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Abstract

We consider density pointwise estimation and look for best attainable asymptotic
rates of convergence. The problem is adaptive, which means that the regularity pa-
rameter, 3, describing the class of densities, varies in a set B. We shall consider, suc-
cessively, two classes of densities, issued from a generalization of L, Sobolev classes:
W (8,p, L) and M (3,p, L).

Keywords: nonparametric density estimation, adaptive rates, Sobolev classes

1 Introduction

1.1 Adaptivity

We want to estimate the common probability density f : IR — [0, +00) of n independent,
identically distributed random variables Xi,... , X,,, at a real point ;5. We assume that
[ belongs to a large nonparametric class of functions, Hz = H (3, p, L), characterized by
its smoothness (e.g., order of derivability), 3, a norm L, p > 1 and a radius L > 0.

For any estimator fn of f, fixed zg real and ¢ > 1 we consider a sequence ¢, g of
positive numbers and define the maximal risk over the class Hg:

Bo(Fas o Ha) = sup on By || Falao) = flao)|7] (1.1)
feH;

where F(-) is the expectation with respect to the distribution Py of X1, ..., X,,, when the
underlying probability density is f.

We say that ¢, 3 is an optimal rate of convergence over the class Hg = H (8,p, L),
if the maximal risk over this class stays positive, for all possible estimators, asymptotically
and if there is an estimator whose maximal risk stays finite asymptotically. Minimax
theory is concerned with finding the estimators attaining the optimal rates, which are
given by minimizing the maximal risk, over all estimators.

We are interested in adaptive estimation, which means that the regularity parameter g3
is supposed unknown within a given set. An estimator fn is called optimal rate adaptive



if, for the optimal rate of convergence over that class, ¢, g, and a constant C' > 0, we have

limsup supR,, 3 (fn,gon,g,Hg) < C < oo, (1.2)
n—oo [BEB
where B is a non-empty set of values.

We shall prove here, that over two different classes of probability density functions, to
be defined below, commonly denoted by Hz = H (3,p, L), we can find no optimal rate
adaptive estimator. Similar results were obtained by Lepskii [20], Brown and Low [3] (on
Holder classes of functions) and Tsybakov [27] (on L, Sobolev classes), for the Gaussian
white noise model. They are characteristic for the pointwise (not global) estimation. We
shall then introduce the definition of adaptive rate of convergence, which is a modification
by Tsybakov [27] of the definition of Lepskii [20] (see also Lepskii [21] and [22]). We also
compute the adaptive rate over the same classes of functions as well as the corresponding
rate adaptive estimators.

More precisely, let us define the considered classes of densities. At first, we define for
integer 8> 1, L > 0 and 1 < p < oo the class of functions in L,

W (8,p, L) = {f:ﬂ%—>[0,+oo):/]Rf:1,/R‘f(5)(z)‘pdx§ﬂ’},

where f(®), the derivative of order 3 of f, is supposed to exist.

Secondly, let us introduce for any absolutely integrable function f : IR — [0, +00) its
Fourier transform F(f)(z) = [, f(y)e ¥ dy, for any z in IR. We define now for real
8 >1-— % and 2 < p < oo the class of absolutely integrable functions whose Fourier
transforms belong to L, and

M@0 ={r R0 [ r=1 [ F P <),

From the results of optimal recovery of Donoho and Low [9], it is straightforward to
obtain the optimal pointwise rates of convergence over these classes:
8-1/p B+1/p—1
1 26-1/p)+1 1\ 26+1/p)-1
ou 7 (3. 0) = (1) and 0 (O (5. 2) = (£ .

In this paper, we prove that no optimal adaptive estimator can be found and we look for
the adaptive rates of convergence on previously defined classes W (3, p, L) and M (8, p, L),
for 8 belonging to a set By, to be defined for each class. We prove that the adaptive rates
of convergence are within a factor logn slower than the optimal rates.

(1.3)

Remark 1.1 If p' is the conjugate of p (i.e. 1/p+1/p' = 1), then the optimal rates of
convergence (1.3) coincide for integer 3, on the classes W (B,p,L) and M (8,p',L) (as
well as the adaptive rates (2.5) below). Moreover, by a result of Stein and Weiss [24] we
have that for integer 3> 1 and 1 <p <2

M (B,p',L) CW (B,p,L).

Thus, parts of our results on a scale of classes can be deduced from the results on the
other scale, for certain values of the parameters. Nevertheless, our setups are considerably
larger and the classes W and M are not compatible except in the particular case described
above. For these reasons, we prefer the above notation and give independent proofs for
both setups.



1.2 Previous results

The asymptotic study of minimax risks of estimators in the nonparametric framework, was
developed considerably since the first results of Stone [25] and [26], Bretagnolle et Huber
[2], Ibragimov et Hasminskii [15] and [16]. Beside the density model, nonparametric
regression and Gaussian white noise models were studied. Estimation was done over
Hoélder, Sobolev or Besov classes. For an overview of the results in this area see Korostelev
and Tsybakov [19] and Hérdle, Kerkyacharian, Picard and Tsybakov [14].

Almost optimal rates of convergence in density pointwise estimation over L, Sobolev
classes, W (3, p, L), were obtained by Wahba [28], where technics of Farrel [11] for the proof

of the lower bounds issued a rate of (l/n)wf—lil//si“, for s = p+ ¢, € > 0 arbitrary small.
Note that the optimal rate for W (53, p, L), as noted in (1.3), is given by this expression
with e = 0.

Technics of optimal recovery of Donoho [5], Donoho and Liu [8], Donoho and Low [9]
allow to compute optimal rates of convergence for different risks, in different setups. In
these papers the classes M (3, p, L) and the corresponding rate in (1.3) first appear.

Lepskii [20], Brown and Low [3] showed that for pointwise estimation on the Holder
classes optimal rate adaptive estimators can not be found, both in Gaussian white noise
and density models. In the Gaussian white noise model, Lepskii [20] first considered the
problem of finding the adaptive rates. He showed that a loss of logarithmic order is un-
avoidable and introduced a procedure providing the adaptive estimator. For a detailed
overview of adaptive rates of convergence we refer to Donoho, Johnstone, Kerkyacharian,
Picard [6], Hardle, Kerkyacharian, Picard, Tsybakov [14] who give adaptive rates over
Besov classes using the wavelet thresholding procedure. Lepski, Mammen and Spokoiny
[23], Goldenshluger and Nemirovski [12], Juditsky [17] gave also adaptive rates of con-
vergence using Lepski’s scheme of adaptation. Most of these results are obtained for the
Gaussian white noise model.

In density estimation, wavelet techniques were used in the minimax adaptive setup for
Besov classes and L, risk, by Donoho, Johnstone, Kerkyacharian, Picard [7], Kerkyachar-
ian, Picard and Tribouley [18] and Juditsky [17]. Sharp results, where the asymptotic
value of the maximal risk was found explicitely, were obtained over L, Sobolev classes in
[, risk by Efromovich [10] and Golubev [13] and pointwise in Butucea [4].

In this paper, we are interested in adaptive rates in pointwise density estimation over
L, Sobolev classes, W (3, p, L) and M (8, p, L).

2 Results

We consider adaptive density estimation problem, at fixed real point zg, over the classes
Hz = H (B,p, L), when (3 belongs to the discrete set By, = {f1,... ,0n, }-

Assumption (A) The set By, is such that £ < ... < By, < oo, for a non-decreasing
sequence of positive integers N,,. From now on, we shall consider two setups. When
Hz = W (B,p, L) the set By, contains positive integer values of § (81 > 1) and
p > 1, while Hg = M (8, p, L) implies that 3 can take real values, (4 > 1—1/p) and
p > 2. Moreover, we suppose that nli_gloﬁNn = oo and if A, = m]ifr;_l |Bi+1 — Gil



we assume that it satisfies

limsupA,, < 400 (2.1)
n—o0
together with
Apl
n08N . (2.2)

R0 ﬁ]?\,n log logn

The following definition of an adaptive rate of convergence was introduced by Lepski,
see Tsybakov [27]. The original definition of adaptive rate of convergence by Lepskii [20]
is not used here since it has a more special form.

Definition 2.1 The sequence 1, g is an adaptive rate of convergence over the scale
of classes {Hpg, 3 € By, }, if

1. There exists an estimator f}, independent of (3 over By, , which is called rate
adaptive estimator, such that

limsup sup Ry, g (fy,%ns, Hp) < o0, (2.3)

n—00 ﬁeBNn

2. If there exist another sequence of positive reals p, g and an estimator f;* such that

limsup sup R, (fn" pn,g, Hg) < 00

n—00 ﬂeBNn

Pnp’ (), then there is another 3" in By, such that

and, at some B in B
’ /8 Nn s Yn.8' n—oo

Png’ Dnp” 4 oo,
Vng' Vnp" n—oo

Note that condition (2.3) introduces a wide class of rates. We choose between those
rates by a criterion of uniformity over the set By, , expressed in the second part of Defi-
nition 2.1. If some other rate satisfies a condition similar to (2.3) and if this rate is faster
at some point (' then the loss at some other point 5" has to be infinitely greater for large
sample sizes n.

Remark 2.2 If an optimal adaptive estimator exists, it is also rate adaptive.

Indeed, an optimal adaptive estimator satisfies (2.3) by definition, for the optimal rate
of convergence 1, g = ¢, 3. We can easily verify that in this case condition 2 in Definition
2.1 is redundant, since such a sequence p, g can not exist.

In what follows we assign to any 3 in By, the value

-~ { B—1/p+1/2,ift H=W (2.4)

B=BH) = goijp—1/2itH=M

where equalities H = W and H = M denote the cases when we consider the scales of
classes {W (8,p,L),B € By, } or {M (B,p, L), € By, }, respectively. We remark that in
both setups: 5 > 1/2.



Let us define B_ = By, \ {0, } and

F-1/2
logn/n) 26 | if 8 € B_
¥n,p = Ynp (Hg) = (log /521/2 b : (2.5)

(1/n) 25, if B =B,

Then the rate 1, g (Hg) is slower than the optimal rate of convergence, except for the
last point [y, . As by our hypothesis lim [y, = oo, this asymptotic phenomenon is not
n—0o0

characteristic and we can use the set B_ instead of By, .

2.1 The adaptive procedure

Let us proceed to the construction of the estimator f,; called adaptive estimator. We start
for each 8 in By, with the corresponding kernel estimator

Fug (z0) = hl Xn:Kﬂ (X"_”“’). (2.6)

LRLNG i=1 hnug

Here the kernel Kz is defined in the next section (differently for each setup) and the
bandwidth is in both problems

1 1
logn') 3 1\ %
hn g = < 0i"> ¥ if € B and hys, = (H) o

where § = E(Hg) and By, = By, (Hg,. ) in (2.4). We shall evaluate the regularity 3 of
the estimated density and replace it into the kernel estimator f,, 3 in order to obtain f,
the adaptive estimator, in the spirit of Lepskii [20].

More precisely, let ¢ > 0 be a sufficiently large constant and

B—1/2

B logn\ 23
g = a{—
Then, we define

//B\: g(Hﬂ) = max{ﬁ € BNn : |fn,ﬂ (xO) - fn,'y (x0)| < nn,y,VW <pB,v€ BNn }

In the sequel, ¥ (appearing in 7y, y) is defined as in (2.4). Finally,
£ (w0) = £, 5 (o). @.7)

2.2 Statement of results

Theorem 2.3 In both pointwise density estimation problems described above, we can
find no optimal rate adaptive estimators (see Definition 1.2) over the scale of classes
{H (B,p,L),B € B}, as soon as B has at least two different elements and B C By,,
where By, satisfies Assumption (A).

Theorem 2.4 The estimator f (xo) of f(zg), in (2.7), is rate adaptive estimator and
Y3 (Hg) in (2.5) is the adaptive rate of convergence in the sense of Definition 2.1, over
the scale {H (B,p, L), € By, }, where the set By, satisfies Assumption (A).



The proof is organized as follows. In Section 3 we prove that f; (x¢) in (2.7) satisfies,
for a constant C > 0,

limsup sup Ry, 3 (fn:¥ns, Hp) < C < oo. (2.8)

n—oo ﬁeBNn

This result will be called the upper bound. Section 4 is devoted to the proof of the lower
bound

liminf inf sup Ry, (fn, ¥nae Ha) > ¢ >0,
"0 fn ae{y,)

where v and 3 are in By, , arbitrary chosen elements such that v < 3, ¢ > 0 and the
infimum is taken over all possible estimators f,, of f. These relations, Theorem 2.3 (proved
in Section 5) and the fact that v, 3 (Hg) is the adaptive rate of convergence over the set
By, (see also Section 5) imply Theorem 2.4.

3 Upper bounds

We shall prove that the estimator f;, independent of § in By, , defined in (2.7), is such

n’

that the upper bound (2.8) holds. Throughout this section, C, ¢; and Cj, i = 1,2, ...,
denote positive constants, depending possibly on fixed ¢, 81 and L.

3.1 Auxiliary results

Definition 3.1 Let the density f belong to the class Hg = H (8,p,L). Define for any
kernel estimator fy  of f (see (2.6)), with vy, B in By, such that y < B its bias term

By = Bny (20, Hg) = |Ef [fny (20)] = f (20)],
and its stochastic term
Znyy = Znyy (20, Hp) = | fny (20) — Ef [fny (0)]]-
Besov, IIin and Nikol’skii [1], Theorem 15.1 implies the following:

Lemma 3.2 Let 3, v be integers and 0 < v < 3, 1 < pg,p1,p < 00, B > 1/p. If there
exists 6 € (y/B,1) such that

1 1 1
Z)—O—'y:(l—O)p—l—FO(;—B), (3.1)

then any function f € Lg, (IR) with Hf(ﬁ)Hp < oo satisfies

|72 <cure s,

where C' is a constant that depends only on po, p1, p, B, 7.



Lemma 3.3 There exists a finite constant A depending on L, B and p only such that

sup [ fllo <A
feH (Bp,L)

Proof. For f € W (3, p, L), we apply the previous result with v =0, pg = o0, p1 = 1.

Then (3.1) takes the form
1
0:(1—0)+0<——B>,
p

which implies ¢ = 1/ (8 4+ 1 —1/p). Then 0 € (v/3,1) if B > 1/p which holds by hypoth-
esis. Thus, we apply the previous result, Lemma 3.2, and get

191 < I 1] < cr,

for all f in W (3,p, L).
If fe M(B,p, L), then | F (f)|l,, <1 since f is a density. We have

Il < 57 [ 17 () @)1y

1 AN
= OO ()

) 1/p'
1 ks d
§2—</|f )’ 1+|y|) ) /%
7 (14 1yl
where 1/p + 1/p’ = 1. This is less than a constant A (L,3,p) > 0, for f in the class
M(/Bapa L) O

Lemma 3.4 If f € H(B3,p,L) and «y is in By, such that v < (3, then f € H (vy,p,L’),
where L' > 0 depends only upon L and p.

Proof. For classes W (3,p, L) put po = p, p1 = 1 in the auxiliary Lemma 3.2. Then

(3.1) takes form
1 ~ o~ (1
-y = (1—9)+9(——ﬁ>,
p p

which gives § = (y+1—1/p) /(841 —1/p) and thus 6 € (v/8,1) if 8 > 1/p (true, by
hypothesis). By Lemma 3.2 we get

5], <enai? s <t

for all f in W (3, p, L).
For f € M (B,p, L), as pf > 1 and || F (f)||,, < 1, we write

/ F () @)yl dy < / LFEO P / F () @) [ dy
y|<

ly[>1
<1+ LP.



|

Lemma 3.5 If vy and 8 are in By, such that v < 3 and if f belongs to Hz = H (3,p, L)
then there exists b, (Hg) > 0 (given in the proof and depending also on L and p), such
that

(Hg) B} M7, if Hs =W (B,p, L),
(Hg) hy 7P, if Hy = M (B,p, L),

n,y (IEU,Hg) <

B b,
By (20, Hg) < by
and

A3 e

Ef [Zn (w0, Hp))? < o

3.2
nhy ~ (3-2)

Moreover, for the kernels {Kg,8 € By, } used in the proof, we can find constants Kmax,
Kmins kmax and bmax depending possibly on fized p and By, such that

HKﬁ“oo < Kmax, kmin < ||K,6‘||2 < Emax
for all B in By, and by (Hg) < bmax for all v and B in By, such that v < f3.

Remark 3.6 From now on, ¥y = 7 (Hpg) is obtained as in (2.4). Then Lemma 3.5 says
that

F(Hg)—1/2
B ($0,Hﬁ) < bvhzy(v 8 .

Proof. If Hz = W3 = W (8,p, L), let us introduce a kernel K., of order v, in the
expression of the kernel estimator (2.6). Such a kernel must be bounded uniformly in
7 (IKy |l £ Kmax, for all v in By, ), absolutely integrable, with a bounded L, norm
(kmin < | Ky |ly < kmax, for all v in By, ), such that [ K, (y)dy =1, [y K (y)dy =0
forj=1,...,y—1and

/R K ()| Iyl dy < Lo < os, (33)

where Ly depends only on fixed p and (;. It is not difficult to find examples of such
kernels. For example, the kernel K, having Fourier transform F (K,) (u) =1/ (1 + |ul"”)
satisfy these conditions and the proofs are given later on.

From now on we denote [ = [,. Then the bias can be bounded as follows

Bosy (5, W) = \ [ 5 )15 @t yha) — £ @) dy‘

7—-1 j
| [ 6,005 WY 10 0y

J=1 J

T+yhn,~ hn o\ 1
+ / K, (y) /m (x+‘1/(7’_”1)!u) FO (u) dudy

71,5 . ,
< |3 4600 (4 / YK, (y) dy| +

=

y=1/p

S R e



where the first term is zero by hypotheses on the kernel and we applied the Holder in-
equality with 1/p +1/p’ =1 for the second term. This gives

LI h’Y 1/p 1
B, (z,W3) < / TP
<b, (Wy) b ) ”2,

where

L 1K @)y~ dy

B T

We can also see that by (W3) < bmax, bmax depending only on p, L and 3y, for all v and
in BNna Y < /8

If Hg = Mz = M (B,p, L), let us choose the kernel K, defined by its Fourier transform
as follows

1
F (K = —.
( 'Y) (U’) 1 + |u|p’y
This kernel has, by Plancherel’s formula:
K F =/
1K [l = \/— IF (Kl = N3 A |u|”7
du
> / 5 — Kmin (p7181) )
V2T Jju<1 <1+ |U|P51>
also
1 du
1Kol <1+ o= [ T — b 1)
27 Jju|>1 (1+ |u|pﬁ1>
and
1 du
K /.7-" Mdu <1+ — —— = Knax (p, 51) ,
1Kl < 5 [ | u) e ] T = Ko 00

since p(3; > 1, in our setting. Then the bias is

By (z, Mg) = ‘/ - ( f)f(y)dy—f(x)
- L \ [ 7)) F () () = 1) dy\

/' L — 0 W
o 1 + |hnyyP”

| /\



Then we apply Holder’s inequality for 1/p + 1/p’ =1 as follows

T
B M a'Y 7_‘ ’Y| n,y
(M) < 52 [1F (D W)l by 1+|hmy|m

— 1/p'
L'R) 1/p' Py
S 2:'7 / |y| = p/dy b (M/g)h ( ) 1/2
™ (1+y["")

where L' is the constant from Lemma 3.4 and

1/p'
/ pY
b () = 2 ([ _gy)
! 2 \J (LY

This term is bounded as follows

1/p'
L dy dy
by (Mp) < 5 - / —p,+/ — = bmax (p, L, B1) -
jyl<1 (1 n |y|pﬁ1) ly>1 |y]

Let us check at last that condition (3.3) is fullfiled:

[ ay< [ k@l [ R @l
R lyl<1 ly|>1

1/2 1/2
< Kuax + (/ 1K (y)]? [y|* dy) (/ ly| 2" dy)
ly[>1 ly[>1

< Lo(p,p1) -

For the variance term, we write, using Lemma 3.3

1 1 y—z A|K)12
E¢(Z, Hg)? < K2 de < — 1002
s na (2 Ho)l" < Ny / hny ( Py > fle)dw < nhn

Let us recall the following inequalities (see e.g. Hardle, Kerkyacharian, Picard, Tsy-

bakov [14]).

Lemma 3.7 Rosenthal’s inequality: Let ¢ > 2 and Y1,...,Y, be independent random
variables such that E[Y;] =0, E [|Y;|?] < co. Then there exists C (q) a constant depending

on q such that

ZE [Y;]9] (ZE Y2> "

Bernstein’s inequality: Let Yy,...,Y, be i.i.d. random variables such that |Y;| < M,

E[Y;] =0 and denote b2 = > | E [Y;?]. Then for any X >0,

n
> Y

=1

> A

)\2
<2 .+ U
= eXp{ 2(b%+>\M/3)}

10



Lemma 3.8 If f belongs to Hg = H (8,p, L) and v < B3, if K, is the kernel function and

n

o () - (52

Y =1 n,y n,y

Znﬁ (I(), Hﬁ) =

then for any u > 0

U2
Pr|Z Hg) >ul <2 _—
f [ n,y (xo’ ﬁ) e U] — eXp { 28721,7 (1 + COU) } )

where cg > 0 does not depend on .

Proof. Indeed, we can apply Bernstein’s inequality for A\ = nu and the i.i.d., centered

variables
1 Xi—x()) (Xi—x())]
Y, = K — F¢K. ,

bounded as follows: |Y;| < 2||K||, /hn,y. Then b2 < s%ﬁ =A ]|K7||g/(nhn7) by (3.2)
and, by Lemma 3.5, 2K, |, / (A 1K 13) < 2Kmas/ (AR2

min
on 7.

) = o, which does not depend

|

Remark 3.9 For g > 1, we can find a constant c(q) > 0 such that the stochastic term of
the kernel estimator satisfies

Ef[Zy (anHﬂ)]q <c(q) s}

n7,y,

where we denoted s}, = (A ||K7||§> / (nhp ).

Indeed, for ¢ > 2, we apply Rosenthal’s inequality to the previous centered variables
Y;, bounded as follows: |Y;| < 2 || K, ||, /hn,y- Then we can find a constant depending on

q, ¢ (q), such that
211K, \21 1 a/2
< i f L. ZEY? ZEY?
_C(Q){( o ~EfYD A | SEpYy

and this leads to our result for some constant c(g), because of the inequality (3.2). We
can easily deduce this result by standard convexity inequalities, for 1 < g < 2, from (3.2).
Let us introduce the sequence

n q

5

=1

Ey

1 1
73,7 = qu?w (2—,7V — 2—§> logn,

where v < 8 are in By, C; > 0 and 7 and 5 are defined by (2.4).

11



Lemma 3.10 1. If the set By, satisfies conditions (2.1) and (2.2), then

logn ~ | BN

— 0 and lOgA_

By "o logn n—oo logn n~>oo

where BN = BNTL is defined by the transformation (2.4).
2. If v, B are in By, such that v < 3 then there exist constants C1, Ca depending only
on previously fized constants such that

1 1 1
B, o 1 3)
sup —2 (z0, Hp) + 7ty < Oy \/@( ) w

q
fEHg z/)n,ﬂ

Proof. 1. The limits are easy consequences of hypotheses (2.1) and (2.2).
2. By Lemma 3.5, there exist bmax and kmax not depending on 3, such that bg < bypax
and || Kgl|, < kmax, for any 8 in By,. Thus, for 8 € B- and v < 3

B, B (an Hﬁ) °n,B A
—F 7 PP <k o
d)n,,@‘ S Omax, 1/)n,ﬁ max log 12

and
—l(é_é)
Buy (a0, Hy) _, <logn> (353
iy max .
Yn,s
Finally,
_; L_L)
oy qC <logn> 2\27 725
z/)n,ﬂ aﬂl

Because BN/ logn — 0 when n — oo we get the lemma for 3 € B_. For the case 8 = fy,,,
denoted Gy

< by 2O < fopa VA
17[)n7ﬁN

N z/)na/BN

Moreover,

1 1 1
By, (x0, Hp) 1 ’5(2%*2%)
) <b < 1 —
—— S OmaxV 108N o

/L/)nvﬁN

Tn,y < 2q07’ gNn (1
Yngy O logn

12



Lemma 3.11 If f belongs to Hz = H (§,p, L) and vy, B are elements of By, such that
v < B, then

sup X sup 4t By [(Zuy (30, H5) T (Zny > 7)) = 0 (1),
’YEBN nfeH
v<B

as n — 0o, where o (1) is independent of B in By, .

Proof. Since ||Z, (0, Hg) ||, < Kmax/Pny (|1Ky ]l £ Kmax), we have

Kmax/hn o
Ef [(Zny (w0, Hg)) I (Zny > Tny)] = / Py [Zny > u] du?

n,y
<[+]
I II

where we need to split the integration domain in two intervals. In the rest of the proof
we denote ¢ = ¢(q, 31, L, A, K) a positive constant, that might depend on the other given
constants. We give the proof only for 8 € B_. The case 8 = Oy is similar.
Let ¢; > 0 be a constant, large enough such that 7,, < ¢, and let I = [7,,,,¢c1]. We
write
2

c1 u
PelZ,, >u duq§2/ exp{——}duq
/I f[ n,y ] . 28%,7 (1 +COCI)

n,y

2
T
<(1+ cocl)q/2 Sy, €Xp {—L} ,

28%77 (1 + 0001)

where we applied Lemma 3.8. Then we use the first part of Lemma 3.10 to get

By [ < et ( aGiboun (1 1)
Ay remy, n.f Ap iy 2(L+coc1) \27 28
BN

< c . qglogn A, ( C- 1)
PN__ ¢  opl_ ~ _
= An (logn)?/? P 223 (14 cocr)

which is on o (1) if we choose C; > 0 sufficiently large and does not depend on vy < 3 in
By, .

At last, let us consider ¢o > Kmax and 11 = [c1,¢2/hy ). Then, by Lemma 3.8 and the
fact that

1+C ~ > 20 for u large enough:

Nsupz/) 5 <ﬂ—sup1/) 5 002exp{— u2 }duq
An feHg ™ An feHg ™ 4:6()8”77

q
< 26N 4003n,’y { C1 }
< sup | — | exp{ — 5

Ap rery \ Ynp 4cosy,

1
By [(logn\* ¢ clogn [ n \' @
< N _
—“ A\ n (log n)? P 4coe \logn ’

which is an o (1) for some a > 0 and the whole bound is free of v and 3 over By, . a

13



Lemma 3.12 Let f belong to the class Hg = H (8, p, L) and define 6,1 = exp {—M}.

86%
Then for arbitrary o, v, 1, elements of the set By, such that vo < v <y1 <[ we have
B H B H
lim e P2 (z, Hp) =0 and lim 2P (z, Hs) = 0.
n—oo nlnn,vo n—oo 571,17771,,’)/0

Proof. We have that d,; = 0 by Assumption (A), relation (2.2). We also see
n—oo
that hy,, < hypp,, for n large enough. Then

Y1—1/2
Bu o (2, Hp) < B (2, Hp) < bnmh?blm / < @ Py
5n177n,'yo o 5n177n,70 N 5n1ah%?,;01/2 o 5n1 hn,’yl
Ayl 1 1
< 03 exp w — logn (T - T) < 03(5%1,
8% Y A

where ¥y = 7o (Hg), 71 = Y1 (Hg) and By = By (Hp) are defined as in (2.4). This last
term tends to 0 uniformly in ~g, 7, (.

|

Lemma 3.13 If f belongs to Hg = H (3,p,L) and v, € Bn,, v < 3, then there ezist
absolute positive constants Cy, Cy such that

sup Py [B = 7} < C’4’8—Nn7%0".
fEHﬂ ATL

Proof. Let vy = min{f' € By, : ' > v}, which implies that 7y < §. From the
assumptions that § =+ and v < 8 we deduce that there must exist v in By, such that

Yo < y1 and |frnq, (%0) = faqo ()| > Nnyy- For brevity we do not mention the point
and the class Hg in the bias and stochastic term notation. Then

PrlB=1]< 3 Prllfam (@0) = fano (30)] > 1l

Yo€Bn,,
Y0y
< cardBy, sup Pf anﬁl (xU) - fn,% ($0)| > 7771,70]
YoEBnN,,
Yo <Y
BN
S A_ Sup Pf I:anYO + va'YO + anyl + va'yl > nnv'YO] .
n
YoEBnN,,

Yo <Y

By Lemma 3.12, we can find a constant d > 0 such that B, , + By, < d0p17n,, and
op1 — 0, for n large enough. Then we replace

sup Pf[Znye + Zny > Ningy (1 — don1)]

n ’YoeBNn
Yo <Yy

45

Py [BZV] <

B

< sup {Pf [Zn,vo > Mo (1 —=2d0p1)] + Py [an > d‘snlnnﬁo]} .
" v€Bpy,,

Yo <Y

>2

14



We remark that we can write 3 > ¢Cysa . logn/(23), where we can choose C; =
a?/ (qAKmax) sufficiently large. We apply twice Lemma 3.8 for Tno < Mo (1 — 2d6n1)

2
U
Pt [Znry > o (1 — 2d6,1)] < 2exp {_Q"T% (1 - 2do,1)% (1 — 5n0)}

S’”’:’YO
Cpl
< 2exp {—7(] nNogn (1— d15n1)}
4%
_1%
<2n 9.

For the second right-hand side term, dd,17y,,, = 0(1), then

d25217’]2
Pf [Zn,71 > d(snl"?nﬁo] < 26Xp _an’% (1 - 5n0)
28’”’771
C ]. d262 82
S Qexp _q qNOgn 71,21 7,70 (1 N 577,0)
470 Sn,’h

_4¢
zo(n 45 "),

because

Ap
5n13n,70 — 6 hTL,’Yl > 6.1 < n )4512v
- n - n

3”/71 hnv'YO log n

Ayl log 1
> exp nfgn 1-—- o8 081 —  00.
4% logn n—00

Thus the lemma, is proved.

3.2 Proof of the upper bound

Let us start the proof of (2.8) by considering different possible cases for the estimator

~

B (Hpg) of 5. We have

Rn,ﬂ (f;;az/)n,ﬂa Hﬂ) < R;—,ﬁ (f:;az/)n,ﬂaHﬁ) + R;ﬁ (f:;az/)n,ﬂaHﬁ) ) (34)

where
Ry s (Fivtbuss Hy) = sup 1, 5By |Ifr(wo)—F (o) L (B2 5)
f€Hg
Ry (s tbgs ) = sup By (1 (wo)—f (w0)| 7T (B < B)] -
fGHB

Assume first that 8 € B_, the case when 8 = By, will be treated later. If we assume that
B > [, by the definition of 8 we have

|fn(20) = frn,a(20)| < Mg

15



and thus

Ry 5 (frs¥np, Hp) < sup o 55 (1,5 + | fo,p(z0) — f(20)])7]
B

. B+ Ef[Zn )"
< sup 2(11{772_#_’_2,11 n,6 1 [Zn.p] }

feHB n,,@' /l/)g’ﬂ
B , + 51
S 2‘]*1 aq+ sup n, - n,s ,
fEHﬁ ¢nﬁ

by Remark 3.9. Then, by Lemma 3.10 this bound is finite, uniformly in 8 over B_,
asymptotically:

sup R 5 (f2, 4. Hy) < Cs.
BeEB_

By the inclusion of the events {B < ﬁ} c U {B = ’y}, we may write:
YEBN,,
v<B

By (Fustnp H) < ) s Py [1n0) = f(20)| 7T (B =7)]

yEB_
v<B
BN
< =" . gsup R .,
A’I’L ’YGB— n,ﬁ
v<B

where cardBy, < fn,/ A, and
R) 5= sup 4, 4By [|fun(0) — £ (20)|" T (B =1)] .
fGHB
We bound this risk as follows

R} 5 <277 sup 4% {B;Iw - Py [ﬁ - 7] +Ey [Z?W I (ﬁ B 7)}}

fEHﬁ
q
<2971 qup 2’7 - sup Py [B = 'y] +
feHg ¥Yn,g fe€Hg

Then

sup Y4By |24, 1 (B =7)]
fEHs

_ i 2 -
<2t sup Py | B= ]+ sup GGy (2] T (Zuy 2 70)] ¢
feHs Yn g feHg

16



We can see that

B'I q R
Rz,ﬂ < 2(]71 sup ny + Tny - sup Pf |:B — ')’] 4
rets Vg feHg
+297" sup ¢, LEf (28, T (Zny > Tap)] - (3.5)
fEHﬁ ’

We apply Lemmas 3.10 and 3.13 for the first term of the above right-hand side and get

BN, Bry + T, 2
A sup sup %' sup Py [5:’)’]
n yeB_ feHp . feHpg
v<p
2 1 1
< Cs (B—N> (logn)¥? sup n%(ﬁ_%)rf%%
A yEB_
v<B

2 -1 c
< (22 et %
Ay
which tends to 0.

Finally, by Lemma 3.11

Nn -
PN supy sup 67%Ey [(Znsy (0, Ho)) I (Zngy > 7)) = 0,
nyeB. feHg n—00
<8

uniformly in 8 over By, . Then

sup B 5 (s Hg) = o (1).
BeEB_

As for the case where 3 = Oy, both denoted [y, (3.4) still holds with
Rl o Uisbnsns Haw) = sup 4% By (15 (w0)—F@0)| 7T (B = B )|
BN

= fsup 1,/);%NEf [[fn,6x (0)—f (20)] ]

BN
q q
S Sup anﬁN + ¢ (q) SnvﬁN

q

which is finite, by Lemma 3.10 and, respectively,
By (Fistbnys Ho) = sup 1 By (1 (o) = f(w0) "1 (B < B ) |
S BN

< Pn. supRZﬁN =o(l).
An YEB_ ’

The proof goes similarly for the case 8 € B_. Indeed, we have the bound (3.5) for 5 = Sy
and we conclude by Lemmas 3.10, 3.13 and 3.11.

17



4 Lower bound

We shall prove that for any ~,  in the set By, such that v < 8

liminf inf sup R, (fn,l/)na, ) >c? >0, (4.6)
nroo fn ac{y,8}

where H, = H (a,p, L) denotes W (a,p, L) or M (a,p, L), respectively, and ¢ > 0 is a
constant. Suppose for the beginning that 5 < By, .

Before we proceed to the proof of (4.6) let us construct functions f, K and f} needed
in our proof. Clearly, we can construct a compactly supported function K € H ('y, D, %)
with the support [—D, D], such that [|K||, < oo, [p K (z)dz =0, K(0) = ¢ > 0 and
|Kl|l, < K (0). Let us consider also f belonging to both H (v,p,L/2) and H (B,p, L)
such that f is positive on IR, and f () = a, in a neighborhood of z(, where a > 0 is fixed.

Define, for ¥ = 7 (Hpg) defined in (2.4)

o) = £ @)+ 07t (250

where h > 0 will be spec1ﬁed later on. Then, | g fn(x)dr =1 and f, > 0 since h can be
chosen such that a > h7 2K (0). We can also see easﬂy, that

iy o il
(=),

Let us prove that fj, belongs to H (v,p,L). If Hy = W (v,p, L),

<K K], -

A T R L

while for H, = M (v,p, L)

/ |F(fr) ()P |zP" dz < 2P~ 1/ |F(f) ()| |=|P” dz
4 2P~ 1pprHl / |F(K) (hz) P |z|"Y dz
R
< IP.

Finally, let us choose

_q i_i _ _ ologn

Lemma 4.14 Let 0 < § < 1 be fized. If X4,... ,X,, are i.i.d. observations of probability
density fy in H (v,p,L), as described above, and if 7 = n=$07%) for fired 0 < &y < 1,
then one can choose 6y and a so that

S fF(XG)
" LHlfh(Xi) 27] =1-0

41|"'

18



Proof. We write

[H e Z log

Let us note that for any 0 < 6 < 1 we can find ag (9) € (0,1) such that

= Py, > logT| . (4.7)

22
—w—7(1+5)§10g(1—m)§—

for all 0 < z < ag ().
But f; (z9) = f (zo)+h7~'/2K (0) > a/2 for n large enough. Then, for h small enough,

o ] - e (= (52) e
/ u “”;& =)«
K( . )d
[ (55

—
2( +9)
—(1+96) h27 K2

In conclusion,

f(X1) ||K||§ 25 ||K||§ plogn
> — R2p2 > S 4.
By, [los L9 > gy I 1y I Rglogn
for h small enough.
By similar considerations, we also get, for h small enough:
f(Xl)] [ 2 [ (Xi )]
= Vary, |lo < Ey |lo
fh[ S )] =T )
hi—1/2 T — To
< [log?|1- K( > x)dr
_/ g ( (@) . )fh()
h27—1 T — T
< [ (149 K? (—) dz
_/( )fh(fﬂ) h
2|K|3, o~ 2|K5 51
a a n
Also
f(Xl)] h2-1 2<x—$0>
E;, |log? >(1-6 K dx
fh[ “hx) ) h
K13, 55
> — e pey
> (1-0) o 2h
IK]l3 .- logn
=(1-9§) —=&£—— 4.1
(1-0) 15 g5 (410)

19



because f; (#) < 2a for h small enough. Since Ey, [log (f (X1) /fn (X1))] < 0 by Jensen’s
inequality then, by (4.8):

(1 [ £ 55]) = (wfﬂ%>

for n large enough and together with (4.10) this yields

K|35 51
7> (1-op Bl elosn (4.11)

2a n
|<fa+s

for h small enough. Finally

f(X1)
‘log fn (X1)

th

pY—1/2 - ’
e K (gg hx())‘ fn (z) dz

< (1+5)h37—1/21/‘K ("’”_‘“) Y da
- h h f,? (z)

3
< (1 +5) h3771/24f|2K|

a
37—1/2
4 [1K]® [ Llogn\ *

= (1+0) fa|2| (52 5 ) : (4.12)

for h small enough.
Then, going back to (4.7)
f

5F (X
il_Il I (X3) = T]

J— f(X) o [ (Xi) m
al\/ﬁ; [k’g fuo(x) [l ® T (Xi)” - "]
= Py, [Up > my],

Pfh

=Py,

where
RN [ f(Xi) [ f(Xi)”
Up = log =———=% — Ey, |lo
" 01\/ﬁ; ) ()
is a sum of i.i.d. centered variables, Vary, [U,] =1 and
1 f(X1) ])

logT —nEy, |lo .
%z ( S [ ® (X0
Moreover, by (4.11) and (4.12)

mp =

1§ f(X) [ f(Xi)]?’
(o1v/n)? ;th o fn (X5) B |lo8 fn (Xi)
’ f(x) P
= 0:1)’”3/2th tog fn (X1)
3 (149) \/§f|K|3 1 ( 2logn> =
ST VAR e\ ) e

20



By Lyapounov’s theorem, U, LA U, where U is a standard Gaussian random variable.
We apply also (4.8) and (4.9) and choose a > 0 sufficiently large in our hypothesis so

that:
o (7= e 773 |

_ —tlogn (1 —8) + (1 +9) |K|5 € logn/a
ST - aevRgnlKl, v
R (1 - L ge) o

myp =

= (=9 K],
In conclusion, Py, [U,, > m,] — 1, which proves the lemma.
n—o0
O
The left-hand side expression in the inequality (4.6) is
LHS = limiaf inf masx { Ry (Fos¥niss Hy ) s By (Fos Ym0 Hs ) }

> liminf inf max (a8 By, || Falwo) = Falao)| ],

UnbEy [|[Fatzo) = f(0)| 7] }

= liminf inf max {Ey, [[Tn—0]"], qu By [[Tn] ]} , (4.13)
where

To =1, | fu(z0) — f(w0)|,

. K3
0= 0 and 0= 4} (fulan) — flw)) = K (0).
z/)n,ﬂ z/)n,’)’

Let us denote R, (T},,0) the right-hand side expression in (4.13) and state the following
lemma (Tsybakov [27]) that will help us to conclude.

Lemma 4.15 Let g,, ¢ >0, 7>0,0< 4 < 5 be real numbers and f, f, be such that
0] > ¢ >0 and

o f(X3) _
aﬁgh%ﬁ121& (4.14)
Then
R, (T,.0) > (1—=10)(c—9)? an5q‘

TQn(sq + (C — 5)1]
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Proof. We remark that [0 > ¢=/(2VK (0) > ¢ > 0 since 7 > & for both classes of
functions. Another useful remark is that {|7,| < §} C {|T,, — 0] > ¢ — 4}, for ¢ sufficiently
small. Then

R, (T,,0) > i%lfmax{(c — 5)quh |T,—0|> c—6],qL6"Pr [| T > 6]}
> inf max {(c = 8)" Py, ([Tl < 8] 446" Py |T] > 3]}
We write

dP
Pyt > 8] = By, [1(73] > 8] 752
h

P
>y [0 2 6] 1[92 <]

In

dP
> T [Pfh[|Tn|25]—Pfh [ﬁST”
h

ZT'[Pfh[|Tn| > 6] — 4],
where we applied the condition (4.14). Now
R, (T,,0) > i%lfmax{(c —0)1(1— Py, [|Tn] > 6]),

@697 (Pr [|Tn| = 6] = 6)}
> inf max{(c—8)" (1~ 1),7q30" (¢~ 6)}

0<
(1—90) (c—0)T1qrd4
Tqhdl + (c—0)!

In order to finish the proof of (4.6), note that for 7 introduced in Lemma 4.14:

L1
rql = n61-%) (10gn>"(4ﬁ %)

n

= exp {IOgn- [_g (1— o) +¢ (1 B 10;310gn>]}
ogn

qlogn (1 1 log log n
= exp ——— ) (0 — ——
2 2y 23 logn

and that liminfrq;, = oo which implies, in view of Lemma 4.15 and of the arbitrariness of
n—o0
a small § > 0, that

liminfR, (T),,0) > ¢? > 0.

n—0o0

In case # = (n, (denoted By for brevity), the only change in the proof of the lower
bound appears in the sequence

_ (logm)t v (logn (7

_ Yny

q =
" /L/)nvﬁN

and we have also lim infrq;, = co which brings us to the same conclusion.
n—o0
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5 Adaptive rate

Proof of Theorem 2.3. Recall that

B=1/2
logn/n) 26 |if 8 € B_
I/Jn,ﬁ = ¢n,ﬁ (Hﬁ) = ( & /521/2 IB )

(1/n) 28 ,if B = pPn,
and that the optimal rate of convergence

B—1/2
Pn, = pn,p (Hp) = (1/n) 2

Suppose there exists an estimator f,, (zo) of f (zo) which is optimal rate adaptive over a
set B C By, that contains at least two different values, where By, satisfies Assumption
(A). This means that for a constant C' > 0 we have

C > limsup supRn,ﬁ (.]?;La ®Pn,B> H,B)

n—oo BeB
P75 ~
> lim sup sup Z’ R, 3 (fna¢n,ﬂaHﬁ>
n—oo BeB ‘Pn”g
But
Pl (1L
nb - (togn)* (17 35) > (logm)?/2,
Pn,p
then

C > liminf ((log n)Q/Zir}f sup Ry 3 (ﬁba V.85 Hﬂ)) .
n—oo - ﬁGB

This leads to a contradiction since the right-hand side term tends to co. Indeed, we saw
in Section 4 that

lim inf inf sup R, g ( fos Y, Hs ) > 7 > 0.
n—oo fn ﬂEB

|

Let us prove now that 1, 3 (Hg) is the adaptive rate of convergence over By, in
Assumption (A), in the sense of Definition 2.1. Suppose that there exist another rate

pn,p and an estimator f;* such that

limsup sup R, (fi*, png, Hz) < C' < o0. (5.15)

n
n—00 ﬂeBNn

Moreover, suppose that there exists 4’ in By, such that p, g /1, g — 0, when n — oco.
We have to find another 3” in By, such that

Pnp Pnpr (5.16)
d)n,ﬁ’ T/)n,ﬂ” n—oo
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Remark that ' belongs necessarily to B_. Indeed, if 8 = B, ¢y 3, coincides with the
optimal rate of convergence ¢, g, which can not be improved over the class H (8y,p, L).
Since ¢y, g satisfies the lower bound:

lim inf 1nfRng (fn,@nﬂ,Hﬂ> > >0, (5.17)

n— 00

pn,3 can not be faster than ¢, 3. Indeed, as a consequence of (5.15),

C' > limsup ((’Dn’ﬁ> R (f3" on,p, Hp)

n—00 Pn,B

<hmsup(p ”8> liminf inf R, g (fn,gong,H[3>

n—oo Pn,B3 n—oo

This implies in particular, for § = (', that there exists some ¢; > 0 such that p, g >
c1¢pn, 5, for n large enough.

We put 8" = By = Bn,, 0 < § < 1 small number and ¢, = (1/n)1/275/ﬁ’. Two cases
can possibly occur. At first, if

p7
Prbv -y o,
Ep N0

we have, for n large enough,

pn:ﬁ’ . ’OnuBN > Clipn,ﬁ’ . ’OnuBN . En
Ung Unpy  Yng En Pnpy
1

s 1
Pn,Bn nf N

>c

1 — o0,
=7 N—00

. (logn) 7
and the result (5.16) follows. Secondly, if

. . oPn,
lim inf2mAN
n—oo gy

< e <00,

we are lead to a contradiction with our assumptions and , g is proved to be adaptive
rate of convergence. More precisely, if p, g, < c2e,, for n large enough, let us denote

el = (1/n)/2"%/5 By (5.15), we have:

C' > limsupmax { R g (fn", pnp, Hy') s By (Fns Prpns Hpy) }

n—o0

z/)n,ﬂ’ 1 Kk
lim sup max —— | R,p (fn a¢n,ﬂ”Hﬁ’) )
n—00 Pn,p'

>
< ) n,6n ( n € HﬂN)}
a/BN
, q ra q
> limsup mm{(%—’ﬂ) , <6—nn5’> } .
n—r00 Pn,p' Pn.Bn

liminf inf max {Rn”g/ (ﬁz,l/)n”g/,ng/) Ry gy (fn, e, H5N> } . (5.18)

n—o0 f
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By our assumption, v, g /pp g — 00 and

8 1 0l
cn ns > _exp{ ggn} — 00,
N

pna/BN €2

in view of Assumption (A). It suffices to prove that

timinf inf max { R (Fu g Ha ) s By (Fasehs Ho ) } > ¢ >0, (5.19)

n— 00 fn

in order to get a contradiction in (5.18). We use for this purpose the proof of the
lower bound in Section 4. We construct similarly, densities f € H (Sn,p,L) and f;, €
H (#',p, L), such that

and

0] =

Yty (o= 1) (20)| 2 s >0

n X,
Py, LH1 J{;((Xi)) > T] >1-4,

for some 7, § > 0. If ¢, = 1, g /€},, then by Lemma 4.15

(1 —10)(c3—0)!Tqhd?
Tq%(sq + (03 — 5)q )

i?fmax {Rn,ﬁ’ (ﬁla¢n,ﬁ”Hﬁ') aRn,ﬂN (ﬁlagiuHﬂN>} >

n

We put 7 = (l)q(lfl&s)/(éﬁl) then
n )
249 q
7q? > nfvy (logn)? — oo
and (5.19) is proved.
O
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