as well as
in [14] and [15]. While the fitting of an extreme value distribution is straight
forward, a generalized Pareto distribution is fitted in two steps.

1.

Select a threshold ¢ and fit a GP distribution W, ; , to the exceedances
above ¢, where 7y is the shape parameter and ¢ and o are location and
scale parameter.

. Transform the distribution to W5 ;, 5 which fits to the tail of the original

data. The transformation is determined by the conditions wil =

7,,6
W +o and Wv[t]“ 5(t) = (n —k)/n, where n is the sample size and k the
number of exceedances above t. One obtains 4 = v, 6 = o(k/n)” and
i =1t— (o —05)/v as estimates of the tail fit. The latter values are

displayed by the software.



In our implementation, we fix the number of upper extremes and use the
threshold t = xy,_g11.n-

2.3.2 Choosing a Threshold

The selection of an optimal threshold is still an unsolved problem. We em-
ploy a visual approach that plots the estimated shape parameter against the
number of extremes. Within such a plot, one often recognizes a range where
the estimates are stable. A typical diagram of estimates is shown in section
2.3.4.

2.3.3 Checking the Quality of a Fit

A basic idea of our implementation is to provide the ability to check a para-
metric modeling by means of nonparametric procedures. The software sup-
ports QQ-plots and a comparison of parametric and empiric versions of den-
sities, distribution and quantile functions. An important tool for assessing
the adequacy of a GP fitting is the mean excess function. It is given by

er(t) == B(X —t|X > ),

where X is a random variable with distribution function F'. For a generalized
Pareto distribution W, the mean excess function is

14+t
ew, (t) = ﬁ
We can therefore check if a GP tail is plausible by means of the sample
mean excess function. Moreover, by comparing sample and parametric mean
excess functions fitted by an estimator, a visual check of an estimation and a
choice between different estimators becomes possible. The following section
2.3.4 demonstrates this approach.

2.3.4 Example Analysis of a Data Set

To exemplify the computational approach, we analyze a data set with the
daily (negative) returns of the Yen related to the U.S. Dollar from Dec. 78
to Jan. 91. Figure 1 (left) shows a scatterplot of the 4444 returns. A fat
tail of the distribution is clearly visible. In the following, we fit a generalized
Pareto distribution to the tail of the returns by using the moment estimator.



To find a suitable threshold, a diagram of the estimates is plotted in Figure
1 (right). For 50 < k£ < 200 the estimates are quite stable.

0.2+ 1

0 100 200 300 400 500

Figure 1: Daily returns of Yen/U.S. Dollar from Dec. 1978 to Jan. 1991 (left) and
diagram of estimated shape parameters (right).

We select k& = 160 extremes, yielding a threshold ¢ = 0.00966 and plot a
kernel density estimate (solid) as well as the parametric density fitted by the
moment estimator (dotted) and the Hill estimator (dashed) for that number
of extremes. The resulting picture is shown in Figure 2 (left).

15 | | | |
\ /
\ 0.008 + / T
10+, + /
A\ ,
0.006 + T
5+ N
RN 1
~x = -
0 1 | e
0.01 0.02 0.03

Figure 2: Densities (left) and mean excess functions (right) fitted by moment
estimator (dotted) and Hill estimator (dashed).

Although the parameters estimated by the moment estimator seem to fit
the kernel density slightly better, it is not easy to justify a parametric model



from the plot of the densities. We therefore also plot the mean excess func-
tions. The right hand picture in Figure 2 shows the empirical mean excess
function and the parametric versions, based on the same estimates. While the
one fitted by the moment estimator (dotted) is close to the empiric version
(solid), the one fitted by the Hill estimator (dashed) shows a strong devia-
tion. This indicates that the parameters obtained by the moment estimator
may be more appropriate.

2.4 Differences between XploRe and Xtremes

The XploRe system provides the user with an immediate language. Typical
features of such a language (according to Huber [9]) are the omission of
declarations and the ability to implement macros using the same constructs
as in an immediate analysis.

Xtremes implements a menu interface for interactions and a compiled
language for user written routines, whereby the user is required to declare
all objects used within a program. That approach results in longer and more
complex programs which are typically less flexible than interpreted ones with
runtime type checking. However, a higher execution speed can be achieved
as syntactic and semantic checks are performed at compile time.

3 Client/Server Architectures

Client/server architectures are becoming increasingly important in statistical
computing. We discuss two of their advantages which are employed in XploRe
and Xtremes: the separation of computational part and user interface and
the provision of servers for special, user-written clients.

3.1 Client/Server Architecture of XploRe

The client/server version of the XploRe software package consists of three
parts. The XploRe server is a batch program which provides several methods
for statistical computing. The client is a GUI written in Java providing an
interface for the user to interact with the server. Between these two resides a
middleware program which manages the communication between client and
server. Figure 3 shows the structure of this architecture.
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Figure 3: The Client/Server architecture of XploRe

3.1.1 Details of the Architecture

The main task of the XploRe server is to provide a statistical programming
language and a variety of numerical methods for statistical analysis. To
ensure high flexibility, it is possible to add methods (shared libraries, dy-
namically linked libraries) to the server dynamically. The xtremes library
uses this mechanism. The server executes quantlets (programs written in
the XploRe language) and writes the output to the standard output stream.
Graphical output is encoded in a special protocol which is interpreted by the
client.

The client provides the user with a GUI that lets him write and execute
programs on a server, show numerical results and display the graphical output
of an analysis. The platform independent client runs on every machine where
a Java runtime environment is available. The server is written in C and C++,
providing the numerical power needed for fast statistical computations.

The central part of this software package is the middleware. It is written
in Java and resides on the same host as the server does. Its most important
task is the management of the communication between server and client.



3.1.2 Advantages of the Architecture

One of the main advantages of the client/server architecture that is imple-
mented within XploRe is the separation of the computational part and the
user interface. It enables the user to use one or more servers without re-
quiring high computational power on the host where the client is running.
Instead, he has remote access to statistical methods as well as to computa-
tional resources.

In earlier versions of XploRe, the client/server communication has been
managed by the server itself. The advantage of the separation of the manag-
ing part and the calculation part is a higher stability of the system as well as
the opportunity to use different servers with one middleware. These servers
could be Gauss, shazam or any other batch program.

3.1.3 Plans for Future Developments

In the future, the middleware should act as a distribution server; i.e., when
an old client logs into the middleware, the user is offered an automatic update
of the client. The old client downloads a new version from the middleware
and installs it on the client host without user interaction. Another task of the
middleware will be load average. This means when a middleware is contacted
by a client it asks other middleware programs for the load of the hosts where
they are running. The requests will then be sent to the host with the smallest
load.

Due to the separation of the user interface and the computational part,
different clients can be developed. In addition to the usual Java client, a pro-
totype of an MS-Excel add-on exists. Besides clients for special environments
(Java/Web, Excel), one could also think of clients for special purposes like
finance or time series analysis. A Java-API (Application Program Interface)
for the development of clients will be made available in future releases.

3.2 Xtremes CORBA Server

CORBA (see [12] or http://www.omg.org) is a platform and programming
language independent standard for distributed, object oriented software sys-
tems. It encapsulates all network specific operations. Invoking methods on
a remote server object is done by calling methods of a local proxy object.
An interface definition language (IDL) describes the methods offered by the



server objects.

Xtremes implements a CORBA-compliant server which exports statistical
procedures (such as estimators or data generation routines). We list an
excerpt of the interface definition.

enum TPortType { PORT_INT, PORT_REAL, ... };
typedef sequence<double> doubleseq;

interface TNode {
string Name ();
TNode Clone ();

long GetNumberOfInports ();
TPortType GetInportType (in long Nr);
long GetNumberOfOutports ();
TPortType GetOutportType (in long Nr);

void SetInport (in long Nr, in any x);
void Perform ();
any GetOutport (in long Nr);

+;

The server objects (called nodes) are self-describing. Besides a name,
they return the number and types of parameters and results. After setting
the parameters with SetInport, the Perform method is invoked, and results
are fetched by calling GetOutport.

The homogeneous structure of the objects facilitates their creation by
means of a factory [7]. On startup, the Xtremes server creates a factory
object and publishes its object reference.

4 Conclusion

We have described two software systems that offer statistical methods for
extreme value analysis in a distributed environment. Both systems allow
the user to invoke statistical operations from a remote client; yet, different
approaches are taken. Future effort should be invested in the specification of
a general interface allowing the interoperation of different statistical software
packages.

10



References

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

Balkema, A.A., de Haan, L. (1974). Residual life time at great age. Ann.
Probab. 2, 792-804.

Dekkers, A.L.M., Einmahl, J.H.J., de Haan, L. (1989). A moment es-
timator for the index of an extreme-value distribution. Ann. Stat. 17,
1833-1855.

Drees, H. (1995). Refined Pickands estimators of the extreme value in-
dex. Ann. Stat. 23, 2059-2080.

Embrechts, P., Kliippelberg, C., Mikosch, T. (1997). Modelling Extremal
Ewvents. Springer.

Falk, M., Hiisler, J., Reiss, R.-D. (1994). Laws of Small Numbers: Ezx-
tremes and Rare Events. DMV-Seminar, Birkhauser, Basel.

Fisher, R.A., Tippett, L.H.C. (1928). Limiting forms of the frequency
distribution of the largest and smallest member of a sample. Proc. Camb.
Phil. Soc. 24, 180-190.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995). Design Pat-
terns. Addison-Wesley, Reading, Massachusetts.

Hérdle, W., Klinke, S., Miiller, M. (1999). XploRe -The Statistical En-
vironment. Springer, New York.

Huber, P.J. (1994). Languages for Statistics and Data Analysis. In:
Dirschedl, P., Ostermann, R. (Eds.) (1994). Computational Statistics.
Physica, Heidelberg.

Leadbetter, M.R., Nandagopalan, S. (1989). On exceedance point pro-
cesses for stationary sequences under mild oscillation restrictions. In:
Extreme Value Theory. J. Hiisler and R.-D. Reiss (eds.). Lect. Notes in
Statistics 51, Springer, New York.

McNeil, A.J. (1997). Estimating the tails of loss severity distributions
using extreme value theory. ASTIN Bulletin 27, 117-137.

Object Management Group (1995). The Common Object Request Bro-
ker: Architecture and Specification.

11



[13] Pickands, J. (1975). Statistical inference using extreme order statistics.
Ann. Stat. 3, 119-131.

[14] Reiss, R.-D., Thomas, M. (1997). Statistical Analysis of Extreme Values.
Birkhauser, Basel.

[15] Reiss, R.-D., Thomas, M. (1999). Extreme Value Analysis. In: [8].

[16] Resnick, S.I. (1987). Extreme Values, Regular Variation, and Point Pro-
cesses. Springer, New York.

12



