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Semiparametric lack-of-fit tests in an additive hazard

regression model
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Abstract

In the semiparametric additive hazard regression model of McKeague and
Sasieni (1994), the hazard contributions of some covariates are allowed to change
over time, without parametric restrictions (Aalen model), while the contributions
of other covariates are assumed to be constant. In this paper, we develop tests
that help to decide which of the covariate contributions indeed change over time.
The remaining covariates may be modelled with constant hazard coefficients, thus
reducing the number of curves that have to be estimated nonparametrically. Sev-
eral bootstrap tests are proposed. The behavior of the tests is investigated in a
simulation study. In a practical example, the tests consistently identify covariates

with constant and with changing hazard contributions.
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1 Introduction

In exploring time-to-event data with covariates, the nonparametric additive hazard
model of Aalen (1980) has received increasing attention in recent years. The major
attraction is that the regression coefficients are modelled as curves over time, without
parametric restrictions. They are estimated nonparametrically. However, this flexibility
comes at a high price: the nonparametric curve estimates for the regression coefficients
tend to be highly variable, and even with reasonably large sample sizes only a few
coefficients can be fitted in any one model.

In the current paper, we introduce, for the first time, quantifiable lack-of-fit tests
that help to decide whether hazard contributions of (baseline) covariates are indeed
changing over time. If not, the corresponding regression coefficients could be fitted as
constants, resulting in a substantial reduction in the variability of the estimates.

The traditional model choice problem, whether or not a covariate should be included
in an Aalen model at all, has been widely investigated. Tests have been developed,
among others, by Aalen (1980, 1989), and McKeague and Sasieni (1994); see Andersen
et al. (1993) for an overview. However, it is important to distinguish covariates with
hazard contributions that change over time from those with significant, but constant
hazard contributions. The traditional model selection tests are not suited for this task
and can not be easily adapted. They rely on asymptotic distributions to calculate P-
values, and the corresponding necessary asymptotic distributions for our test problem
(regression coefficient is constant versus a nonparametric alternative) are not available.

In our tests, P-values are obtained through bootstrap resampling. We show, in a
simulation study, that the bootstrap tests hold the nominal significance level and are
sensitive in detecting alternatives for the considered models. In a practical example,
the influence of four covariates on the length of stay in nursing homes is modelled.
All tests consistently indicate that the hazard contribution of two of the covariates is
approximately constant, while the other two have a short-term effect only.

We now specify the data structure, model, and test problem in detail.

Data. We consider right-censored time-to-event data. The observations are triplets
(ti,6i,2;), i=1,...,n, where t; denotes the observed survival time of the i* individual,
z; is the vector of covariate values, and ¢§; denotes the censoring indicator.

The observed survival time of the i** individual is given by ¢; = min(y;, ¢;), where
y; denotes the uncensored survival time, generated from the conditional distribution
y|zi, and ¢; denotes the random censoring time. The censoring indicator takes the value
0; = 1 when t; = y;, and ¢; = 0, otherwise. Throughout the paper, we assume that the
censoring time c is independent of the covariates, and of the conditional distribution of



event times, y|z.

Model. We assume that hazard for an individual with covariate values z = (u/, z')’,
at time ¢, is determined by the semiparametric additive model of McKeague and
Sasieni (1994),

At|z) = a(t)u+ B'z. (1)
The unknown hazard regression coefficient vectors a(t) = (ag(t),... ,ap(t))l and
B = (Bps1,---,Bprq) express the contributions of the covariate subvectors u € IRPT!

and z € IR?, respectively. The subvector u includes all covariates with potentially non-
constant hazard contributions. We define u = (1,u1,...,u,)’, so that the “baseline
hazard” component ay(t) is estimated nonparametrically.

The hazard model includes both the additive hazard model by Aalen (1989),
At|lu) = a(t)'u, and the parametric additive hazard model A(t|z) = ag(t) + Bz,
investigated by Lin and Ying (1994).

McKeague and Sasieni (1994) derived semiparametric likelihood estimates for 3, and
for the vector of cumulative hazard coefficient functions, A(t) = fot a(s)ds, the integral
defined componentwise. These estimates are described in more detail in our Section 2.
They will be used throughout the paper, whenever estimates for the cumulative hazard
coefficients A(t) and fSt, for the cumulative hazard function, A(t|z) = f(f A(s)ds =
A(t)'u + tB'z, or for the survival function, S(t|z) = exp{—A(t|z)}, are needed.

Test problem. We are testing the hypothesis that certain hazard coefficients in the
model are constant, Hy : o,(t) = B, for some constant B, and for all t > 0, versus
a nonparametric alternative that «,(t) is not constant. More generally, we suggest

methods for testing composite hypotheses,

Hy: ag(t) = Bk (constant), for k =p—r,... ,p, forall t > 0,
H, : at least one of the coefficients ay(t), k=p—r,...,p, is not constant,

within the hazard regression model \(t|2) = ao(t) + Y p_; ke (t)z + Xoh_) 11 Bk

Discussion. McKeague and Sasieni (1994) suggest an intuitive test for the simple
hypothesis Hy : o,(t) = [, based on pointwise confidence intervals. They fit a full
Aalen model, and plot the nonparametric estimates Ap(t) for the covariate of interest
versus the corresponding parametric estimates Bpt. Pointwise asymptotic confidence
intervals for A,(t) are computed using the asymptotic distribution of A,(t). If the
straight line Bpt leaves the series of pointwise confidence intervals around Ap at any

time ¢, the parametric model is rejected.



The major advantage of this visual test is that we can see immediately where the
straight line estimate leaves the confidence intervals around Ap(t). However, the pro-
posed procedure has serious weaknesses: (i) the coverage probability of the confidence
“bands” formed by the pointwise confidence intervals is unknown, and may be consid-
erably lower than the stated coverage of the confidence intervals; (ii) the asymptotic
distribution of Ak(t) may not adequately reflect the variability of the finite-sample
distribution; and (iii) the sampling error due to estimating S is correlated with the
estimation error in Ay (t), and should be taken into account for the testing procedure.
Finally, centering the confidence interval around A (t) may neglect the estimation bias.

Our bootstrap tests overcome limitations (i)—(iii) of the McKeague and Sasieni (1994)
confidence intervals. The tests are based on different measures of distance between
curves, in particular the supremum norm, Ly norm, and a weighted L; norm.
Visual decision aids that are similar to the pointwise confidence intervals proposed
by McKeague and Sasieni (1994) can be constructed easily from our supremum test
statistics, with the advantage that we provide true confidence bands, with simultaneous
coverage.

Additionally, we propose model checking procedures based on the survival function
S(t), and the cumulative hazard A(t). These tests can be used to check several compo-
nents simultaneously, without incurring multiple comparisons problems.

P-values are calculated through bootstrap resampling. While bootstrap in classical
regression is well-investigated, properties of bootstrap procedures for censored data are
mostly unknown. However, the conditional bootstrap that we used to calculate the
P-values provides acceptable results in our simulation study.

Related problems in classical regression have been investigated by Hardle and
Mammen (1993), and Horowitz and Héardle (1994). They propose tests for the ap-
propriateness of a parametric fit versus a nonparametric regression estimate. Hardle
and Mammen (1993) show that the convergence of the distribution of their test statistic

to its asymptotic limit is slow, and bootstrap provides a better adjustment of P-values.

In the following section, we shortly describe estimation in the semiparametric hazard
model (1). Our test statistics are introduced in Section 3. In Section 4, the bootstrap
procedure that we use for calculating P-values is described in detail. Finite sample
properties of the tests are illustrated in a simulation study in Section 5, and in Section 6,

the tests are applied to a real-life data set on the length of stay in nursing homes.



2 Estimation in the semiparametric hazard model

Semiparametric likelihood estimates for the cumulative hazard coefficient A(t) and for g
were derived by McKeague and Sasieni (1994). Since these estimates are central to our
tests, we include a short summary here.

The likelihood function for «(t) and S is given by

n

teu5) =3 {atog n(e) - [ Tusgrttyar}. o)

i=1
where \;(t) = \i(t|z;) = a(t)u;+8'z;, the vectors u € IRP™ and x € IR? consist of the
covariates of the i individual with changing and with constant hazard contributions,
respectively, and I, >4 is the indicator function of the event #; > ¢.
The likelihood function (2) is maximized by the values A(¢) and S that solve the

equation system

Alt) = /O t(U’WU)’l(U’WdN—U’WXﬁds), (3)

B = ( / X’Hth) h / X'HdN, (4)

where U = U(t) denotes the n x (p+ 1) matrix with the i** row equal to Iy, >qu}; this
means, at any time point ¢, the row is zero for individuals that are not in the risk
set at time ¢. Similarly, X = X (¢) is the n X ¢ matrix for the covariate components
corresponding to 3, with rows Ij,>q xj; W = W(t) = diag M@} isan n x n
diagonal matrix; N(t) = (N(t), ..., N,(t))" denotes the n-dimensional counting process
corresponding to our sample, with the component N;(t) = Ij;<¢5,—1) jumping from zero
to one at event time ¢;; and matrix H = H(t) = W — WU{U'WU) 'U'W.

In the current paper, we estimate A(t) and (3 in four steps:

Step 1: Fit a full Aalen model with all covariates, A(t|z) = ap(t)'z. The resulting
estimates, Ag(t), of the cumulative hazard coefficients Ap(t) = fot ap(s)ds are
step functions, with jumps in the event times.

Step 2: Use a local polynomial smoother on the pairs (ti,le(ti)) , and estimate the
hazard coefficient vector ap(t) as derivative.

Step 3: Calculate estimates (t|z) and W(t) = diag{j\i(t)}_l using the estimates of
ap(t) obtained in Step 2. For simplicity, we calculate W(t) only at event points,
and define the components of W(t) as left-continuous step functions between even

points.



Step 4: In (3) and (4), replace W by W, and solve for 3 and A(t). These are the final
estimates 3 and A(t) for 8 and A(t), respectively.

Note that the components of the resulting /Al(t) are step functions in ¢, with jumps
at exactly the event times ¢;. In Step 4, the integrals in formulae (3) and (4) resolve
into sums, since U, X and W are step functions with jumps at the event points.

Remark 2.1 The estimation algorithm is a slight modification of Method 1 in
McKeague and Sasieni (1994, Section 2.3), in that we use a local linear fit instead
of kernel smoothing. Note that under the null hypothesis, one or several components of
Ap(t) are straight lines, and we expect their estimates to be close to straight lines as well.
The design points, in our case the event times t;, are far from equidistant. By choosing a
local linear fit, we ensure that whatever “linearity” appears in the estimates Ap (t) is not
disturbed by smoothing. In terms of asymptotic properties, local linear smoothers tend to
have a lower integrated mean squared error than kernel estimates under non-equidistant

design.

Remark 2.2 McKeague and Sasieni (1994) have shown that the above estimates for
and A(t) are efficient, the distribution of n~ */2(8 — B) converges to a q-variate normal
distribution with mean zero, and that n="/?(A(t) — A(t)) converges in distribution to a
p-variate Gaussian process with mean zero. They provided consistent estimates for the

covariance matriz and the covariance process, respectively, of the limiting distributions.

3 Test statistics

For the sake of brevity, let us consider the simple null hypothesis Hy : ,(t) = 8,. This
means, we are interested in one given covariate, z,, and whether the influence of this
covariate upon the hazard is additive with a constant coefficient. The remaining coef-
ficients are either estimated nonparametrically, or considered constant. We introduce
three classes of tests which are based on the cumulative hazard coefficient A,(t); on
the cumulative hazard function A(t); and on the survival function S(t), respectively.
P-values are calculated through bootstrap resampling, described in Section 4.

Tests TA: The first class of tests focusses on the cumulative hazard coefficient

A, (t), over a certain time interval of interest, [¢, ).

A ‘Ap(ti) - Bpti
T, e = mMax : (5)

max

~

ESUSE [ Ay (L)



= 3 () - Gt)

. . \2
T4 (Ap(ti) - 5pti) (6)
T t<t; <t var Ap(ti) |

All three test statistics measure the difference between A, (t) and f,t, the likelihood
estimates of the cumulative hazard coefficient of the covariate z, under the alternative
and under the null hypothesis, respectively, at the event times ¢;. The calculation of
likelihood estimates is described in Section 2. The nonparametric estimate /Alp(t) is
obtained by fitting the model A(t[2) = ao(t) + >y aw(t)zx + X4_, 1 Brzk, While By
is estimated in A(t[2) = ao(t) + SP_1 ap(t) 2k + > k—p Brzr - In the notation of (1),
we are splitting z into the subvectors u = (1, 21, ... , 2,) and = = (2p41, ..., 2) When
estimating A, (), and into subvectors u = (1, 21,... ,2,-1) and x = (2,, ... , z,)" in order
to estimate (,. Although the hazard models under H, and H, differ only in the one
covariate z,, the estimates for all the hazard coefficients are affected. Nevertheless, the
tests in class T4 include only the coefficients of z,.

The test statistics (5) and (6) are standardized with var A,(t;), an estimate of the
variance of Ap(ti). We obtain the variance estimates through bootstrap, described in
detail in Section 4.

The interval [¢, ¢] is to be defined by the user. Typically, ¢ should be chosen small
enough to avoid excessive variation of the nonparametric estimate /Al(t) for large values
of t, due to a small risk set. The natural choice for the lower boundary seems to be ¢ = 0.
However, depending on the computational implementation, it may be advisable to drop
the first few event points and choose some small £ > 0 in order to avoid boundary effects
both in the nonparametric estimate of A(t) and for the bootstrap variance estimates
close to t = 0.

Test statistic (5) uses a (weighted) supremum norm to measure the distance between
the curves A,(t) and B,t. Therefore, this test should be sensitive to large deviations
from linearity that occur for a short period of time. The other two tests build on a
weighted Lo norm, and measure the distance between flp(t) and Bpt cumulatively. The
summation over the event points in [t, ?] corresponds to a weighting with the density
of event times. Standardization in (5) and (6) lowers the influence of late events, and
of any other events with large variability in the estimate of A,(%).



Remark 3.1 The test T4  when used with a rejection region of |TA | > 1.96, is

max

related to the visual test procedure suggested by McKeague and Sasieni (1994), which is

based on asymptotic confidence intervals for A;(t). While the confidence intervals are
A

max

strap estimates of the finite-sample variances. If a confidence band around the line Bt
15 desired as a visual decision aid, we suggest to plot the intervals [Bt; :I:(jo,05\/\7a\rfi(ti),

at all event times t;. Here, §y.o5 denotes the bootstrap estimate of the 95th percentile of
the T4 distribution.

max

constructed with estimates of the asymptotic variance of fli(t), the T test uses boot-

Tests T»: Test statistics based on the cumulative hazard function A(t|z) are
defined as follows:

‘A(t,|zz, Ha) — A(t,|zz, H())‘

T = max =
VRt Atz H,)

AT <<t

Y

= Y (Rl Ho) — Az Ho))

t<t; <t

~ ~ 2
(A(tz|zz, Ha) — A(tZ‘ZZ, Ho))
\7a\r [A\(ti‘zi;Ha) -

TS =

t<t; <t

Here, A(t |z; H,) and A(t |z; Hy) are the estimates of the cumulative hazard function
at time ¢, given covariates z, under the alternative H, and under the null hypothesis Hy,
respectively. In the simple test problem, subvectors u and x are of dimension p and ¢+1
under the null hypothesis, and of dimension p+1 and ¢ under the alternative. Again,
var A(t| z; H,) denotes bootstrap estimate of the variance of A(t] z; H,).

Tests T9: The test statistics in class T are based on the survival function S(t|z),

[S(tl2i; Ha) = S(tils; Ho)|
TS

mazx

= max_

t<t; <t \/\7a\r S’(ti‘zi; H,)

J

5= 3 (Sthle Ho) - 86l H))

t<t; <t



(S(tlz H) = (ke H))'

T = -
i @S(tdzi;Ha)

t<t; <t

Note that all test statistics in the classes T* and T° can easily be extended to
test hypothesis on several covariates simultaneously, by estimating A and S under the
appropriate hypotheses. For the T® and T¥ tests, summation over event times now
corresponds to a weighting with respect to the joint density of event times and covariates.

[
max

In all three classes, the test statistics T can be expected to suffer from the high
variability of the nonparametric estimates fl(t), more so than the test statistics based on
the Lo-norm, since the supremum distance is particularly sensitive to spurious bumps in
the nonparametric curve estimates. In our simulation study, we include modifications
of the T .. statistics where the coefficient estimates fl(t) are replaced by smoothed

versions, fl(t; h), designed to decrease the variability. The corresponding test statistics
will be denoted by T indicating the use of a global bandwidth .

max,h’

4 Bootstrap sampling

We obtain P-values for the proposed test statistics through bootstrap resampling. There
are several ways to draw bootstrap samples from censored data. For an overview we refer
to Burr (1994) and Davison and Hinkley (1997). In the current paper, we use “paramet-
ric bootstrap”, where bootstrap samples are drawn from estimates of the conditional
distributions of y and of ¢, given the observed pairs (z;,9;), i =1,...n.

Let G(t) denote the distribution function of the censoring times, ¢;. We generate a

bootstrap sample, (tf, 67, 2;), i =1,...n, in three steps:

Step 1: For each z;, ¢« = 1,...n, draw one vy’ from an estimate of the condi-
tional distribution function of the event times, F(t|z) = 1 — exp {—/AX(t|z,)}
In our implementation, the estimate F'(t|z;) is defined as A(t|z) = A(t|z, Hy) =
fl(t)' u; + t8'z; at the event times, and as a linear interpolation for time points ¢
between events. The parameters A(t) and § are estimated under the null hypoth-
esis model. Sometimes, the resulting F(t|z;) is not a valid distribution function.
In this case, we project the estimate onto the space of distribution functions.
Usually, this means that, for any given z;, the final estimate F' (t|2;) is forced to

be monotonously non-decreasing.



Step 2: If §; =0, set ¢; = ¢;. If ; = 1, generate ¢ from the conditional distribution

Gltle > t;) = Gft);i(tl)

i)

where G(t) is the Kaplan-Meier estimate of the censoring distribution G(¢).

Step 3: Set tf = min(y}, ¢f). Set & =1 if tf =y}, and §7 = 0, else.

This approach is related to one of the resampling methods suggested in Davison and
Hinkley (1997, page 351) for Cox’s proportional hazards model.

P-values for a test statistic T are calculated as follows. Let B denote the number of
bootstrap samples. Let T* = T ((£;°, 6, 21), ..., (6%, 62%, 2,)) denote the value of the
test statistic T computed with the b* bootstrap sample, {(¢;°,6:%,2;), i=1,...,n},
and s = T((tl,él,zl), s, (tn,én,zn)) the value of T applied to the original sample.
Then, bootstrap P-values are obtained as empirical quantiles of the sample

{T* b=1,...,B}, i e,

B
P(T > s) Z b
b:

For a general discussion of bootstrap P-values, we refer to Shao and Tu (1995, Chap-
ter 3).

In defining the test statistics T ,, and T, we used bootstrap estimates of variances.

The variance of A,(t) is estimated by
1 o 1 o i
dar A,(t) = > (A;b(t) -5 ZA;;b(t)) .
b=1 b=1

This same variance estimate is used as well in the bootstrap statistics T*®, in order to
avoid the computational burden of double bootstrap. The variance estimates for A(t|z)
and for S(t|z) are defined accordingly.

5 Simulation study

The aim of the simulation study is: (a) to determine how well the proposed test proce-
dures hold the nominal significance level; (b) to compare the power of the tests under
various alternatives; and (c) to investigate the effect of smoothing on the tests T?,,,-

All simulations have the following parameters in common:

10



e For each model, the simulation is based on N = 500 samples of size n = 250. For
each of the N “data” samples, B = 500 bootstrap samples are drawn to calculate

P-values and variance estimates.

e The covariate values z;, © = 1... ,n are generated, independently, from a uniform
U(—0.5,0.5) distribution. In models with two covariates, the components are
independent, U(—0.5,0.5).

e The censoring distribution is exponential with A = 0.05, with end point censoring

at t = 5. The censoring times are independent of covariate values.

e The event times are generated, independently, from the conditional distribution
F(t|z;) =1 —exp {—A(t|z;)}, where A is given by the underlying hazard model.

e The “interval of interest” for the test statisticsis 0.25 =t <t < t = 3.

We investigate three basic hazard models, in which covariate z; has a constant effect,
a short-term effect, and a delayed impact effect on the hazard. Each of the three base
models is run with one and with two covariates, resulting in a total of six models. In
each case, we are testing the hypotheses Hy : «i(t) = 1 versus H, : «i(t) is not
constant. In models with two covariates, the second covariate, zo, is introduced as a
nuisance parameter; the hazard function does not depend on z,. A description of the

hazard models follows.

Constant effect model, one covariate. With one covariate, the hazard function of the
constant effect model is given by A(t|z) = ap(t) + 1 (t)z, with

ag(t) =0.4, and oy(t) =0.4, forallt>D0. (7)

Note that for the constant effect model, the null hypothesis, Hy : a4 (t) = f, is true,
since the hazard coefficient a4 (t) = 0.4 is constant.

Figure 1 illustrates the constant effects model. In panel (a), both the cumulative
baseline hazard, Ay(t), and the cumulative hazard coefficient, A;(t), are plotted. The
two lines coincide. Panel (b) shows one dataset of size n = 250, generated from the
constant effects model. The points (¢;, z;) are marked “+” when 6; = 1 (event), and
“x” when ¢; = 0 (censored). Note that the hazard is three times higher for observations
with z = 0.5 than for observations with z = —0.5, although this is difficult to detect
from the visual impression of the sample.

Panels (c) and (d) describe how the cumulative hazard, A(t|z), and the conditional

cumulative survival function, S(t|z), respectively, behave for different covariate values.

11



(a) Constant effect: A(t) (b) Event (+) and Censoring (x) times

2.0

<
S XX g
wn
) 0« %
— é S b X X X §
€0 o “
< < 8o X
5 Vaai X X ¥
3 % %
0
S ° < X % :
- X
o e X X X o X x X
= T
0 1 2 3 4 5 0 1 2 3 4 5
Time Time
(c) Cumulative Hazard (d) Survival Function
o
(3]
---- z=05
— [ee)
% z=0.0 s
N o - z=05
Ty E
£ e,
= [S) o
e -
pm’
(s}
o Q
o T o
0 1 2 3 4 5 0 1 2 3 4 5
Time Time

Figure 1: Constant effect model. (a) Cumulative baseline hazard Ay(t) and cumulative hazard
coefficient A;(t) (identical); (b) event (4) and censoring times (x) for one n = 250 dataset;
(¢) cumulative hazard, and (d) survival function for the minimum (z = —0.5), mean (z = 0),
and maximum (z = 0.5) of covariate values.

The solid line corresponds to z = 0, the mean covariate value, and the dashed and dotted
lines display A and S for the minimal (z = —0.5) and maximal (z = 0.5) covariate values.
The tests T* and T are based on estimates of these functions.

Figure 2 displays estimates obtained under both the null hypothesis, A(t|z) = ag(t)+
b1z, and the alternative, \(¢|z) = ag(t) + @1 (t)z. In the upper row, the estimates of the
cumulative hazard coefficients Ay(t) and A;(¢) under Hy (dotted lines) and under H,
(dashed lines) are plotted along with the true functions (solid lines). The bottom row
shows estimates of the cumulative hazard A(¢|z) and of the survival function S(t|z),
for covariate values z = —0.5, z = 0 and z = 0.5. All the estimates are computed
with the sample displayed in Figure 1 (b). Note that the estimate of A;(t) exhibits
much higher variability than the estimate of the baseline cumulative hazard, Agq(t).
Clearly, A;(t) = 0.4¢ is estimated better under H, than under H,. Our tests measure
the difference between the estimated curves under Hy and under H, over the interval
0.25 <t < 3.
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(a) Estimates of A O
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Figure 2: Estimates in the constant effect model: (a) and (b) show Ay and A; (solid lines)
and their estimates under Hy and under Hy; (c) and (d) show estimates of A(t|z) and S(t|z)
under Hy and under H, for the minimum, mean and maximum of covariate values. Estimates
are based on the sample displayed in Figure 1 (b)

Figure 3 displays the empirical distribution function of the bootstrap P-values, cal-
culated from N = 500 samples. In order to save space, we restrict the plot to the interval
[0, 0.5]. A 45° line would indicate that our bootstrap estimates of the P-values are close
to the true P-values. To be exact, a 45° line for a test T means that the bootstrap
estimates for the P-values, each based on B = 500 bootstrap resamples per data sample
(horizontal axis), would take values j/N, j = 1,...,N, and thus ideally reflect the
distribution of T under H,. Nominal significance levels of 0.05 and 0.1 are emphasized
by vertical dotted lines.

Note that all of our tests approximate 45° lines reasonably well, indicating that the
bootstrap P-values are reliable estimates. The tests based on A, (¢) perform best. In the
classes T and T, the tests T7 and T} get overall closer to the targeted significance
level than the T

max

P-value are overestimated. This means, the proposed bootstrap tests are conservative,

tests. When there is a deviation from the nominal significance level,

under the given model.
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(a) Tests based on A_1 (b) Tests based on Hazard (c) Tests based on Survival
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Figure 3: Constant effect model. Empirical distribution of bootstrap P-values based on N =

500 samples for the three classes of tests. (a) Tests Tﬁww’h:o, waw,h:l.&’)’ Tg‘, and TZ; (b)
tests TA

A A A. S S S S
max,h=0’ Tmam,h:1.25’ Tq’ and TS’ and (C) tests Tmam,h:O’ Tmaz,h:1_25a Tqa and Ts -

Vertical lines mark nominal significance levels of 0.05 and 0.1.

TA T4 T4 TA TA T TS TS TS
q s

max max q S max q 8

one covariate  0.058 0.044 0.046 0.020 0.044 0.038 0.018 0.046 0.036
two covariates 0.042 0.062 0.046 0.014 0.058 0.038 0.014 0.042 0.036

Table 1: Constant effect model. Observed significance levels under a nominal level of o = 0.05.
The standard error for each of the values is less than 0.01.

Constant effect model, two covariates. In this model, a second covariate,
29 ~ U[—0.5,0.5], is added as a nuisance parameter. The hazard function that generates
the (¢;, 6;) data is still given by (7), with z = z;; it does not depend on z,. However, for
the purpose of testing, the hazard coefficient of 2z is included
nonparametrically. The null hypothesis is Hy : «;(t) = p, under the hazard model
At|2) = ap(t) + a1 (t)z1 + ao(t)z2 with unknown ay(t).

In both constant effect models, the data is generated under the null hypothesis.
Therefore, these models allow us to study the actual significance level of our bootstrap
tests. Table 1 summarizes the results for N = 500 samples. The numbers in the body
of the table are the proportion of samples for which the P-value was less or equal to
0.05. The standard error for each of the entries is less than 0.01.

According to Table 1, the targeted significance level of @ = 0.05 is approximated
best by the tests in class T4, and tests Ty and T5. Tests Th. . and T, tend to

max max
be overly conservative. For most of the tests, adding a second covariate as nuisance
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(a) Short term effect: A(t) (b) Event (+) and Censoring (x) times
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Figure 4: Short-term effect model. (a) Cumulative baseline hazard Ay(t), and cumulative
hazard coefficient A;(¢); (b) event (+) and censoring times (x) for one n = 250 dataset;
(¢) cumulative hazard, and (d) survival function for the minimum (z = —0.5), mean (z = 0),
and maximum (z = 0.5) of covariate values.

parameter does not change the actual significance level much. While the significance

level seems to decrease for the test T4

s az» and increase for T;?, the differences are less

than two standard deviations.

Short-term effect model. In the short-term effect model, the hazard function
A(t|z) = ap(t) + a1 (t)z is defined by

0.6, for t < 1.875,

(8)
0, for t> 1875,

ap(t) = 0.4, and o«q(t) = {
Here, covariate effects on the hazard are constant over approximately the first half of
the time range of interest, and then vanish.

Figure 4 describes the short-term effect model. Panel (a) shows the cumulative
hazard coefficients Ay (t) and A;(t). In Panel (b), one sample of size n = 250 is displayed,
similar to Figure 1 (b). The data reflect that for large covariate values, the events tend
to occur earlier; according to the model, the hazard for observations with z = 0.5 is 7
times higher than for observations with z = —0.5, for t < 1.875.
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(a) Estimates of A O

(b) Estimates of A_1
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Figure 5: Estimates in the short-term effect model: (a) and (b) show Ay and A; (solid lines)
and their estimates under Hy and under Hy; (c) and (d) show estimates of A(t|z) and S(t|z)
under Hy and under H, for the minimum, mean and maximum of covariate values. Estimates
are computed from the sample displayed in Figure 4(b)

The bottom row of Figure 4 gives the cumulative hazard function A(¢|z) and the

survival function S(t|z) for covariate values z = —0.5, z = 0 and z = 0.5.

Estimates for the short-term effect model are presented in Figure 5. In the upper
row, the true cumulative hazard coefficients Ay(t) and A;(t) are plotted as solid lines,
and their estimates under Hy and H, as dotted and dashed lines, respectively. The
Panel (b) of
Figure 5 illustrates why the test statistics in class T4 are sensitive in identifying the

estimates are computed from the data sample shown in Figure 4(b).

short-term effect model versus the null hypothesis. The nonparametric estimate A, (t)
tracks the true function A;(t¢), although with substantial variation. In contrast, the
estimate ,Blt, under Hy, has to be a straight line. The T4 tests summarize the difference
between these two curve estimates over the range 0.25 <1t < 3.

Panels (c) and (d) of Figure 5 again display estimates of the cumulative hazard A(¢|z)
and of the survival function S(¢|z) under Hy (dotted line) and H, (dashed lines), for
covariate values z = —0.5, z = 0 and z = 0.5. The T* and T? tests measure weighted
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(a) Tests based on A_1 (b) Tests based on Hazard (c) Tests based on Survival
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Figure 6: Short-term effect model. Empirical distribution function of bootstrap P-values
based on N = 500 samples. Vertical lines mark nominal significance levels of 0.05 and 0.1.

A A A A. A A A A.
(a‘) Tests Tmaw,h:O’ Tmaw,h:1.25’ Tq ; and TS ’ (b) tests Tmaw,h:O’ Tmax,h:1.25’ Tq ; and TS ’

(c) tests TTfLam,h:O’ TWSLaw,h:1.25’ T}, and T}
L, differences between these curves.

Figure 6 shows the empirical distribution of bootstrap P-values for the short-term
effect model. These curves show the power of the corresponding tests, since the short-
term effect model is included in the alternative H,. The vertical dotted lines indicate
nominal significance levels of 0.05 and 0.1. Numerical values for the power of the tests

for a significance level of 0.05 are provided in Table 2 below.

The short-term effect model with two covariates is defined by the same hazard func-
tion (8). The second covariate, zo ~ U[—0.5,0.5], is introduced as nuisance parameter,

with regression coefficient o, (t) = 0.

Delayed impact model. The hazard coefficients are defined as:

0.2, for t<1.5, 0, for t<1.5
ap(t) = and oy (t) =
0.6, for t> 1.5, 0.6, for t> 1.5.

Here, the effect of the covariate on the hazard is delayed; the covariate value con-
tributes to the hazard only starting at ¢ = 1.5.

Figure 7 illustrates the model parameters, similar to Figures 1 and 4 above. Other
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(a) Delayed impact: A(t) (b) Event (+) and Censoring (x) times

o « X
o g X X X
X
: s h
g % X 9
= oo
<3 go X - f
] 5 x K X %
[ X
1 (&) X
o < % « X% §
o
P i XX o X x
S - :
0 1 2 3 4 5 0 1 2 3 4 5
Time Time
(c) Cumulative Hazard (d) Survival Function
o
3]
[ee)
kel d
£Q
2 c
=] S <
2o 20
E - g
3 )
o Q
o T o
0 1 2 3 4 5 0 1 2 3 4 5
Time Time

Figure 7: Delayed impact model. (a) Cumulative baseline hazard Ay (), and cumulative hazard
coefficient A1 (t); (b) event (4) and censoring times (x) for one n = 250 dataset; (c¢) cumulative
hazard, and (d) survival function for the minimum (z = —0.5), mean (z = 0), and maximum
(z = 0.5) of covariate values.

than in the previous models, the baseline hazard is not constant. We choose this par-
ticular form for our simulations to ensure that the risk set is not overly depleted before
even the covariate effect sets in at ¢t = 1.5.

Figure 8 displays the estimates obtained in the delayed impact model under H,
and H,, similar to Figures 2 and 5 for the previous models.

The empirical distributions of bootstrap P-values for the various tests are plotted
in Figure 9. Again, curves represent the power of the corresponding tests, since the
delayed impact model is part of the alternative, H,. Vertical dotted lines denote the
nominal significance levels 0.05 and 0.1. Numerical values for the power of the tests at

a significance level of 0.05 are provided in Table 2.

Table 2 allows to compare the power of our tests under four alternatives, at a signif-
icance level of 0.05. The numbers in the body of the table are the proportion of samples
for which the bootstrap P-values are less or equal to 0.05, based on N = 500 samples
of size n = 250. The standard error of the entries is less than 0.023.
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(a) Estimates of A O

(b) Estimates of A_1
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Figure 8: Estimates in the delayed impact model: (a) and (b) show Ay and A; (solid lines)
and their estimates under Hy (dotted) and under H, (dashed); (c) and (d) show estimates of
A(t|z) and S(t|z) under Hy and under H, for the minimum, mean and maximum of covariate
values. Estimates are based on the sample displayed in Figure 7(b).

TA TA T4 TA TA T T3 TS TS
max q s max q s max q s
short-term effect model
one covariate  0.626 0.668 0.688 0.502 0.726 0.666 0.498 0.676 0.654
two covariates 0.516 0.646 0.696 0.432 0.664 0.656 0.428 0.708 0.644
delayed impact model
one covariate  0.798 0.698 0.846 0.694 0.714 0.838 0.680 0.846 0.842
two covariates 0.756 0.774 0.854 0.590 0.802 0.826 0.576 0.868 0.828

Table 2: Power of the tests under four alternatives, for a significance level of 0.05, estimated
from N = 500 samples. The standard error of the entries is less than 0.023.

Overall, the test statistics T and T seem to be somewhat more sensitive in identify-

ing the alternatives. The better power corresponds to their being less conservative under

Hy, as seen in better approximation of the 0.05 significance level under the constant ef-
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(a) Tests based on A_1 (b) Tests based on Hazard (c) Tests based on Survival
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Figure 9: Delayed impact model. Empirical distribution functions of bootstrap P-values based
on N = 500 samples. Vertical lines mark nominal significance levels of 0.05 and 0.1. (a) Tests

A A A A. A A A A.
Trazn=00 Tmazh=125 Ty and T (b) tests Tz =00 Tmazh=1.25 Tg» and Tg (c) tests
S S S S
Tmaw,h:O’ Tmaw,h:l.?f’)’ Tq ’ and TS .

fects model. Among the two classes, there is no clear winner between the T4, T, and

TA statistics. Surprisingly, adding a second covariate does not reduce the power of these

maz vests.

tests significantly. However, the second covariate reduces the power of the T
Note that this table provides the power of our tests just for the four specific alternatives,
and for only one significance level. The power of the tests for different significance levels

is illustrated in Figures 6 and 9.

Finally, we investigate the effect of local linear smoothing on the power of the T, .

maz,h, Where the semiparametric likelihood esti-

tests more closely. We consider tests T
mates A(t) are replaced by a smoothed version, A(t; h). We use a local linear smoother
with Epanechnikov kernel and bandwidth A, applied to the pairs (¢;, fll(ti)), where the
t; are the event times only.

The results are summarized in Table 3. As in Table 2, the numbers in the body
of the table are the proportion of samples for which the bootstrap P-values were less
or equal 0.05, out of N = 500 samples of size n = 250. They estimate the actual
significance level of the tests under the constant effect model (first three columns),
and the power of the tests for the short-term effect and the delayed impact models

(middle three and last three columns, respectively). The standard errors of the power
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constant effect short-term effect delayed impact

A S A A S A A S
Tmaw,h, Tmaz,h Tmaw,h, Tmaw,h Tmaw,h, Tma;v,h, Tma:c,h Tma;v,h,

h TA

max,h

h=0 0.058 0.020 0.018 0.626 0.502 0.498 0.798 0.694 0.680
h=0.625 0.038 0.034 0.032 0.634 0.550 0.548 0.798 0.758 0.764
h=1.25 0.038 0.032 0.032 0.636 0.596 0.584 0.796 0.780 0.776
h=2.5 0.034 0.028 0.028 0.602 0.584 0.584 0.758 0.796 0.794

Table 3:  Effects of smoothing on the performance of the tests T? Left three columns:

max,h’
actual significance level, for the constant effect model; middle columns: power of the tests

under the short-term effect model, for a significance level of 0.05; right columns: power of the
tests under the delayed impact model. The standard errors of the table entries are less than
0.023, and less than 0.01 for the first three columns.

estimates are less than 0.023, and for the first three columns, less than 0.01. The rows
with h = 0 correspond to the original, unsmoothed tests. The hazard models each have
one covariate.

It appears that moderate smoothing (h = 0.625 and h = 1.25) is beneficial, although
the improvements are modest. There is virtually no difference in performance between
these two bandwidths, which suggests that a sophisticated (global) bandwidth selection
procedure might not add much practical value. Caution is advised against choosing the
bandwidth too large; in this case, smoothing will obscure the features that distinguish
the underlying hazard model from the null hypothesis. The effect of smoothing on
the T . tests can also be observed in Figures 3, 6 and 9.

Further simulations have shown that moderate smoothing has little or no effect on
the tests T§ and Tj, while oversmoothing may prove detrimental. The different effects of
smoothing on the tests can be explained by the fact that smoothing the A(t) diminishes
spurious bumps in the curve estimates. The supremum distance is particularly sensitive
to these bumps, more so than the integrated quadratic distance used by the tests T}
and T7.

6 Example

In this section, we analyze a subset of the Nursing home data presented in Morris
et. al. (1994). The original dataset consists of a treatment group (nursing homes received
financial incentives for admitting certain kinds of patients), and a control group (no

incentives). For each patient, the length of stay in the nursing home was recorded,
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along with their age, gender, marital status, and a health status index. Our analysis
is restricted to the control group, which includes n = 889 patients. Study duration in
the control group was one year; censoring occurred only when patients remained in the
nursing home at the end of the study.

Our goal is to determine how the length of stay for a patient is influenced by the four
covariates in a fitted semiparametric additive hazard model, and which of the covariates,
if any, should not be modeled by a constant hazard coefficient.

We are testing Hy : ax(t) = Bx for each of the covariates separately, while estimating
the coefficients of the other three covariates nonparametrically.
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Figure 10: Nursing home data. Estimates of the A;(t) when all hazard coefficients are es-
timated nonparametrically (solid lines), and of 8;t when a semiparametric model with one
constant coefficient is fitted (dashed lines). Estimates of the cumulative baseline hazard, and
of the censoring distribution.

Figure 10 shows the estimates Ak(t) of the cumulative hazard coefficients under the
fully nonparametric additive model (Aalen model; solid lines) and under the semipara-
metric model (dashed lines). Additionally, estimates of the cumulative baseline hazard,

Ay, and of the censoring distribution are displayed. Note that our test statistics re-
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TA TA T4 TA TA TA TS TS TS

mazr q s max q s maz q s

Age 0.090 0.038* 0.042* 0.062 0.038* 0.042* 0.062 0.034* 0.048"
Gender 0.042* 0.018* 0.006* 0.106 0.016* 0.008* 0.100 0.006* 0.008*
Married 0.196 0.326 0.144 0.156 0.312 0.218 0.164 0.164 0.210
Health  0.758 0.768 0.680 0.724 0.780 0.656 0.730 0.688 0.660

Table 4: P-values obtained in testing for constant versus nonparametric hazard contributions
of the covariates.

flect the distance between the solid and dashed lines, over the “interval of interest”
5 <t <600 (measured in days).

P-values for our bootstrap tests are summarized in Table 4. Each P-value is based
on B = 500 bootstrap samples. Significant results (P-value < 0.05) are marked by an
asterisk.

The tests T and T} consistently identify the hazard coefficients of Age and Gender

as significantly nonconstant (P-value < 0.05). The T}, . tests mostly are not significant.

This results is consistent with the lower power of T} .

in the simulation study. The
hazard contribution of Married and Health do not change over time significantly, and
might be modelled as constant.

The plots of the cumulative hazard coefficients in Figure 10 help to understand how
the non-constant hazard coefficients change with time. The panels for Age and Gender
imply that both covariates have a strong differential effect early on, which vanishes later.
In particular, the coefficient for Age suggests that older patients are less likely to have
short-term stays. For more extended stays, age is not a factor in predicting the length

of the stay.
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