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Empirical process of the squared residuals of an ARCH

sequence”
Lajos Horvath Piotr Kokoszka
University of Utah University of Liverpool

Gilles Teyssiere
Humboldt Universitdt and GREQAM

17 August, 1999

Abstract

We show that the empirical process of the squared residuals of an ARCH(p) sequence
converges in distribution to a Gaussian process B(F'(t)) +tf(¢)€, where F is the distribu-
tion function of the squared innovations, f its derivative, {B(t), 0 <t < 1} a Brownian
bridge and ¢ a normal random variable.

Key words: ARCH model, empirical process, squared residuals.

Running head: Empirical process for ARCH

1 Introduction and results

Procedures based on the empirical distribution function of independent identically distributed
observations occupy a central place in statistical inference, see Shorack and Wellner (1986).
For time series data, residuals must be considered, and since these necessarily depend on
parameter estimates, the asymptotic theory for the empirical distribution function is more
comlex in such cases. Nevertheless, inference based on residuals, especially model goodness—
of-fit tests and various diagnostic checks, is a fundamental tool in the statistical analysis
of linear time series models, see Brockwell and Davis (1991). By contrast, large sample
theory for the residuals of non—linear time series models is much less developed. Li and Mak
(1994) and Horvath and Kokoszka (1999) study squared residual autocorrelations of ARCH
sequences, whose importance in various specification tests was demonstrated by Lundbergh
and Terasvirta (1998). Tjgstheim (1999) considers non-parametric tests based on squared
residuals.

*Research partially supported by EPSRC grant GR/M68879 at the University of Liverpool.



In this paper we consider the ARCH(p) model defined by the equations
< 2
yr = orey, op =bo+ ijyt—ja
=1
where {e;, —00 < i < 0o} are independent identically distributed random variables with
Eey=0 and & =1.
We assume that b = (bg,b1,...,bp) is the parameter vector satisfying
bp >0, b;>0 1<i<np.

The distribution function of €3 will be denoted by F and we assume that

(1.1) f(t) = F'(t) exists and is continuous on (0, ),
(1.2) g%tf()—o and }E{}otf(t):
We assume that the parameter vector b is estimated by an estimator bn = (130,131, ceey Bp)

which admits the representation

(1.3) i)l —b; = Z l fl €j—1,€5j-2,- ) + Op(nl/Q), 0<1<p.
1<g<n

The functions /; and f; are regular in the sense that

(1.4) Eli(e2) =0, 0<i<p,
'NE :
(1.5) E [l,-(so)] <oo, 0<i<p
and
(1.6) E[fi(eo,e-1,...)]* < o0, 0<i<p.

We show later that commonly used estimators, see e.g. Chapter 4 of Gouriéroux (1997),
admit representation (1.3).
The squared residuals are defined as

y2
sk_—g p<k<n,
Ok

where
A2 _ 7 )
0, =bo + Z biyk—j» P<k<mn.
1<j<p

In this paper we study the weak convergence of the empirical process of the squared residuals
en(t) = n'/? (Fu(t) — F(1))

where



denotes the empirical distribution function of the squared residuals. Following Giraitis et al.
(1999) we also assume that

(1.7) Esé < 00

and 1/2

(1.8) (Beg) ™ Y bi<1.
1<5<p

If condition (1.8) is satisfied, then the ARCH equations above have a unique strictly stationary
solution such that Ey,% < oo and the squares y,% have a Volterra representation

00 P
2 _ , 2.2 2
Y = E : E : bjy -+ bji €y - Ek— g1y
=0 j1,...,5;=1

Thus y,% is a function of €g, €51, - . ., and so it follows form the standard theory, see e.g. Stout
(1974) pp. 181-182, that the sequence {y?} is ergodic.

We note that condition (1.8) is not necessary for the covariance stationarity of the process
{y,%}, but it is easy to verify. Necessary and sufficient conditions are more complex and diffi-
cult to state in a closed form for p > 2, see Section 3.4 of He and Terasvirta (1998). It is also
well-known that ARCH(p) and more general sequences are not only ergodic but also mixing
with geometric rate, we refer to Lu and Cheng (1997), Remark 4.2, for futher references. The
results of this paper remain valid if condition (1.8) is replaced by any assumption guaran-
teeing that the process {yy} is strictly stationary with E'y,% < oo and ergodic. The theory
developed here may not be valid if the assuption Ey,% < oo is dropped as the results of Davis
and Mikosch (1999) suggest. These authors consider however functions of the observations
yr rather than estimated residuals.

In order to state our main result we need further notation:

a; = Efi(eo,e-1,6-2,...), 0<i<p,

t
gi(t) = Oti/o li(u) f(u)du, 0<1i<p,

1 2.
/BOZE[_Q]a @':E[y—}z], 1<i<p,
a5 99

Yij = E [11(63)19(63)] E [fi(e_l, €_9,.. .)fj(E_l, €_9,.. )] , 0<1,7<p,

r(t,s) = F(tAs)—F(t)F(s)
+ tf(t) D Bigi(s) +sf(s) D Big(t)

0<i<p 0<i<p

+ stf)f(s) D Bivibi-

0<i,5<p
THEOREM 1.1 If conditions (1.1) — (1.8) hold, then
én(t) = I'(2),
where the convergence is in the Skorokhod space D[0, 0] and I' is a Gaussian proces with

ET(t) =0 and E[I'(t)I'(s)] =r(t,s).



The convergence in Theorem 1.1 is equivalent to the convergence &, (F~!(z)) — I'(F~1(z)), 0 <
z <1, in D[0, 1].
Note that the process I' admits the representation

(1.9) L(t) = B(F(t)) + tf ()¢,

where {B(t), 0 <t < 1} is a Brownian bridge and ¢ is a normal random variable. They are
jointly Gaussian with covariance structure:

B[B(F())B(F(s))] = F(t A s) — F(t)F(s),

> Biiibs
0<i,j<p
E [fB ] = Z ﬂzgz
0<i<p
Durbin (1973a, 1973b) was the first who considered the weak convergence of empirical pro-
cess when parameters are estimated. He mainly studied the case when the parameters are
estimated by the maximum likelihood method. Burke et al. (1979) and Csorgd and Révész
(1981) considered the general case when it is assumed only that the difference between the
estimator and the estimated parameter is approximately given by an integral with respect
to the empirical process of the observations. The limit in their case has a representation like
(1.9), but in the iid case, £ is a stochastic integral of a deteministic function with respect
to B(F(-)) Our case is somewhat different. Before presenting detailed proofs, we outline the
argument. Setting

A2
0'.
#=%
we write
én(t) = én,1(t) + éna(t) + (p/Vn)F (1),
where
ena(t) =nt2 Y {1} <u6?} - P17}
p<i<n
and
ena(t) =2 3 {F(t5}) - F(1)} .
p<i<n

We will show in the proofs that 67 is so close to one that the difference between é, 1 (t) and

en(t) =n""2 3 (1{el <t} - F(1))

p<i<n

is negligible. As for the second term, é, o(t) will be approximated by

(1.10) ha(t) = tf(n 2 Y (67 -1).

p<in

Observe that




1 2 .
— (bo — bo) Z S+ Bi—b) 3 I G-ty ¥
<i<n 7 i

p<i<n 9 p<i<n

2
yi—p
5 -

g;

Therefore the joint convergence of ey (t) and y/n(b, — b) will imply the result in Theorem
1.1.

2 Proofs

We start with several lemmas which establish the main steps outlined in the discussion
following the statement of Theorem 1.1.
The maximum norm of a vector is denoted by ||-||-

LEMMA 2.1 If conditions (1.3) — (1.8) hold, then
(2.1) \/ﬁHBn—bH = 0p(1)
PROOF. Let Fj be the o—algebra generated by {eg,ex_1,...}. Let

Z Li( fz €j—1,€j-2,---), 0<i<p.
1<<k

Tt is easy to see that for each 0 < i < p, {n;(k), Fi} is a martingale. We show that n~'/2n;(n)
is asymptotically normal, what will also establish (2.1). We will verify that conditions (3.33)
— (3.35) of Theorem 3.5 of Hall and Heyde (1980) are satisfied. Setting

Xji=mi(j) —m(j — 1) = Li(e) filej-1,€j-2,- ),

we will thus verify that

1
(2.2) E|- Y E{XZIF 1} -7 —0,
n "
1<j<n
1 ) P
(2.3) @agxn EE {Xjﬂ-|.7-"j_1} -0
and
1
(2.4) E|= > X3 —i| =0.
™ 1<5<n

(Observe that EX; = Eli(e3)Efi(ej—1,€j-2,...) = 0.) Relations (2.4) and (2.2) follow from
the ergodic theorem because

E)(]Q’Z = El?(&??)Efz?(Ejfl, €5—2y-- D) =i <00
and, by the independence of ¢; and Fj_1,
E{X%|Fj 1} = fAlej 1,6, ) BIE(ED).

To verify (2.3), note that



Observing that fi(ej—1,€j—2,...) is a stationary sequence, the existence of a common second
moment gives that

Z P{\fi(fj_hej_g,...)\ > 5j1/2}

1<j<00

= Z P{'fi(s()ae—la"'ﬂ > €j1/2} < oo

1<j< 0
for all € > 0. Hence
(2.5) \fiej—1,8j-2,-- )| /52 450,
which implies that

max |filej-1,€-2,---)| = op(n'’?).

Thus we proved that for any 0 <i<p E {X]?,i|-7'—j—1} = op(n'/?), which implies (2.3).
Of course, if v; = 0, then the limit degenerates to 0. W

Recall now the definition of the function h,, given in (1.10).
LEMMA 2.2 If (1.1) - (1.8) hold, then

sup |én2(t) — hn(t)] = op(1).
0<t<o0

PROOF. By the mean value theorem

(2.6) F(t67) = F(t) = f(&)t(67 — 1) = tf(1)(6] — 1) +2(f(2) — F(&)(6 — 1),

where &; is between ¢ and t67. Hence

i< 11 Lo — ol L [y — by Yot b _p (Ve

& —t < |t |0—0\0—i2+|1—1|0i2 +---+\p—p|0i2
i (s A )

< Bl — bl + o = b+ e+ Ty = Byl )

Using the argument leading to (2.5), we obtain

2 _ 1/2
(2.7) 02X vy op(n’/?)

and therefore Lemma 2.1 yields

(2.8) sup max | —t|/t = op(1).
0<t< oo P<i<n

Next we show that

(2.9) max sup t|f(¢) — f(&)| = op(1).
P<iSn o<t<oo

Using condition (1.2) and relation (2.8), we obtain

lim limsupP<{ max sup tf(&)>ep =0,
T—00 n—oo P<ISn T<t<oo



lim limsupP{ max sup tf(&) > e} =0,

=0 nooo Pp<i<n g<t<c

so it is enough to prove that

(2.10) max sup #|f(t) — f(&)] = or(1)
P<ISn <4< T

for any 0 < ¢ < T < oo. Relation (2.10) follows from (1.1) and (2.8).
To complete the proof of Lemma 2.2, it is sufficient to establish that

> (o)

p<i<n

(2.11) = Op(n*/?).

Using the definition of §2, we have that

G e I R R I o R

p<i<n p<i<n i p<i<n p<i<n ¢

and therefore by Lemma (2.1)

> (#-1)

p<i<n

S%HI/QHB"_‘DH{1+% > y?,l—l—...—l-% > y?p}

p<i<n p<i<n

1
201:(711/2){14FE Syt D yf_p}.

p<i<n p<itn

By the pointwise ergodic theorem
1

(2.12) = >y ¥ EYy,
n p<i<n

which completes the proof of (2.11). N
Let T = [T, T]P*™! and define

y; yi
_ i—1 i—p _
’yi(s)—soﬁ—i-sl—UQ +...+5 2 s = (50,51,---5p),

7 7 7

so that §; = 14 ;(bn — b).
LEMMA 2.3 If conditions (1.1) — (1.8) hold, then for any T > 0

2 sp i 3 el st o)) = R (14 m 7 P) ] - entt) = or ()



PrOOF. Fix € > 0 and define

gi(k)=—-T+ke, 0<k<K=[2T/e], ei(K+1)=T, 0<i<p.
The (p+ 1)(K + 2) points (eo(ko),e1(k1),...,ep(kp)), 0 <k; <K +1, 0 <i<p, define a
grid in T. If T* is a cell of the grid, then the right—most point is defined as

max sgp, max Si maxs 805815---,S =S8
(sET* ,SET ’ " T p) ( ? ? ? p) bl

the left-most point being defined similarly with max replaced by min. Set k = (ko, k1, - .., kp)
and let T(k) denote the cell of the grid with the right-most point

E(k) = (60(]{20), €1 (kl), . ,Ep(kp))

and the left—-most point

e* (k) := (e5(ko), 1 (k1) -, ep (k) -

Let
Q= {w: max supn~2|y(s)| > 1/2}.
p<i<n gem
By (2.7) we have that
Jim P{Q }=0.

The mean value theorem yields that
F <t + tn71/2%(30, ceey Si1, Gz(k‘ + 1), Sitly--- ,Sp))

- F (t-l—tnilﬂfyi(so, ey 8ic1,6(K), Sit1s - ,sp))
= f(é.*)t(’n(s()a .- 'asiflaei(k + 1)53i+1’ cee 7311) - ’Yi(307 .. -asiflaei(k)73i+17 e asp))a

where £* is a point between the two arguments of F' above. If w € (), then

tf(€7) = £f(£)£—*£20

where C' = supg<;<o, tf(t). Therefore
(2.13) F (t + t’nil/Q")’i(So, cesSic1, €+ 1), Sip1y -, Sp))
—F (t +tn~ Y2y (s0,- - ., 5i1, €i(K), Sig1, - - - ,sp))
2
< 20’7171/25b

for all p < j <nand 0 <37 < p. Applying (2.13) consecutively to each coordinate, we get for
any w € {2,

2.14) su max su Ft+tn=Y27.(s)) = F (t + tn—Y2~: (e(k
CINP et MBrn Sy | 22 [ (b7 o(0)) = F (4 im™ 23 (c00)



2
< £20n~1/2 1 91'2—1 Yi—p
7 1

p<i<n i

p<z<n p<z<n p<i<n

20
Ssb—o { Zyzﬁr—zyzﬁ +—Zy1p}

Observe also that

sup
s€T (k)

> g <t Pue) - 3 I{e?swml/%(e*(k))}‘

p<i<n p<i<n

<> 1{e§§t+tn*1/2%(e(k))}— 3 1{a§§t+tn*1/2%(e*(k))}.

p<i<n p<itn

Thus we have

(2.15) sup max sup

L5 oo gy P [{e? <t+tnPyi(s)} — F (t+tn25(9))]

p<i<n

-y [I{e%St+tn_1/2fyi(e(k))}—F(t+tn_1/27i(e(k)))]‘

p<i<n
4C
Sfb— Zyz1+—2ym+ +—Zy”,
0 p<z<n p<z<n p<z<n
+ su 8 L{e? <t+tn Y 2y(ek)} — F (t+tn 2 yi(e(k
SR . RPURICE (e (k) — F ( (e ()]

+ sup max sup
0<t<oo 0<ko,-kp<K+1gem(k)

[I {ef <t+ tn71/2'yi(e*(k))} - F (t + tnil/Q%-(E*(k)))] ‘ .

p<i<n

Applying (2.12) we see from (2.15) that Lemma 2.3 will be proved once we have verified that
for any fixed s € T

(2.16) sup
0<t<o0

n 2 3 [I{Ef < t+tn*1/2%'(s)} -F (t+t”1/2%'(5))]‘ —ortt

p<itn

In the following s € T is therefore fixed.

Since F is continuous, ¢; = F(?) is uniform on [0, 1]. Also

(217) F (t4tn ' yi(s)) = F(2)] = tf &()n P hils),

where &(t) is between t and ¢4 tn~1/2+;(s). Using the definition of 7;(s) and (2.7), we obtain

n™"? max |y(s)| = op(1).

p<i<n



Hence for any ¢ > 0,

219 Jn P | mex aw 1£60) > 5}

and therefore the ergodic theorem for (1/n) 3", ;<n [7i(s)| gives

(2.19) lim limsupP{ sup

M—oo n—,oo MSt<OO

F (t +tn Y 2(s) — F(t))

p<i<n

>5}:

for all § > 0. By (2.18), for any § and 7 there are ng and My such that

P{max sup tf(&())>5}3n, if M > Mo,n > no.

p<i<n T<t<oo

Hence by (2.17) we have

P{ > 1{& <F@) - 07 yi(s)]}

p<i<n

< Y Y <trm )+ Y 1{@-3F<t)+6n—1/2m(s)|}} >1-n,

p<i<n p<iin
if M > My and n > ng. By Theorem 1.1 of Koul (1991) we have that

sup
Mo<t<oo

n 2 (L < F(t) — o0 2pn(s)[} — (F(2) — 60~ 2 i(s)

p<i<n

—n 2N (L& < F()} — F(1)

p<i<n

= Op(l)

and

sup (T{& < F(1) + 00 i(9)] } — (F(0) + 60~ ()

Mo<t<oo

2N (G < F@)} - F(t)| =

p<i<n

= Op(l).

By the ergodic theorem we have

(}im limsup P {n_1/2(5 Z n"Y2 |y (s)| > c} =0

—0 .
n—o0 p<i<n

for all ¢ > 0. Hence it is enough to show that for any M > 0

(2.20) sup

b n7 30 el <t (e}~ F (7 ()

p<i<n

10



_p1/2 3 (I {gf < t} — F(t))‘ = op(1).

p<isn

Instead of (2.20) we show that

2.21 —1/2 1{c2 <¢ -1/2,, _F(t ~1/2,,.
(2.21) o sup I Nz;n[ {2 <t4un2y(s)} = F (t+uny(s))]

_p1/2 3 (I {gf < t} — F(t))‘ = op(1).

p<iin
Write
n~1/2 Z [I {612 <t+ un_l/Q'yi(s)} —F (t + un_l/zfyi(s))]

p<i<n

=n 2y [I {612 <t+ un*lﬂ%’(s)} - F (t + “”71/2%(5))] I{%i(s) 2 0}
p<i<n

2 30 [l <t un T s)) — F (14 un ()| Tim(s) < 0}
p<i<n

Suppose first that ;(s) > 0. Note that for any u; < u < wujiq

(2.22) 0< Z I {sf <t+ un_l/Qw(s)} — Z I {612 <t+ uj-n_l/nyi(s)}

p<i<n p<i<n
< 1{c2 <t 12, — 1{c2 <t 124,
< Z g <t4+ujpin” "y(s) Z g <t4+ujn Ey(s) ;.
p<in p<i<n

It is easy to see that there is a constant C such that

(2.23) 0< 3 [Ft+ujn 7)) — F(t+un2y(s))]

p<i<n
< Clujyr—uj)n 2 3 n(s))-
p<i<n
For any fixed u > 0, Theorem 1.1 of Koul (1991) yields

(2.24) sup Z [I {512 <t+ un*1/2'yz-(s)} - F (t + un*1/27i(s))]
0<t<o0 p<i<n

—n72 3 e <t} - ()] = op(D).

p<i<n

In light of (2.22) and (2.23), relation (2.24) shows that (2.21) holds on the set {y;(s) > 0}.
A similar argument applies to the set {~;(s) < 0}. This completes the verification of (2.21).
|

11



LEMMA 2.4 If (1.1) - (1.8) hold, then

o0 [En(t) = (ea(t) +un(t))] = or (1),

where

wn® = tfOn 2 Y B 5 () fuleirrei ).

0<k<p 1<j<n

PrOOF. We use the inequality
|€n(t) — (en(t) + un(t))| < [n,1(2) — en(t)

+en2(t) = hn ()] + [hn(t) — un(?)],

where h,, is given by (1.10).
Lemmas 2.1 and 2.3 yield

sup |én,1(t) — en(t)| = op(1).

0<t<o
By Lemma 2.2
sup |en2(t) — uy (t)| = op(1).
0<t<o0
To verify that
(2.25) sup |un(t) — hn(t)| = op(1)
0<t<0
observe that
n-1/2 1 1
hn(t) = Z lo(e fo Ej—1,€j-2,--.) | = 2
1<j<n " p<i<n 7i

+ 71/2 Z ll f1€ 1, €4 2) l in_l
I n o?

1<j<n

- 1 yr
+ 1/2 Z l fp €j—-1,€5— 2,...) (— Z _21’)

1<j<n np<i§n 0;
Relation (2. 25) now follows from (1.2), (1.4) — (1.6) and the relations n ! Yp<i<n i 2y 23
Bk, k=1,...p and an analogous relation for Kk =0. N

PROOF OF THEOREM 1.1: In light of Lemma 2.4 it is enough to prove the weak convergence of
en(t) + un(t). We need tightness and the convergence of the finite dimensional distributions.
The verification of tightness is easy. Since ey (t) is an empirical process of independent,
identically distributed random variables, its tightness has been established, see e.g. Billingsley
(1968). We showed in the proof of Lemma 2.1 that

max n- Z l fz €j—1,€E5-2;- ) :OP(l)a

O<i<p 1<j<n

12



which gives the tightness of uy,(t).
The proof of the convergence of the finite dimensional distribution is based on the Cramér—
Wold device. Let A1, Ag,...,%1,%2,... be constants and define

Zk) = > G

1<i<k

where

G= Y N [(I{E?Stj}—F(tj))+tjf(tj) > Boli(e]) frlei1,€i—2,--) |

1<j<M 0<k<p

so that n~12Z(n) = Yi<j<m Aj [en(t;) + un(t;)] - Recall that, as in the proof of Lemma 2.1,
Fi is the o—algebra generated by e, ex_1,.... We use again Theorem 3.5 of Hall and Heyde
(1980). Tt is clear that E¢; = 0. We will show that with n? = E¢?

(2.26) max B ((F1Fi1) = op(n'/?),
(2.27) E| Y E(QFi1) —nn?| =o(n)
1<i<n
and
(2.28) E Z 2 —nn? = o(n).
1<i<n

Since the first term in (; is bounded by 23°; <;<a [Aj], (2.26) follows from (2.3).
Setting for brevity f, (i) = fr(ei—1,€i2,---), note that

¢ =z vEeeu)-rol)

1<j<M
+ 2 3 N Y B [I{eF <t - P tof )k fr ()
1<u,u<M 0<k<p

+ Z /\u/\vtutvf(tu)f(tv) Z ﬁkﬁmlk(sg)lm(sf)fk_(z)fr;(Z)

1<u,y<M 0<k,m<p

and therefore

B (@) - E( s [I{gggtj}_m,.)])

1<j<M
+ 203 N X Befy el (0)E ([T{e2 <tu} — F(t)] i(e))
1<u, <M 0<k<p
+ Z /\u)\vtutvf(tu)f(tv) Z ﬁkﬁmfk_ (Z)fr;(Z)E (lk(sg)lm(eg)) :
1<u, <M 0<k,m<p

Relations (2.27) and (2.28) follow now from the ergodic theorem. By computing E(? we
obtain the covariance structure in Theorem 1.1. N
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3 Asymptotic linearity of estimators

In this section we consider several examples of estimators satisfying (1.3). We would like to
point out that, in general, asymptotic linearity like (1.3) is usually not difficult to establish
whenever asymptotic normality holds.

3.1 Pseudo maximum likelihood estimation

Let )
1 9 1 E
E(S) = —5 Z log ag; (S) — 5 Z ;21S

1<i<n 1<i<n
denpte the log of the pseudo likelihood function. The estimator is the solution of the equation
L'(b) = 0, where
B 1) 1 Jo?(s)
o7(s) 9(s)

) 1 ?
£ =5 2 (a%y<s)

As pointed out in Section 4.1 of Gouriéroux (1997) b is asymptotically normal under standard
regularity conditions even if the ¢; are not standard normal, i.e. conditionally on the past,
the observations are not necessarily normal. This holds true for time series models much
more general than the ARCH(p) considered here. In the following we assume only that

(3.1) [5—b|| = 0p(n12),

where b is the true value of the parameter vector. The second derivative of L(s) is the matrix
L"(s). By the ergodic theorem

(3.2) ‘%E”(b) _ J(b)‘ L

where J(b) is a deterministic matrix. Since £'(b) — £'(b) = —L£'(b), by the mean value
theorem, we have

(3.3) £"(8) (b—b) = —L'(b),
where 3 is a point between b and b. The matrix J (b) is invertible, see e.g. Gouriéroux
(1997) pp. 50-51, so (3.3) yields
. 1 1
(34 B—b= 17" (B)L'(b) T (b) (£'(8) - T(b)) (B - b).

To see that the second term on the right-hand side of (3.4) is op(n~'/2) use (3.1) and the
decomposition

(35 ~L(B) = T(b) = - (£"(8) — £(b) + (1-£7(b) — T(b)).

The first term on the RHS of (3.5) is op(1/n) because 3 L b whereas the second is op(1)
by (3.2). Representation (1.3) now follows since

, da?
L'(b) :% > (512 a 1) QZEb) l 65(8)L:b

1<i<n i
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3.2 Conditional least squares

By definition, E (y7|Fy_1) = 02(s), where 02(s) = so+s1y2 | +... spyz-{p, so the conditional

sum of squares is
2

Qe =Y (-0,

p<i<n

The conditional least squares estimators of the by, £k = 0,1,...,p, are the solutions of the
equations

K _ ) ( o2 )aa()_o, kE=0,1,....p.

8Sk p<i<n Bsk
In order to establish (1.3) we proceed similarly as in Subsection 3.1. Direct verification shows
that Q"(s)(= Q" (b)) does not depend on s and by the ergodic theorem
(3.6) n1Q"(b) 5 A(b).
Since Q'(b) = 0,
(3.7 ~Q(b) =Q"(b) (b-b).
Relations (3.7) and (3.6) in conjunction with a Central Limit Theorem for the squares of an

ARCH process imply that n'/? (f) — b) is asymptotically normal. Consequently, arguing as
in Subsection 3.1,

b—b= —%A‘lQ’(b) + op(n'/?).

Representation (1.3) now follows on observing that

oQ
—= =-2 e; —1)o;(b)
050 |s=b p<12<n( )
and for 1 <k <p 50
2
el =2 @2;” (67 = 1) a2 (b)yy.

3.3 Conditional likelihood

The conditional distribution function of y?/o? given F; 1 is F. Thus the likelihood function
is [Ti<i<n f (y?/o?). Assuming that f is twice differentiable and proceeding along the lines
of Subsection 3.1, one can show that (1.3) holds.
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