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Abstract

We consider density pointwise estimation and look for best attainable asymptotic
rates of convergence� The problem is adaptive� which means that the regularity pa�
rameter� �� describing the class of densities� varies in a set B� We shall consider� suc�
cessively� two classes of densities� issued from a generalization of L� Sobolev classes�
W ��� p� L� and M ��� p� L��

Keywords� nonparametric density estimation� adaptive rates� Sobolev classes

� Introduction

��� Adaptivity

We want to estimate the common probability density f � IR� ������ of n independent�
identically distributed random variables X�� � � � �Xn� at a real point x�� We assume that
f belongs to a large nonparametric class of functions� H� � H ��� p� L�� characterized by
its smoothness �e�g�� order of derivability�� �� a norm Lp � p � 	 and a radius L � ��

For any estimator bfn of f � 
xed x� real and q � 	 we consider a sequence �n�� of
positive numbers and de
ne the maximal risk over the class H��

Rn��� bfn� �n���H�� � sup
f�H�

��qn��Ef

h��� bfn�x��� f�x��
��� qi � �	�	�

where Ef ��� is the expectation with respect to the distribution Pf of X�� ����Xn� when the
underlying probability density is f �

We say that �n�� is an optimal rate of convergence over the class H� � H ��� p� L��
if the maximal risk over this class stays positive� for all possible estimators� asymptotically
and if there is an estimator whose maximal risk stays 
nite asymptotically� Minimax
theory is concerned with 
nding the estimators attaining the optimal rates� which are
given by minimizing the maximal risk� over all estimators�

We are interested in adaptive estimation� which means that the regularity parameter �
is supposed unknown within a given set� An estimator bfn is called optimal rate adaptive

	



if� for the optimal rate of convergence over that class� �n��� and a constant C � �� we have

limsup
n��

sup
��B

Rn��

� bfn� �n�� �H�

�
� C ��� �	���

where B is a non�empty set of values�
We shall prove here� that over two di
erent classes of probability density functions� to

be de
ned below� commonly denoted by H� � H ��� p� L�� we can 
nd no optimal rate
adaptive estimator� Similar results were obtained by Lepskii ����� Brown and Low ��� �on
H�older classes of functions� and Tsybakov ���� �on L� Sobolev classes�� for the Gaussian
white noise model� They are characteristic for the pointwise �not global� estimation� We
shall then introduce the de
nition of adaptive rate of convergence� which is a modi
cation
by Tsybakov ���� of the de
nition of Lepskii ���� �see also Lepskii ��	� and ������ We also
compute the adaptive rate over the same classes of functions as well as the corresponding
rate adaptive estimators�

More precisely� let us de
ne the considered classes of densities� At 
rst� we de
ne for
integer � � 	� L � � and 	 � p �� the class of functions in Lp

W ��� p� L� �

�
f � IR� ������ �

Z
IR
f � 	�

Z
IR

���f ��� �x����p dx � Lp
�
�

where f ���� the derivative of order � of f � is supposed to exist�
Secondly� let us introduce for any absolutely integrable function f � IR � ������ its

Fourier transform F�f��x� � R
IR f�y�e

�ixy dy� for any x in IR� We de
ne now for real
� � 	 � �

p and � � p � � the class of absolutely integrable functions whose Fourier
transforms belong to Lp and

M ��� p� L� �

�
f � IR� ������ �

Z
IR
f � 	�

Z
IR
jF�f� �x�jp jxjp� dx � Lp

�
�

From the results of optimal recovery of Donoho and Low ���� it is straightforward to
obtain the optimal pointwise rates of convergence over these classes�

�n�� �W ��� p� L�� �

�
	

n

� ����p
������p���

and �n�� �M ��� p� L�� �

�
	

n

� ����p��
������p���

� �	���

In this paper� we prove that no optimal adaptive estimator can be found and we look for
the adaptive rates of convergence on previously de
ned classesW ��� p� L� andM ��� p� L��
for � belonging to a set BNn to be de
ned for each class� We prove that the adaptive rates
of convergence are within a factor logn slower than the optimal rates�

Remark ��� If p� is the conjugate of p �i�e� 	�p � 	�p� � 	�� then the optimal rates of
convergence �	��� coincide for integer �� on the classes W ��� p� L� and M ��� p�� L� �as
well as the adaptive rates ����� below�� Moreover� by a result of Stein and Weiss ���� we
have that for integer � � 	 and 	 � p � �

M
�
�� p�� L

� �W ��� p� L� �

Thus� parts of our results on a scale of classes can be deduced from the results on the
other scale� for certain values of the parameters� Nevertheless� our setups are considerably
larger and the classes W and M are not compatible except in the particular case described
above� For these reasons� we prefer the above notation and give independent proofs for
both setups�

�



��� Previous results

The asymptotic study of minimax risks of estimators in the nonparametric framework� was
developed considerably since the 
rst results of Stone ���� and ����� Bretagnolle et Huber
���� Ibragimov et Hasminskii �	�� and �	��� Beside the density model� nonparametric
regression and Gaussian white noise models were studied� Estimation was done over
H�older� Sobolev or Besov classes� For an overview of the results in this area see Korostelev
and Tsybakov �	�� and H�ardle� Kerkyacharian� Picard and Tsybakov �	���

Almost optimal rates of convergence in density pointwise estimation over Lp Sobolev
classes�W ��� p� L�� were obtained byWahba ����� where technics of Farrel �		� for the proof

of the lower bounds issued a rate of �	�n�
����s

������s��� � for s � p� �� � � � arbitrary small�
Note that the optimal rate for W ��� p� L�� as noted in �	���� is given by this expression
with � � ��

Technics of optimal recovery of Donoho ���� Donoho and Liu ���� Donoho and Low ���
allow to compute optimal rates of convergence for di
erent risks� in di
erent setups� In
these papers the classes M ��� p� L� and the corresponding rate in �	��� 
rst appear�

Lepskii ����� Brown and Low ��� showed that for pointwise estimation on the H�older
classes optimal rate adaptive estimators can not be found� both in Gaussian white noise
and density models� In the Gaussian white noise model� Lepskii ���� 
rst considered the
problem of 
nding the adaptive rates� He showed that a loss of logarithmic order is un�
avoidable and introduced a procedure providing the adaptive estimator� For a detailed
overview of adaptive rates of convergence we refer to Donoho� Johnstone� Kerkyacharian�
Picard ���� H�ardle� Kerkyacharian� Picard� Tsybakov �	�� who give adaptive rates over
Besov classes using the wavelet thresholding procedure� Lepski� Mammen and Spokoiny
����� Goldenshluger and Nemirovski �	��� Juditsky �	�� gave also adaptive rates of con�
vergence using Lepski�s scheme of adaptation� Most of these results are obtained for the
Gaussian white noise model�

In density estimation� wavelet techniques were used in the minimax adaptive setup for
Besov classes and Lp risk� by Donoho� Johnstone� Kerkyacharian� Picard ���� Kerkyachar�
ian� Picard and Tribouley �	�� and Juditsky �	��� Sharp results� where the asymptotic
value of the maximal risk was found explicitely� were obtained over L� Sobolev classes in
L� risk by Efromovich �	�� and Golubev �	�� and pointwise in Butucea ����

In this paper� we are interested in adaptive rates in pointwise density estimation over
Lp Sobolev classes� W ��� p� L� and M ��� p� L��

� Results

We consider adaptive density estimation problem� at 
xed real point x�� over the classes
H� � H ��� p� L�� when � belongs to the discrete set BNn � f��� � � � � �Nng�

Assumption �A� The set BNn is such that �� � � � � � �Nn � �� for a non�decreasing
sequence of positive integers Nn� From now on� we shall consider two setups� When
H� � W ��� p� L� the set BNn contains positive integer values of � ��� � 	� and
p � 	� while H� �M ��� p� L� implies that � can take real values� ��� � 	�	�p� and
p � �� Moreover� we suppose that lim

n��
�Nn � � and if �n � min

i����Nn��
j�i�� � �ij

�



we assume that it satis
es

limsup
n��

�n � �� ���	�

together with

lim
n��

�n logn

��Nn
log logn

��� �����

The following de
nition of an adaptive rate of convergence was introduced by Lepski�
see Tsybakov ����� The original de
nition of adaptive rate of convergence by Lepskii ����
is not used here since it has a more special form�

De�nition ��� The sequence �n�� is an adaptive rate of convergence over the scale
of classes fH�� � � BNng� if

�� There exists an estimator f�n� independent of � over BNn � which is called rate

adaptive estimator� such that

limsup
n��

sup
��BNn

Rn�� �f
�
n� �n���H�� ��� �����

�� If there exist another sequence of positive reals 	n�� and an estimator f��n such that

lim sup
n��

sup
��BNn

Rn�� �f
��
n � 	n���H�� ��

and� at some �� in BNn �
�n���
�n���

�
n��

�� then there is another ��� in BNn such that
�n���
�n���

� �n�����n����
�

n��
���

Note that condition ����� introduces a wide class of rates� We choose between those
rates by a criterion of uniformity over the set BNn � expressed in the second part of De
�
nition ��	� If some other rate satis
es a condition similar to ����� and if this rate is faster
at some point �� then the loss at some other point ��� has to be in
nitely greater for large
sample sizes n�

Remark ��� If an optimal adaptive estimator exists� it is also rate adaptive�

Indeed� an optimal adaptive estimator satis
es ����� by de
nition� for the optimal rate
of convergence �n�� � �n��� We can easily verify that in this case condition � in De
nition
��	 is redundant� since such a sequence 	n�� can not exist�

In what follows we assign to any � in BNn the value

e� � e� �H� �

�
� � 	�p� 	��� if H �W
� � 	�p� 	��� if H �M

� �����

where equalities H � W and H � M denote the cases when we consider the scales of
classes fW ��� p� L� � � � BNng or fM ��� p� L� � � � BNng� respectively� We remark that in
both setups� e� � 	���

�



Let us de
ne B� � BNn n f�Nng and

�n�� � �n�� �H�� �

	
� �logn�n�
e�����

�e� � if � � B�

�	�n�
e�����

�e� � if � � �Nn

� �����

Then the rate �n�� �H�� is slower than the optimal rate of convergence� except for the
last point �Nn � As by our hypothesis lim

n��
�Nn � �� this asymptotic phenomenon is not

characteristic and we can use the set B� instead of BNn �

��� The adaptive procedure

Let us proceed to the construction of the estimator f�n called adaptive estimator� We start
for each � in BNn with the corresponding kernel estimator

fn�� �x�� �
	

nhn��

nX
i��

K�

�
Xi � x�
hn��

�
� �����

Here the kernel K� is de
ned in the next section �di
erently for each setup� and the
bandwidth is in both problems

hn�� �

�
log n

n

� �

�e�

� if � � B� and hn��Nn �

�
	

n

� �

�e�Nn �

where e� � e� �H�� and e�Nn � e�Nn

�
H�Nn

�
in ������ We shall evaluate the regularity � of

the estimated density and replace it into the kernel estimator fn�� in order to obtain f�n�
the adaptive estimator� in the spirit of Lepskii �����

More precisely� let a � � be a su�ciently large constant and


n�� � a

�
log n

n

� e�����

�e�

�

Then� we de
neb� � b� �H�� � max f� � BNn � jfn�� �x��� fn�� �x��j � 
n�� ��� � �� � � BNn g �
In the sequel� e� �appearing in 
n��� is de
ned as in ������ Finally�

f�n �x�� � f
n�b� �x�� � �����

��� Statement of results

Theorem ��� In both pointwise density estimation problems described above� we can
	nd no optimal rate adaptive estimators �see De	nition 	��� over the scale of classes
fH ��� p� L� � � � Bg� as soon as B has at least two di
erent elements and B � BNn �
where BNn satis	es Assumption �A��

Theorem ��� The estimator f�n �x�� of f �x��� in ������ is rate adaptive estimator and
�n�� �H�� in ����� is the adaptive rate of convergence in the sense of De	nition ��	� over
the scale fH ��� p� L� � � � BNng� where the set BNn satis	es Assumption �A��

�



The proof is organized as follows� In Section � we prove that f�n �x�� in ����� satis
es�
for a constant C � ��

lim sup
n��

sup
��BNn

Rn�� �f
�
n� �n���H�� � C ��� �����

This result will be called the upper bound� Section � is devoted to the proof of the lower
bound

lim inf
n��

inf
fn

sup
��f���g

Rn�� �fn� �n���H�� � c � ��

where � and � are in BNn � arbitrary chosen elements such that � � �� c � � and the
in
mum is taken over all possible estimators fn of f � These relations� Theorem ��� �proved
in Section �� and the fact that �n�� �H�� is the adaptive rate of convergence over the set
BNn �see also Section �� imply Theorem ����

� Upper bounds

We shall prove that the estimator f�n� independent of � in BNn � de
ned in ������ is such
that the upper bound ����� holds� Throughout this section� C� ci and Ci� i � 	� �� ����
denote positive constants� depending possibly on 
xed q� �� and L�

��� Auxiliary results

De�nition ��� Let the density f belong to the class H� � H ��� p� L�� De	ne for any
kernel estimator fn�� of f �see ������� with �� � in BNn such that � � � its bias term

Bn�� � Bn�� �x��H�� � jEf �fn�� �x���� f �x��j �

and its stochastic term

Zn�� � Zn�� �x��H�� � jfn�� �x���Ef �fn�� �x���j �

Besov� Il�in and Nikol�skii �	�� Theorem 	��	 implies the following�

Lemma ��� Let �� � be integers and � � � � �� 	 � p�� p�� p � �� � � 	�p� If there
exists � � ����� 	� such that

	

p�
� � � �	� ��

	

p�
� �

�
	

p
� �

�
� ���	�

then any function f � L�� �IR� with
��f �����

p
�� satis	es���f ������

p�
� C kfk���p�

���f �������
p
�

where C is a constant that depends only on p�� p�� p� �� ��

�



Lemma ��� There exists a 	nite constant � depending on L� � and p only such that

sup
f�H���p�L�

kfk� � ��

Proof� For f �W ��� p� L�� we apply the previous result with � � �� p� ��� p� � 	�
Then ���	� takes the form

� � �	� �� � �

�
	

p
� �

�
�

which implies � � 	� �� � 	� 	�p�� Then � � ����� 	� if � � 	�p which holds by hypoth�
esis� Thus� we apply the previous result� Lemma ���� and get

kfk� � C kfk����

���f �������
p
� CL��

for all f in W ��� p� L��
If f �M ��� p� L�� then kF �f�k� � 	 since f is a density� We have

kfk� � 	

�


Z
IR
jF �f� �y�j dy

�
	

�


Z
IR
jF �f� �y�j

�
	 � jyj�

� dy

	 � jyj�

� 	

�


�Z
IR
jF �f� �y�jp

�
	 � jyj�

�p
dy

���p


B�Z
IR

dy�
	 � jyj�

�p�
�CA

��p�

where 	�p � 	�p� � 	� This is less than a constant � �L� �� p� � �� for f in the class
M ��� p� L�� �

Lemma ��� If f � H ��� p� L� and � is in BNn such that � � �� then f � H ��� p� L���
where L� � � depends only upon L and p�

Proof� For classes W ��� p� L� put p� � p� p� � 	 in the auxiliary Lemma ���� Then
���	� takes form

	

p
� � �

�
	� e��� e��	

p
� �

�
�

which gives e� � �� � 	� 	�p� � �� � 	� 	�p� and thus e� � ����� 	� if � � 	�p �true� by
hypothesis�� By Lemma ��� we get���f ������

p
� eC kfk��e��

���f ������e�
p
� eCLe��

for all f in W ��� p� L��
For f �M ��� p� L�� as p� � 	 and kF �f�k� � 	� we writeZ

IR
jF �f� �y�jp jyjp� dy �

Z
jyj��

jF �f� �y�jp dy �
Z
jyj	�

jF �f� �y�jp jyjp� dy

� 	 � Lp�

�



�

Lemma ��� If � and � are in BNn such that � � � and if f belongs to H� � H ��� p� L�
then there exists b� �H�� � � �given in the proof and depending also on L and p�� such
that

Bn�� �x��H�� � b� �H�� h
����p
n�� � if H� �W ��� p� L� �

Bn�� �x��H�� � b� �H�� h
������p
n�� � if H� �M ��� p� L� �

and

Ef �Zn�� �x��H���
� � � kK�k��

nhn��

Def
� s�n��� �����

Moreover� for the kernels fK� � � � BNng used in the proof� we can 	nd constants Kmax�
kmin� kmax and bmax depending possibly on 	xed p and ��� such that

kK�k� � Kmax� kmin � kK�k� � kmax

for all � in BNn and b� �H�� � bmax for all � and � in BNn such that � � ��

Remark ��	 From now on� e� � e� �H�� is obtained as in ������ Then Lemma ��� says
that

Bn�� �x��H�� � b�h
e��H������
n�� �

Proof� If H� � W� � W ��� p� L�� let us introduce a kernel K� of order �� in the
expression of the kernel estimator ������ Such a kernel must be bounded uniformly in
� �kK�k� � Kmax� for all � in BNn�� absolutely integrable� with a bounded L� norm
�kmin � kK�k� � kmax� for all � in BNn�� such that

R
IRK� �y� dy � 	�

R
IR y

jK� �y� dy � �
for j � 	� � � � � � � 	 and Z

IR
jK� �y�j jyj����p dy � L� ��� �����

where L� depends only on 
xed p and ��� It is not di�cult to 
nd examples of such
kernels� For example� the kernel K� having Fourier transform F �K�� �u� � 	� �	 � jujp��
satisfy these conditions and the proofs are given later on�

From now on we denote
R
�
R
IR� Then the bias can be bounded as follows

Bn�� �x�W�� �

����Z K� �y� �f �x� yhn���� f �x�� dy

����
�
������
Z
K� �y�

���X
j��

�yhn���
j

j�
f �j� �x� dy

�

Z
K� �y�

Z x�yhn��

x

�x� yhn�� � u����

�� � 	��
f ��� �u� dudy

�����
�
������
���X
j��

hjn��
j�

f �j� �x�

Z
yjK� �y� dy

�������
�

Z
jK� �y�j

���f ������
p

jyhn�� j����p
�� � 	�� ��� � 	� p� � 	���p

�
dy�

�



where the 
rst term is zero by hypotheses on the kernel and we applied the H�older in�
equality with 	�p� 	�p� � 	 for the second term� This gives

Bn�� �x�W�� � L�

�� � 	��

h
����p
n��

��� � 	� p� � 	���p
�

Z
jK� �y�j jyj����p dy

� b� �W�� h
e��W������
n�� �

where

b� �W�� �
L�

�� � 	��

R jK� �y�j jyj����p dy
��� � 	� p� � 	���p

�
�

We can also see that b� �W�� � bmax� bmax depending only on p� L and ��� for all � and �
in BNn � � � ��

If H� �M� �M ��� p� L�� let us choose the kernel K�de
ned by its Fourier transform
as follows

F �K�� �u� �
	

	 � jujp� �

This kernel has� by Plancherel�s formula�

kK�k� �
	p
�


kF �K��k� �
	p
�


Z
du

�	 � jujp���

� 	p
�


Z
juj��

du�
	 � jujp��

�� � kmin �p� ��� �

also

kK�k� � 	 �
	p
�


Z
juj	�

du�
	 � jujp��

�� � kmax �p� ���

and

kK�k� � 	

�


Z
jF �K�� �u�j du � 	 �

	

�


Z
juj	�

du

	 � jujp��
� Kmax �p� ��� �

since p�� � 	� in our setting� Then the bias is

Bn�� �x�M�� �

����Z 	

hn��
K�

�
y � x

hn��

�
f �y� dy � f �x�

����
�

	

�


����Z F �f� �y� eixy �F �K�� �hn��y�� 	� dy

����
� 	

�


Z
jF �f� �y�j jhn��yjp�

	 � jhn��yjp� dy�

�



Then we apply H�older�s inequality for 	�p� 	�p� � 	 as follows

Bn�� �x�M�� � h�n��
�


Z
jF �f� �y�j jyj� jhn��yj

�p����

	 � jhn��yjp� dy

� L�h
����p�
n��

�


�Z jyjp�
�	 � jyjp��p�

dy

���p�

� b� �M�� h
e��M�����
n�� �

where L� is the constant from Lemma ��� and

b� �M�� �
L�

�


�Z jyjp�
�	 � jyjp��p�

dy

���p�

�

This term is bounded as follows

b� �M�� � L�

�



B�Z
jyj��

dy�
	 � jyjp��

�p� � Z
jyj	�

dy

jyjp���

�CA
��p�

� bmax �p� L� ��� �

Let us check at last that condition ����� is full
led�Z
IR
jK� �y�j jyj����p dy �

Z
jyj��

jK� �y�j dy �
Z
jyj	�

jK� �y�j jyj����p dy

� Kmax �

�Z
jyj	�

jK� �y�j� jyj�� dy
�����Z

jyj	�
jyj���p dy

����

� L� �p� ��� �

For the variance term� we write� using Lemma ���

Ef �Zn�� �x�H���
� � 	

nhn��

Z
	

hn��
K�
�

�
y � x

hn��

�
f �x� dx � � kK�k��

nhn��
�

�

Let us recall the following inequalities �see e�g� H�ardle� Kerkyacharian� Picard� Tsy�
bakov �	����

Lemma ��
 Rosenthal�s inequality� Let q � � and Y�� � � � � Yn be independent random
variables such that E �Yi� � �� E �jYijq� ��� Then there exists C �q� a constant depending
on q such that

E

������
nX
i��

Yi

�����
q�
� C �q�

	
�
nX
i��

E �jYijq� �
�

nX
i��

E
�
Y �
i

��q��
��� �

Bernstein�s inequality� Let Y�� � � � � Yn be i�i�d� random variables such that jYij � M �
E �Yi� � � and denote b�n �

Pn
i��E

�
Y �
i

�
� Then for any � � ��

P

������
nX
i��

Yi

����� � �

�
� � exp

�
� ��

� �b�n � �M���

�
�
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Lemma ��� If f belongs to H� � H ��� p� L� and � � �� if K� is the kernel function and

Zn�� �x��H�� �

����� 	

nhn��

nX
i��

�
K�

�
Xi � x�
hn��

�
�EfK�

�
Xi � x�
hn��

�������
then for any u � �

Pf �Zn�� �x��H�� � u� � � exp

�
� u�

�s�n�� �	 � c�u�

�
�

where c� � � does not depend on ��

Proof� Indeed� we can apply Bernstein�s inequality for � � nu and the i�i�d�� centered
variables

Yi �
	

hn��

�
K�

�
Xi � x�
hn��

�
�EfK�

�
Xi � x�
hn��

��
�

bounded as follows� jYij � � kK�k� �hn�� � Then b�n � s�n�� � � kK�k�� � �nhn��� by �����

and� by Lemma ���� � kK�k� �
�
� kK�k��

�
� �Kmax�

�
�k�min

�
� c�� which does not depend

on ��

�

Remark ��� For q � 	� we can 	nd a constant c �q� � � such that the stochastic term of
the kernel estimator satis	es

Ef �Zn�� �x��H���
q � c �q� sqn�� �

where we denoted s�n�� �
�
� kK�k��

�
� �nhn����

Indeed� for q � �� we apply Rosenthal�s inequality to the previous centered variables
Yi� bounded as follows� jYij � � kK�k� �hn�� � Then we can 
nd a constant depending on
q� c� �q�� such that

Ef

������ 	n
nX
i��

Yi

�����
�q
� c� �q�

��
� kK�k�
nhn��

�q��
	

n
EfY

�
� �

�
	

n
EfY

�
�

�q���

and this leads to our result for some constant c �q�� because of the inequality ������ We
can easily deduce this result by standard convexity inequalities� for 	 � q � �� from ������

Let us introduce the sequence

��n�� � C
qs
�
n��

�
	

�e� � 	

�e�
�
logn�

where � � � are in BNn � C
 � � and e� and e� are de
ned by ������

		



Lemma ���
 �� If the set BNn satis	es conditions ���	� and ������ then

log ne�N �
n��

�� log e�N
s e�N
logn

�
n��

� and log
	

�n

s e�N
log n

�
n��

��

where e�N � e�Nn is de	ned by the transformation ������
�� If �� � are in BNn such that � � � then there exist constants C�� C� depending only

on previously 	xed constants such that

sup
f�H�

Bq
n�� �x��H�� � sqn��

�qn��
� C��
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n�� �x��H�� � � qn��

�qn��
� C�

p
log n

�
	

n

�� �
�

�
�
�e�
� �

�e�

�
�

Proof� �� The limits are easy consequences of hypotheses ���	� and ������
�� By Lemma ���� there exist bmax and kmax not depending on �� such that b� � bmax

and kK�k� � kmax� for any � in BNn � Thus� for � � B� and � � ��

Bn�� �x��H��

�n��
� bmax�

sn��
�n��

� kmax

s
�

logn

and

Bn�� �x��H��

�n��
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�
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n
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�

�
�
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�
�

Finally�
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� qC
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qe�N � logn

n
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�

�
�
�e�
� �

�e�

�
�

Because e�N� log n� � when n�� we get the lemma for � � B�� For the case � � �Nn �
denoted �N �

Bn��N �x��H��

�n��N
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sn��N
�n��N
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p
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p
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Lemma ���� If f belongs to H� � H ��� p� L� and �� � are elements of BNn such that
� � �� then

sup
��BNn
���

�N
�n

sup
f�H�

��qn��Ef ��Zn�� �x��H���
q I �Zn�� � �n���� � o �	� �

as n��� where o �	� is independent of � in BNn�

Proof� Since kZn�� �x��H��k� � Kmax�hn�� �kK�k� � Kmax�� we have

Ef ��Zn�� �x��H���
q I �Zn�� � �n���� �

Z Kmax�hn��


n��

Pf �Zn�� � u� duq

�
Z
I
�

Z
II
�

where we need to split the integration domain in two intervals� In the rest of the proof
we denote c � c �q� ��� L���K� a positive constant� that might depend on the other given
constants� We give the proof only for � � B�� The case � � �N is similar�

Let c� � � be a constant� large enough such that �n�� � c� and let I � ��n�� � c��� We
write Z

I
Pf �Zn�� � u� duq � �

Z c�


n��

exp

�
� u�

�s�n�� �	 � c�c��

�
duq

� �	 � c�c��
q�� sqn�� exp

�
� ��n��
�s�n�� �	 � c�c��

�
�

where we applied Lemma ���� Then we use the 
rst part of Lemma ��	� to get

�N
�n
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f�H�
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Z
I
� �N

�n

csqn��
�qn��
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�
� qC
 logn

� �	 � c�c��
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�e�
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� �N
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c

�logn�q��
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�
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�

�n

�e��Nn

�
C


�	 � c�c��
� 	

��

which is on o �	� if we choose C
 � � su�ciently large and does not depend on � � � in
BNn �

At last� let us consider c� � Kmax and II � �c�� c��hn�� �� Then� by Lemma ��� and the

fact that u�

��c�u
� u

�c�
for u large enough�

�N
�n

sup
f�H�

��qn��

Z
II
� �N
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sup
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Z �
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�
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�
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� ��N
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�
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�
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�
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�
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�
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n

�� c

�log n�q
exp

�
�c� logn

�c�c

�
n

log n

��� �

�e��

�
�

which is an o �	� for some � � � and the whole bound is free of � and � over BNn � �
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Lemma ���� Let f belong to the class H� � H ��� p� L� and de	ne �n� � exp

�
��n log n

�e��N
�
�

Then for arbitrary ��� �� ��� elements of the set BNn such that �� � � � �� � � we have

lim
n��

Bn��� �x�H��

�n�
n���
� � and lim

n��

Bn��� �x�H��

�n�
n���
� ��

Proof� We have that �n� �
n��

� by Assumption �A�� relation ������ We also see

that hn��� � hn��� � for n large enough� Then

Bn��� �x�H��

�n�
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� Bn��� �x�H��
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s
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�
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� C	�
�
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where e�� � e�� �H��� e�� � e�� �H�� and e�N � e�N �H�� are de
ned as in ������ This last
term tends to � uniformly in ��� �� ��

�

Lemma ���� If f belongs to H� � H ��� p� L� and �� � � BNn� � � �� then there exist
absolute positive constants C
� C� such that

sup
f�H�

Pf

h
�� � �

i
� C


�N
�n

n
� q
�e�
C� �

Proof� Let �� � min f�� � BNn � �
� � �g� which implies that �� � �� From the

assumptions that �� � � and � � � we deduce that there must exist �� in BNn such that
�� � �� and jfn��� �x��� fn��� �x��j � 
n��� � For brevity we do not mention the point x
and the class H� in the bias and stochastic term notation� Then

Pf

h
�� � �

i
�

X
���BNn
����
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By Lemma ��	�� we can 
nd a constant d � � such that Bn��� � Bn��� � d�n�
n��� and
�n� � �� for n large enough� Then we replace

Pf

h
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i
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���BNn
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We remark that we can write 
�n��� � qC�s
�
n��� logn� ��e���� where we can choose C� �

a�� �q�Kmax� su�ciently large� We apply twice Lemma ��� for �n��� � 
n��� �	� �d�n��

Pf �Zn��� � 
n��� �	� �d�n��� � � exp

�
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Thus the lemma is proved�

�

��� Proof of the upper bound

Let us start the proof of ����� by considering di
erent possible cases for the estimatorb� �H�� of �� We have

Rn�� �f
�
n� �n�� �H�� � R�
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�
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�
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n�� �f

�
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h
jf�n�x���f�x��j qI
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Assume 
rst that � � B�� the case when � � �Nn will be treated later� If we assume thatb� � �� by the de
nition of b� we have

jf�n�x��� fn���x��j � 
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and thus
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by Remark ���� Then� by Lemma ��	� this bound is 
nite� uniformly in � over B� �
asymptotically�
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We bound this risk as follows
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We can see that
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We apply Lemmas ��	� and ��	� for the 
rst term of the above right�hand side and get
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Finally� by Lemma ��		
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uniformly in � over BNn � Then

sup
��B�

R�
n�� �f

�
n� �n���H�� � o �	� �

As for the case where � � �Nn both denoted �N � ����� still holds with
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The proof goes similarly for the case � � B�� Indeed� we have the bound ����� for � � �N
and we conclude by Lemmas ��	�� ��	� and ��		�
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� Lower bound

We shall prove that for any �� � in the set BNn such that � � �

lim inf
n��

infbfn sup
��f���g

Rn��

� bfn� �n���H�

�
� cq � �� �����

where H� � H ��� p� L� denotes W ��� p� L� or M ��� p� L�� respectively� and c � � is a
constant� Suppose for the beginning that � � �Nn �

Before we proceed to the proof of ����� let us construct functions f � K and fh needed
in our proof� Clearly� we can construct a compactly supported function K � H
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�� p� L�

�
with the support ��D�D�� such that kKk� � ��

R
IRK �x� dx � �� K ��� � c � � and
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Lemma ���� Let � � � � 	 be 	xed� If X�� � � � �Xn are i�i�d� observations of probability
density fh in H ��� p� L�� as described above� and if � � n�
������� for 	xed � � �� � 	�
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because fh �x� � �a for h small enough� Since Efh �log �f �X�� �fh �X���� � � by Jensen�s
inequality then� by �������
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By Lyapounov�s theorem� Un
D� U � where U is a standard Gaussian random variable�
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The left�hand side expression in the inequality ����� is�
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Let us denote Rn �Tn� �� the right�hand side expression in ���	�� and state the following
lemma �Tsybakov ����� that will help us to conclude�
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Proof� We remark that j�j � �������e��K ��� � c � � since e� � �
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� Adaptive rate

Proof of Theorem ���� Recall that
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Remark that �� belongs necessarily to B�� Indeed� if � � �N � �n��N coincides with the
optimal rate of convergence �n��N which can not be improved over the class H ��N � p� L��
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in order to get a contradiction in ���	��� We use for this purpose the proof of the
lower bound in Section �� We construct similarly� densities f � H ��N � p� L� and fh �
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