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An Experimental Study of the Repeated Trust
Game with Incomplete Information®

Vital Anderhub’, Dirk Engelmann?, and Werner Giith'

Abstract

In the trust game first player 1 decides between non—cooperation
or trust in reciprocity and then, in the latter case, player 2 between
exploiting player 1 or rewarding him. In our experiment player 2 can
be a notorically rewarding player (this type is implemented as a robot
strategy) or a human participant who may decide opportunistically.
To allow for reputation formation, this base game is played repeatedly.
Learning can be analysed since participants play successively several
repeated games with changing partners. In our computerized experi-
ment participants can explicitly rely on mixed strategies which allows
testing the qualitative and quantitative aspects of reputation equilibria
also at an individual level.
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1 Introduction

The trust game is a simple sequential game with just two players 1 and 2
who can engage in some mutually profitable cooperation if they can trust
each other. As illustrated by Figure 1, first player 1 chooses between N (on—
cooperation) or T'(rust in reciprocity). In case of N the game is over and both
players receive s. In the case of T' now player 2 decides between E(xploiting)
and R(ewarding). Whereas R yields r for both players, only player 2 receives
t and player 1 nothing in case of E.

Figure 1: The trust game with¢ >7r > s >0

Although a pen and paper—experiment (Giith, Ockenfels, and Wendel,
1997) with the large exploitation incentive ¢ —r = DM 40.00 indicated a low
willingness to trust (7") and nearly no tendency to reward (R), one natu-
rally would expect that at least some people feel obliged to reward a trusting
player 1. If such rewarding behavior by player 2 cannot be excluded, reputa-
tion equilibria (see Kreps, Milgrom, Roberts, and Wilson, 1982) predict that
even an opportunistic player will at least initially mimic such a rewarding
player 2 when the trust game is played repeatedly by the same partners.
By imitating an always rewarding player 2, such an opportunistic player 2
strategically builds up the reputation (the conditional probability) of being
of the always rewarding type. This may induce player 1 to continue initial
cooperation in the course of the finitely repeated trust game.

Earlier experimental studies of reputation formation have used other
base games like finitely repeated Prisoner’s Dilemma games (Andreoni and



Miller, 1993) or centipede games (McKelvey and Palfrey, 1992) or have used
similar base games but a quite different experimental design (e.g. Camerer
and Weigelt, 1988, Neral and Ochs, 1992).

Our main treatment explicitly introduces the possibility of a (second
mover) type who always feels obliged to reward trust. Instead of changing
systematically its positive a priori probability we have preferred to vary its
relevance by changing systematically the (finite) number of repetitions.

Trust is automatically rewarded with probability p whereas with com-
plimentary probability 1 — p player 2 is free to choose. Actually when trust
was automatically rewarded, it meant that one did not encounter a human
player 2 but a robot strategy. This is similar to Andreoni and Miller (1993),
whereas Neral and Ochs (1992) let the always rewarding type be played by
an experimenter and Camerer and Weigelt (1988) change the payoffs for a
part of the players to make rewarding a dominant strategy. McKelvey and
Palfrey (1992) have simply introduced the possibility of an altruistic type
and estimated its a priori—probability needed to explain the experimentally
observed behavior. In our instructions we did not explicitly mention that
the automatically rewarding player 2 is a robot (without deceiving the sub-
jects by indicating the presence of a real partner either). Although it does
not influence the solution behavior, knowing that there is no human partner
might affect behavior.

Andreoni and Miller (1993) have introduced robot strategies playing tit-
for-tat. However, imitating a tit-for-tat strategy is more complicated than
just imitating a simple always rewarding strategy in the repeated trust game.
Hence we believe that our experiment constitutes an easier test of the rep-
utation building hypothesis.

We conducted a control treatment with no automatically rewarding type
of player 2, i.e. p = 0. Apart from this modification the design was the same.
The motivation for this control treatment is twofold. First, we wanted to
check whether the play without automatically rewarding players qualita-
tively resembles the play in the presence of such players. If this is the case,
reputation formation could also be an explanation for the observed behavior
in the absence of such players. Second, the existence of robot players some-
how might influence behavior. This possible influence can be ignored if the
results in the control treatment are qualitatively similar.

One further novelty of our design is that we explicitly allow players to
use mixed strategies. Previous attempts to elicit individual mixed strategies
(e.g. Albers and Vogt, 1997, and Ochs, 1995) have used normal form games
like 2x2-bimatrix games. Observing individual mixing behavior allows to
test the qualitative and quantitative predictions of reputation equilibria on



the individual level (and not just for the entire population).

Like earlier studies we find that reputation equilibria can quite well ex-
plain the aggregate data of experienced subjects. However, individual data,
in particular individual mixed strategies, differ substantially from the pre-
diction.

In the following we first analyze finitely repeated trust games with in-
complete information (section 2). The procedural details of our computer-
ized experiment are described in section 3. After a description of the main
behavioral tendencies in section 4 we test statistically some of the qualita-
tive aspects of reputation equilibria (section 5). Our conclusions relate our
findings to the relevant literature.

2 Repeated trust games
with incomplete information

Let p with 0 < p < 1 denote the probability for a player 2-type who auto-
matically rewards trust, i.e. who always reacts by R to player 1’s move of 7.
When choosing between N and 1, player 1 is, however, unaware of whether
he confronts this type of player 2 or a player 2 who opportunistically de-
cides between £/ and R. All what player 1 knows are the probabilities p of a
notorically rewarding player 2 and 1 — p of a free to choose—type of player 2.

In our experiment the notorically rewarding type of player 2 is imple-
mented by a corresponding robot strategy whereas the free to choose—type
is a human participant whose monetary rewards are those given by Figure 1.
Such a human participant may, of course, also feel morally obliged to reward
trust in reciprocity. Our game theoretic benchmark solution relies on the
usual assumption, namely that human decision makers are only interested
in their own monetary reward and perfectly rational.

To illustrate reputation equilibria in the simplest way assume that the
trust game is not only played once, but twice by the same partners. Gener-
ally let y; denote the probability by which the free to choose—type of player 2
(we will refer to him as player 2) rewards trust in the " period. Similarly,
let x¢ denote player 1’s probability of using I’ in period t. In period 2, after
the decisions (7', R) in period 1, player 1’s conditional probability 1 — py of
confronting a real player 2 is given by

1-p)wn

l—pp=—
p+(1—p)n



Thus y; = 0 yields 1 — po = 0 which would imply the optimal decisions
x9 = 1 and y; = 1, contradicting the initial assumption y; = 0. So the
solution must rely on y; > 0. The assumption y; = 1 implies 1 —py = 1 —p,
i.e. player 1 will use 7" in period 2 if p > £ and N if p < #. The latter,
however, implies y; = 0, i.e. a contradiction. Thus the solution for y; = 1
requires p > £and g = 1.

Finally assume that 0 < y; < 1. If this implied 9 = 1, then y; = 1
would be optimal. Thus the only consistent constellation with 0 < y; < 1 is
x9 with 0 < 9 < 1. This means that player 1 is indifferent between 1" and

N in period 2, therefore ps = ¢ and hence

P r—§

=T

To render this choice y; optimal, player 2 must be indifferent between E
and R in the first period which requires

_t—r
Ct—s

Z2

Anticipating y1 and z9 the optimal choice for player 1 in period 1is x1 =1
it p>(2)? and 21 = 0if p < (2)°.

From these results one easily concludes that for all generic parameters p
with 0 < p < 1 there exists just one perfect Bayesian equilibrium (Fuden-
berg and Tirole, 1991, section 8.2, or perfect equilibrium, Selten, 1975, or
sequential equilibrium, Kreps and Wilson, 1982, which are equivalent in the
present game).

If for (f)2 > p > 0 player 1 would mistakenly choose T} rather than
N1, the play would continue like after the move 7} in the parameter region
£ > p > (£)% If, conversely, in the region £ > p > (£)? player 1 chooses
mistakenly Np instead of 17, he would continue with N9 as in the region
(£)? > p > 0. A wrong choice Ny for 1 > p > £ would, however, be followed
by T3, i.e. would not change the behavior in the second period ¢ = 2.

More generally, let m denote the number of successive periods of playing
the trust game by the same partners. When describing the implications of
reputation equilibria, we distinguish what happens on the solution path and
what would happen off the solution path. Experimentally one cannot expect
rational behavior and, even less likely, common knowledge of rationality. It
is therefore important to know the conditionally rational behavior off the
solution path as it has been qualitatively described above.

On the solution path one will start with trust if there will be trust later
on. Off the solution path it is possible that there is first no cooperation (due



to mistakes), but that trust is chosen and rewarded later. Here trust and
rewarding trust simply mean that the respective behavior is realized with
positive probability. The main feature of reputation equilibria is that after
an initial phase of full cooperation, i.e. (7', R) in the initial periods 1, ..., t—1,
or off the solution path, a phase of mutual mixing starts with 0 < y, < 1
fort<7<mand 0<z, <1lfort<rt<m.

Two important aspects of this mixing phase are the constancy of player
1’s mixing, i.e.

t—r

Ty = forallt<T<m

—s
and the constancy of the product of the y,—values, namely

P r—3S
Ye " Yt+1 - " Ym—-1 = 7 -
1—0p s

Of course, the latter equality does not suffice to actually derive the unique
reputation equilibrium for all generic probability parameters p with 0 < p <
1. This can be done by repeatedly using the formula

(1—pr) y,
p,+(1—p)y,

1—=pry1=

defining player 1’s posterior probability 1—p;1 in period 741 of confronting
a real player 2 after observing (7, R) in period 7 (Engelmann, 1999, solves
such games). The specific solutions will be described after introducing our
experimental design, especially the numerical specification of the parameters
s,r,t,p, and m defining a repeated trust game with incomplete information.

3 Experimental Design

The computerized experiment always relied on

s—l r—§ b= 1 andp— 3 in the main treatment
2y P~ 0in the control treatment

sothat £ =2 and (£)>=£ <p=1 <3 =(£)%2 Weonly vary the number

m of successive periods for playing the trust game by the same two partners.
Whether or not player 2 is actually morally unrestricted is experimentally



uncontrolled. If, for instance, trust is rewarded in the last period m, i.e. if
Ym > 0, this is inconsistent with opportunism.

The m periods of the basic trust game define one (repeated) game.
Each participant played several repeated trust games with changing partners
where the numbers of repetitions were

m=3, 6, 2, 10, 3 and 6.

To inspire learning a participant constantly assumed the role of player 1
or player 2. All participants received the same instructions (see Appendix
A for an English translation) informing them that only % of all players 1
confronted a free to choose—type partner as player 2 whereas % of all players 1
could be sure that 7" is rewarded by R (implemented as a robot strategy).
In each new repeated game it was again randomly decided whether or not
a particular player 1 was matched with a real player or not. In the control
treatment with p = 0 such information was, of course, missing,

A participant was not restricted to pure strategies, but could explicitly
randomize. More specifically, a participant had to specify the probabilities
in percent for his two decision alternatives. Since reputation equilibria at
least partly rely on mixed strategies, one can thus check their qualitative
and quantitative aspects not only populationwise, but also at an individual
level.

For our numerical specification the unique reputation equilibria depend
on m as follows:

m=2: ((N1,Na), (1 = §, E2))
m=3: ((Ty,z2=323=3), (1 =3.92 =%, E3))
m=0: <<T17T27T37T47x5 = %7376 = %)7<R17R27R37y4 - §7y5 = %7E6)
m=10: ((ThT27T37T47T57T67T77T87x9 - %73710 — %)7
5 2
(R1, Ro, R, Ry, R5, Rg, Ry, ys = Y= gyElo))

Independent of m in the range m > 3 the mixing phase of both players
extends over two periods, namely the last two periods for player 1 and the
third and second to last period for player 2.

We did not expect such clear results. Players who engage in randomiza-
tion are likely to do so over more periods. An important qualitative aspect
of reputation equilibria is, however, that after an initial phase of nearly cer-
tain cooperation, its likelihood should drop considerably when the end is
near.



Another interesting qualitative aspect is that behavior in the end phase
does not depend on m when m > 3. Path dependence, e.g. in the sense that
a longer initial phase of cooperation induces more cooperation during the
end phase, would suggest a different result (Giith, Ockenfels, and Wendel,
1993, report such behavior).

A human player 2 may not actually feel free to choose £, but rather
committed to reward 1’s trust. A purely intrinsic obligation to reciprocate
should not depend on m suggesting that a participant, who rewards trust
always or at least mostly with high probability, will do so regardless of the
repetition number m = 2,3,6, or 10.

To exclude unwarranted repeated game effects resulting from playing
repeatedly (repeated) games a participant confronted a new partner in each
(repeated) game. Also indirect reputation effects were prevented by the
matching procedure. More specifically, for each session nine players 1 and
six players 2 were invited and were matched accordingly. The five sessions
of the main treatment thus provide data of altogether 45 players 1 and 30
players 2. Each of the p = 0 sessions of the control-treatment involved six
players 1 and six players 2. A disadvantage of the matching scheme is that
the behavior of two participants cannot be regarded as independent. In a
rigorous statistical sense only the five sessions in the main treatment and the
three sessions in the control treatment qualify as independent observations.
Our statistics that assume individual decisions by different participants as
independent should therefore be considered with care. However, they can
only be wrong in the direction of finding significance where a stricter test
would not. When we do not find significant results a test that takes into
account possible dependences would not either.

4 Behavioral tendencies

Let z4(2) and y(7) denote participant ’s probability of trust (7°), respectively
of reward (R). The mean probability of trust and reward are

Ty = Zl‘t(i)/Nl and y; = Zyt(i)/Nm

where N7 = 45 and Ny = 30 are the numbers of participants playing the
role of player 1 or player 2, respectively. How x; and y; develop over time is
illustrated by Figure 2. Here only the x;—choices of the players 1 confronted
with real players 2 are considered. Since participants play successively re-
peated games with m = 3, 6, 2, 10, 3, and 6 periods, they play altogether



30 periods. A vertical dashed line in Figure 2 indicates the last period of
a (repeated) game. The end or termination effect (x; drops when the last
period of the game is near) is minor only for the first two games. Afterwards
there is always a sharp decline of z¢. A reason for this is suggested by the
development of y;. From the end of the second game on (period 9) players 2
on average reward only rarely in the last period of a (repeated) game.

100

Percentage

0

1 3 5 7 9 M 13 15 17 19 21 23 256 27 29

Period

Figure 2. Average trust— and reward—probabilities per period

Did players 1 confronting a real player 2 behave differently than play-
ers 1 facing a robot strategy? In Figure 3 the (non—)dashed line illustrates
the z4—development of the players 1 confronting a (real partner) robot strat-
egy. On average the dashed line lies above the non—dashed one what can
be attributed to the path dependence (a robot never exploits whereas real
players 2 sometimes do, see the yi—development in Figure 2). However, these
differences are significant only in periods 3, 19, and 21 (Mann—Whitney-U
test, 5%-level).



100
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40 1

=

Real Player

Percentage

) N U N S —
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
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Figure 3: Average trust per period (confronting a real partner or a robot)

Figure 3 gives the number of trust moves 7' (dashed bars) and the num-
ber of those which were not rewarded (solid bars). For p = 1/3 trust is
most often exploited in period 9, i.e. the last period of the second game.
Afterwards such a degree of exploitation is impossible since players 1 were
warned that this might happen. The relative rates of exploited trust in last
period are 50% (50%) in game 1, 72% (57%) in game 2, 50% (80%) in game
3, 88% (33%) in game 4, 82% (50%) in game 5, and 78% (100%) in game 6

for the main treatment (control treatment).
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Number of pure strategies
Number of pure strategies

0 0
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Figure 6: Number of pure strategy choices by players 1 (left) and players 2
(right), p =0

How many players 2 rewarded player 1 even in the last period of a (re-
peated) game is illustrated by Table 1, which distinguishes between reward
(0 < ym < 1) and full reward (ym, = 1). Since each participant played 6
games with 6 different partners the frequency is 0 at least and 6 at most.
Only 2 of the 30 players 2 did never try to exploit a trusting player 1 in the
last period of a game. One of these participants chose full reward in all 30
periods, the other did so except for period 1. All other players 2 yielded
to opportunistic incentives by deviating from full reward y,, = 1 in the last
period of at least three games. The two players 2 who have chosen y,,, = 1 in
(almost) all 30 periods could be viewed as an endogenous increase of p from
1/3top= % + % . 3—20 = g. Players 2 who sometimes reward and sometimes
exploit in the last period of a repeated game are either still experimenting
or variety seeking.

degree of reward frequency of reward
in the last period
0 1 2 3 4 5 6
reward 0 <y, <1) 7 6 6 3 3 0 5
full reward (y, =1) 11 7 7 3 0 0 2

Table 1: Number of players 2 choosing reward in the last period with the
given frequency

How did players 1 react to being exploited? 10 of the 45 players 1
were never exploited before the last period of a game. 10 of the remaining
35 players 1 never trusted again in the same game after being exploited,

12



whereas 25 did. These 25 clearly violate a basic requirement of reputation
equilibria.

player ¢ earnings

man; Y, w max; O0;
1 156 2154 222,75 255 24.35
2 222 249.3 249 273 19.52

Table 2: Actual and equilibrium payoffs

According to Table 2 players 2 on average earned ps = 249.3 and thus
roughly the amount uj = 249 predicted by game theory. The variance of
earnings is smaller than for players 1, both according to o1 > o9 as well
as according to mazx; — ming = 99 > maxry — ming = 51. The deviation
|1 — pi| = 7.35 is also minor. It seems that the payoff losses, due to non-
optimal choices, have been nearly compensated by the additional chances of
cooperation offered by more trustworthy players 2 than those exogenously
induced by p = 1/3.

A strength of our experimental design is that we can test the qualitative
structure of reputation equilibria also on the individual level. We focus on
the main treatment (p = 1/3) and experienced play (games 4,5, and 6). The
high proportion of pure strategies (see Figures 5 and 6) suggest that most
participants are not compromising by mixing. Precisely eight of 45 players
1 and three of 30 players 2 choose a mixed strategy in more than 1/3 of the
periods, whereas the others rarely mix.

Eight of the players 1 always choose full trust (z; = 1) as long as they
are not exploited. Two of them are never exploited and three of them
switch after exploitation to no trust (z; = 0) for the remainder of the game.
Another eight players 1 choose full trust unless they have been exploited or
the last period of the game is reached. Two players 1 always choose no trust
(gct = 0)

A relatively large proportion of players 2, namely 18 of 30 choose full
reward (y; = 1) until at least the third to last period in all the three games
considered. Seven of these always choose full reward until the second to
last period and no reward (y; = 0) in the last period. Another two always
choose full reward. One player 2 always chooses no reward (y; = 0). Hence
on an individual level, the share of players 2 whose behavior is close to the
equilibrium prediction is larger than that of players 1.

13



5 On reputation formation

Game theoretically, except for m = 2, players should start with full trust
(z} = 1) which should be partially rewarded (m < 3) or fully rewarded
(m > 3). Only towards the end, i.e. in the last three periods, trust and
reward of trust should sharply decline.

A rudimentary aspect of such behavior is the monotonicity in the sense
that neither x; nor y; should increase with ¢. In the main treatment (p =
1/3) for player 1 the proportion of monotone choices is initially below 50%,
but increases afterwards (see Table 4). For players 2 it is relatively high
from the beginning. The share of always monotonically choosing players 1
and 2 is, however, very low (22.2% and 30.0%, respectively). The results for
the control treatment (p = 0) are similar.

monotonicity p=1/3 p=0
player 1 player 2 player 1 player 2

game 1 (3 periods) 42.2 63.3 61.1 66.7
game 2 (6 periods) 33.3 60.0 38.9 61.1
game 3 (2 periods) 88.9 96.7 83.3 94.4
game 4 (10 periods) 55.6 60.0 61.1 61.1
game 5 (3 periods) 71.1 76.6 88.9 83.3
game 6 (6 periods) 62.2 80.0 72.2 72.2
all games (30 periods) 22.2 30.0 27.8 33.3

Table 3: Percentage of monotone (decreasing) strategies by player types
and treatment

To check for experience effects one can compare the 15 and the 5 as
well as the 2" and the 6" repeated game extending over 3 and 6 periods,
respectively. In Figure 7 (left) we have confronted the z;—development of
the 1t game (solid squares) with the one of the 5 game (hollow squares)
in the upper part and the y;—development in the lower part. The analogous
comparison of the 2"¢ and 6" game can be found in Figure 7 (right). While
average trust— and reward rates fall (almost) monotonically in the 5 and 6"
game, this is not the case for the inexperienced participants in the 1%¢ and 2"¢
game. Learning shifts average behavior towards the normative benchmark.
For m = 6 the learning effects (players 1 learn to trust less and players 2
to exploit when the end is near) shift behavior into the direction of rational
behavior. Average trust is initially nearly constant (z; ~ .8 for t =1,2,3,4)

14



before it drops to xg ~ .4. Similarly there is a sharp decline from y; ~ .9 for
t=1,2,3,4 to yg < .2.

100 100
90 90
80 80 —D;—D——DW
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60 — 60 N
o ./ o gma o
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Figure 7: Average trust (top) and reward (bottom) rates for games with 3

(left) and 6 (right) periods

Table 3 gives the results of a Wilcoxon—test comparing for each individual
subject the decisions in corresponding periods in different games of equal
length. The learning from earlier to later games towards the normative
benchmark is significant (5%-level) for the first period and both types of
players, i.e. trust and reward increase significantly from game 1 to game 5
and from game 2 to game 6. For the last period of the 6 period games the
opposite effect is significant for both types of players.
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games games 1 and 5
period 1 2 3
player 1 Z -2.750 -0.679 -1.391
sign. p  .006* 497 .164
player 2 Z -3.158 -2.432 -1.862
sign. p  .002* .015* .063
games games 2 and 6
period 1 2 3 4 5 6
player 1 Z -2.301 -2.159 -2.837 -1.426 -1.314 -2.626
sign. p  .021* .031* .005* 154 189 .009*
player 2 Z -2.812 -1.869 -1.051 -0.406 -1.647 -2.014
sign. p  .005* .062 .293 .684 100 .044*

Table 4: Wilcoxon—test for single periods in games of equal length
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Figure 8: Observed (boxes), equilibrium (triangles), and conditionally
optimal behavior (crosses) for games 4, 5, and 6 — player 1 (top) and

When testing reputation formation it seems reasonable to focus on expe-
rienced behavior. We therefore concentrate in the following on the 4"
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and 6" game with m = 10, 3, respectively 6 periods. For all these games
Figure 8 confronts the observed average with the equilibrium and the con-
ditionally optimal behavior for the given previous path.

In view of the extreme predictions of (conditional) optimality, e.g. in
the sense of ry = 1 = y; for the early periods ¢ of a game, it is clear that
the empirical distribution differs significantly in the early periods as well as
in the last period ¢t = m where 3, = 0. We therefore restrict the analysis
in Table 5 to the periods with non-trivial conditional best replies i.e. last
and second to last period for player 1 and second and third to last period
for player 2. We conduct the analysis both including (incl.) all players and
excluding (excl.) those players whose conditional best reply is z; = 0 or
1y = 0, since they can deviate only in one direction.

Tt Yt
Game Period incl. excl. incl. excl.
] —4.778 —4.472
p = .000 p = .000
4 9 —4.757 —4.505 —3.982 —3.455
p = .000 p = .000 p = .000 p =.001
10 —2.527 —1.322
p=.012 p = .186
1 —2.535 —2.535
p=.011 p=.011
5 9 —4.725 —4.219 —4.575 —4.463
p = .000 p = .000 p = .000 p = .000
3 —1.987 —.366
p=.047 p=.714
4 —4.410 —4.041
p = .000 p = .000
6 5 —3.752 —3.288 —3.681 —3.194
p = .000 p =.001 p = .000 p =.001
6 —1.900 —.138
p = .057 p = .891

Table 5: Wilcoxon—test of actual decisions against conditionally best replies

According to Table 5 players 1 are significantly more trusting than pre-
dicted in the second to last period. Also, players 2 are significantly more
rewarding than predicted in both the second and third to last period. In the
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last period players 1 are significantly more trusting than predicted in games
4 and 5. If those players 1 for whom the conditional best reply is z,, = 0
are excluded from the analysis the difference between actual decisions and
conditional best replies almost completely disappears.

Comparing individual trust and reward rates in the control and the main
treatment, i.e. for p = 0 and p = 1/3, for the single periods, we find that
reward rates never differ significantly. The trust rates are significantly higher
(Mann—Whitney—U test, 5%-level) for p = 1/3 than for p = 0 only in periods
2, 3, 8, and 24, if we include all players 1. If we include only those players
1 with a real partner the same holds for periods 2, 3, 10, and 24. Appendix
B compares the average behavioral trends for p = 1/3 (black squares) with
those for p = 0 (grey triangles) in all six successive games. Except for
game 1 where p = 0 induces less trust and more (voluntary) rewarding the
differences appear as minor. Thus compared to the theoretical prediction
the effect of robot strategies is surprisingly small.

To test the qualitative structure of the basic feature of rational play,
namely initial constant trust and reward followed by monotone decreasing,
we assume a simple linear structure, i.e.

fort<t*<m

T
o= {z—a(t—t*) for t* <t <m

wherex > 0,0<a< and
m — t*
_ Yy fort <t<m
T\ g-8t-1) fori<t<m
wherey > 0,0<8< y~
m—ti

We first estimate for given ¢* and ¢ the coeflicients (z,a) and (y, ), re-
spectively and then search for the values t* and ¢ for which the explained
variance of the individual decisions is maximal. The results (7, o, t*) and

(y,8,t) are displayed in Table 6.
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game 1 (3 periods) 2 (6 periods) 3 (2 periods)

p=0 T,at 4519 1275 1 7392 1337 3 2222 694 1
p=1/3 Z,a,t* 5520 -237 1 6448 -142 2 4316 878 1
p= 7,0,t 7278 14.44 2 80.99 1146 3 7944 47.78 1
p=1/3 7,8,t 51.30 6.30 2 7845 4661 5 73.67 4560 1
' game 4 (10 periods) 5 (3 periods) 6 (6 periods)
p= z,a,t* 7656 13.76 7 8491 3944 1 79.64 3095 4
p=1/3 Z,a,t* 81.46 1993 8 73.13 2896 2 81.74 19.89 4
p=0 3,81 8407 4519 9 8648 2500 1 91.16 29.92 4
p=1/3 7,8, 86.72 2291 8 8267 5800 2 90.56 3514 4

Table 6: Optimal regression parameters t* and ¢

Experienced players (games 4-6) conform qualitatively to the equilib-
rium prediction in the sense that their decisions are best approximated by a
constant trust or reward rate until the second or third to last period followed
by a substantial decrease. For players 1 the decrease of trust rates starts
earlier (game 4 and 5) or is larger (game 6) for p = 0 than for p = 1/3.

6 Conclusions

Our experiment shows that, although individual decisions are quite far from
the equilibrium prediction, on an aggregate level the data are quite well ex-
plained by reputation formation. In particular individual mixed strategies
are far from equilibrium mixing. Players on average mix less often than pre-
dicted and rather in periods when they should not. This is no surprise given
the complicated nature of the equilibria. Also, often choices are not rational
in view of the given information. On the other hand, important features of
the equilibrium prediction are reflected by the aggregate data. Given some
experience, the aggregate trust and reward rates are monotonically decreas-
ing, in particular there is a clear endgame effect. Furthermore, the length of
the game does not have a significant influence on the play in the last three
periods, thus there is no history dependence, except for that players 1 react
to being exploited. Also for the control treatment aggregate decisions con-
form qualitatively to the equilibrium prediction (for a positive endogenous
probability of rewarding, i.e. of intrinsically fair players 2). Hence by intro-
ducing the fair robot strategies we have not altered the nature of the game
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but have just increased the subjective probability of meeting a fair player.
The combination of the assumption of some intrinsic fairness and reputation
formation thus seems to explain also the decisions in games even without
fair robot strategies. The small difference between the main treatment and
the control treatment (confirming the results of Andreoni and Miller, 1993)
indicates that introducing fair robot players either leads to some crowding
out of intrinsic fairness or to decreasing trust in it.

Overall our results are well in line with those of Andreoni and Miller
(1993), Neral and Ochs (1992), Camerer and Weigelt (1988), and McK-
elvey and Palfrey (1992). They also find support for reputation formation,
although Neral and Ochs observe that changes in the parameters induce
changes in behavior not consistent with the equilibrium prediction. As we
do they all find a clear endgame effect and clear evidence of learning in the
direction of the equilibrium prediction, where learning appears to be rela-
tively fast in our study. Also, subjects seem to have some homemade prior of
altruism or fairness which is empirically justified. One of the aspects where
our experiment differs is that we allow for mixed strategies on an individual
level and find that the latter does not conform to the equilibrium prediction.
Thus the conclusion that the reputation equilibrium yields a bad prediction
for individual behavior is strengthened.
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A Appendix (Translated instructions)

[The part in parentheses is missing in the instructions for the control treat-
ment.]

Welcome to our experiment. Please read the following instructions care-
fully. If there is anything that you do not understand either now or during
the experiment, please do not ask publicly but raise your hand. We will then
answer your question in private. Please stop communicating with other par-
ticipants now for the remainder of the experiment. Otherwise you will not
receive a payment.

The experiment consists of six rounds. Each round consists of several
periods. In each period the same decisions are to be made. At the beginning
of each round you will be informed about the number of periods in this
round. In all periods of one round you will meet the same partner. However,
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in different rounds you will always meet different partners. Hence you will
never interact with someone with whom you have interacted in an earlier
round. No participant will get to know any decision made by his current
partner in previous rounds. Furthermore, you will never meet someone, who
has met someone who previously had interacted with one of your previous
partners etc. Thus whatever you do in one round can not influence later
interactions, not even indirectly.

There are two different roles, participant X and participant Y. The roles
will be assigned randomly at the beginning and will be constant for the
whole experiment, i.e. you will either be a participant X in all rounds or a
participant Y. You will be informed about your role before the start of the
first round.

Participant X has to decide in each period between actions T and N.
Participant Y chooses simultaneously between alternatives R and E. The
payoffs for both participants are shown in the following table. Each cell
represents a constellation of decisions of X and Y. The entries are the pay-
ments for X and Y (in ECU- Experimental Currency Unit). At the end of
the experiment the sum of your earnings in ECU will be converted and paid
in DM. 1 ECU corresponds to 0.10 DM.

Participant X chooses
N T
Payment X | Payment Y | Payment X | Payment Y
Participant Y | R 6 6 9 9
chooses E 6 6 0 12

Verbally speaking this means: If participant X chooses alternative N,
then the decision of the other participant is irrelevant and both receive a
payment of 6 ECU. If participant X chooses alternative 1 and participant Y
chooses alternative R then both receive a payment of 9 ECU. If participant
X chooses alternative T and participant Y chooses alternative E then par-
ticipant Y receives 12 ECU, but participant X nothing. Since decisions are
made simultaneously, a participant will only learn the decision of the other
participant after making the own decision. Participant X will only get to
know the decision of participant Y if he has chosen T.

As noted before, each participant will be assigned a new partner in each
round but keeps his role. [The following is to consider. For each participant
X, at the beginning of each round a random draw determines with proba-
bility 1/3 that independent of the decisions of other participants a choice
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of T will be followed by R. With the remaining probability 2/3 he will be
assigned a Y-partner who is completely free to choose between E and R. He
will not be informed about the result of this random draw. However, if a
participant X receives the reply E in a period after a choice of T, he is sure
that he is confronted by a freely deciding Y-partner. The random draw is
independent for each round. There is no such mechanism for participant Y.]

You can delegate the decisions that you have to make to a random device.
For example as participant X, instead of deciding definitely for T or N, you
can choose the probabilities for selecting T or N. In order to do this you
fill in the probabilities in the corresponding fields on the screen. These
have to add to 100%, of course. The computer will then select one of the
possible decisions according to the probabilities you have chosen. The other
participant will only be informed about the decision selected by the computer
but not about the chosen probabilities. If you definitely want to decide for
T, choose 100% for T and 0% for N and vice versa 0% for T and 100% for N
in case of a definite decision for N. Participant Y can delegate his decision
between R and E to the random device in an analogous way.

B Appendix (All six successive games)
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