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� Introduction

The last sixty years have witnessed a rapid development in the �eld of econometrics� In the
����s and 	�s the foundations were laid by the Cowles Commission researchers for analyzing
econometric simultaneous equations models� Once the basic statistical theory was available
many such models were constructed for empirical analysis� The parallel development of the
computer technology in the ��	�s and 
�s has resulted in simultaneous equations models of
increasing size in the hope that more detailed models would result in better approximations
to the underlying data generation mechanisms� It turned out� however� that increasing the
number of variables and equations of the models did not generally lead to improvements in
the performance in terms of forecasting� for instance� In fact� in some forecast comparisons
univariate time series models were found to be superior to large scale econometric models�
One explanation of this failure of the latter models is their insu�cient representation of the
dynamic interactions in a system of variables�

The poor performance of standard macroeconometric models in some respects resulted
in a critical assessment of econometric simultaneous equations modeling as summarized by
Sims ���
�� who advocated using vector autoregressive �VAR� models as alternatives� In
these models often all variables are treated as a priori endogenous and allowance is made
for rich dynamics� Restrictions are imposed to a large extent by statistical tools rather than
by prior believes based on uncertain theoretical considerations� Although VAR models are
by now standard instruments in econometric analyses it has become apparent that certain
types of interpretations and economic investigations are not possible without incorporating
nonstatistical a priori information� Therefore� so�called structural VAR models are now often

�I thank J�org Breitung for helpful comments on an earlier draft of this chapter and the Deutsche
Forschungsgemeinschaft� SFB ���� for �nancial support�
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used in practice� Moreover� the invention of cointegration by Granger ���
�� and Engle �
Granger ���
�� has resulted in speci�c parameterizations which support the analysis of the
cointegration structure� The cointegrating relations are often interpreted as the connecting
link to the relations derived from economic theory� Therefore they are of particular interest
in an analysis of a set of time series variables�

In the following I will �rst discuss some of the related models which are now in common
use� I will then consider estimation and speci�cation issues in Sections � and �� respectively�
Possible uses of VAR models are presented in Section 	� Conclusions and extensions are
considered in Section 
� Nowadays a number of books are available which treat modern
developments in VAR modeling and dynamic econometric analysis more generally in some
detail �e�g�� L�utkepohl ������� Banerjee� Dolado� Galbraith � Hendry ������� Hamilton
������� Hendry ����	�� Johansen ����	�� Hatanaka ����
��� Surveys of vector autoregressive
modeling include Watson ������ and L�utkepohl � Breitung ������� In this chapter some
more recent developments are also included�

� VAR Models

��� Characteristics of Variables

The characteristics of the variables involved determine to some extent which model is a
suitable representation of the data generation process �DGP�� For instance� the trending
properties of the variables and their seasonal �uctuations are of importance in setting up a
suitable model� In the following a variable is called integrated of order d �I�d�� if stochastic
trends or unit roots can be removed by di�erencing the variable d times� In the present
chapter it is assumed that all variables are at most I��� if not otherwise stated� In other
words� for any time series variable ykt it is assumed that �ykt � ykt�yk�t�� has no stochastic
trend� Note� however� that �ykt may still have deterministic components such as a polyno�
mial trend and a seasonal component whereas seasonal unit roots are excluded� Note also
that a variable without a stochastic trend or unit root is sometimes called I���� A set of I���
variables is called cointegrated if a linear combination exists which is I���� Occasionally it is
convenient to consider systems with both I��� and I��� variables� In this case the concept
of cointegration is extended by calling any linear combination which is I��� a cointegration
relation although this terminology is not in the spirit of the original de�nition because it can
result in a linear combination of I��� variables being called a cointegration relation�

As mentioned earlier� we allow for deterministic polynomial trends� For these terms we
assume for convenience that they are at most linear� In other words� we exclude higher order
polynomial trend terms� For practical purposes this assumption is not a severe limitation�

��� Alternative Models and Model Representations

Given a set of K time series variables yt � �y�t� � � � � yKt�
�� the basic VAR model is of the

form
yt � A�yt�� � � � �� Apyt�p � ut� �����

where ut � �u�t� � � � � uKt�
� is an unobservable zero mean independent white noise process

with time invariant positive de�nite covariance matrix E�utu
�
t� � �u and the Ai are �K�K�
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coe�cient matrices� This model is often brie�y referred to as a VAR�p� process because the
number of lags is p�

The process is stable if

det�IK � A�z � � � � � Apz
p� �� � for jzj � �� �����

Assuming that it has been initiated in the in�nite past� it generates stationary time series
which have time invariant means� variances and covariance structure� If the determinantal
polynomial in ����� has a root for z � � �i�e�� a unit root�� then some or all of the variables
are I��� and they may also be cointegrated� Thus� the present model is general enough to
accommodate variables with stochastic trends� On the other hand� it is not the most suitable
type of model if interest centers on the cointegration relations because they do not appear
explicitly in the VAR version ������ They are more easily analyzed within the so�called vector

error correction model �VECM�

�yt � �yt�� � ���yt�� � � � �� �p���yt�p�� � ut� �����

where � � ��IK � A� � � � � � Ap� and �i � ��Ai�� � � � � � Ap� for i � �� � � � � p � �� This
representation of the process is obtained from ����� by subtracting yt�� from both sides
and rearranging terms� Because �yt does not contain stochastic trends by our assumption
that all variables can be at most I���� the term �yt�� is the only one which includes I���
variables� Hence� �yt�� must also be I���� Thus� it contains the cointegrating relations�
The �j �j � �� � � � � p � �� are often referred to as the short�term or short�run parameters
while �yt�� is sometimes called long�run or long�term part� The model in ����� will be
abbreviated as VECM�p� because p is the largest lag of the levels yt that appear in the
model� To distinguish the VECM from the VAR model the latter is sometimes called the
levels version� Of course� it is also possible to determine the Aj levels parameter matrices
from the coe�cients of the VECM as A� � �� � � � IK � Ai � �i� �i�� for i � �� � � � � p� ��
and Ap � ��p���

If the VAR�p� process has unit roots� that is� det�IK � A�z � � � � � Apz
p� � � for z � ��

the matrix � is singular� Suppose it has rank r� that is� rk��� � r� Then it is well�known
that � can be written as a product � � �� �� where � and � are �K� r� matrices with rk���
� rk��� � r� Premultiplying an I��� vector by some matrix results again in an I��� process�
Hence� premultiplying �yt�� � �� �yt�� by ��������� shows that � �yt�� is I��� and� there�
fore� contains the cointegrating relations� Hence� there are r � rk��� linearly independent
cointegrating relations among the components of yt� The matrices � and � are not unique
so that there are many possible � matrices which contain the cointegrating relations or lin�
ear transformations of them� Consequently� cointegrating relations with economic content
cannot be extracted purely from the observed time series� Some nonsample information is
required to identify them uniquely�

Special cases included in ����� are I��� processes for which r � K and systems that
have a stable VAR representation in �rst di�erences� In the latter case� r � � and the term
�yt�� disappears in ������ These boundary cases do not represent cointegrated systems in the
usual sense� There are also other cases where no cointegration in the original sense is present
although the model ����� has a cointegrating rank strictly between � and K� Suppose� for
instance� that all variables but one are I��� then the cointegrating rank is K � � although
the I��� variable is not cointegrated with the other variables� Similarly� there could be
K � r unrelated I��� variables and r I��� components� Generally� for each I��� variable in
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the system there can be a column in the matrix � with a unit in one position and zeros
elsewhere� In these cases there is no cointegration in the strict sense� Still it is convenient to
include these cases in the present framework because they can be accommodated easily as far
as estimation and inference is concerned� Of course� the special properties of the variables
may be important in the interpretation of a system and� hence� a di�erent treatment of the
special cases may be necessary in this respect�

In practice the basic models ����� and ����� are usually too restrictive to represent the
main characteristics of the data� In particular� deterministic terms such as an intercept� a
linear trend term or seasonal dummy variables may be required for a proper representation
of the data� There are two ways to include deterministic terms� The �rst possibility is to
represent the observed variables yt as a sum of a deterministic term and a stochastic part�

yt � �t � xt� �����

where �t is the deterministic part and xt is a stochastic process which may have a VAR
or VECM representation as in ����� or ������ that is� xt � A�xt�� � � � � � Apxt�p � ut or
�xt � �xt�� � ���xt�� � � � �� �p���xt�p�� � ut� In that case� if �t is a linear trend term�
that is� �t � �� � ��t� then yt has a VAR�p� representation of the form

yt � �� � ��t � A�yt�� � � � �� Apyt�p � ut� ���	�

where �� � ���� � �
Pp

j�� jAj��� and �� � ����� In other words� �� and �� satisfy a
set of restrictions� Note� however� that if ���	� is regarded as the basic model without
restrictions for �i� i � �� �� the model can in principle generate quadratic trends if I���
variables are included� whereas in ����� with a deterministic term �t � �� � ��t a linear
trend term is permitted only� The fact that in ����� a clear partitioning of the process
in a deterministic and a stochastic component is available is sometimes advantageous in
theoretical derivations� Also� in practice� it may be possible to subtract the deterministic
term �rst and then focus the analysis on the stochastic part which usually contains the
behavioural relations� Therefore this part is often of primary interest in econometric analyses�
Of course� a VECM�p� representation equivalent to ���	� also exists�

In practice� these representations with possibly additional deterministic terms may still
not be general enough� At times one may wish to include stochastic exogenous variables on
top of the deterministic part� A fairly general VECM form which includes all these terms is

�yt � �yt�� � ���yt�� � � � �� �p���yt�p�� � CDt � Bzt � ut� ���
�

where the zt are exogenous variables� Dt contains all regressors associated with deterministic
terms and C and B are parameter matrices�

Notice that di�erent concepts of exogeneity have been considered in the literature �see
Engle� Hendry � Richard ���
���� A set of variables zt is called weakly exogenous for a
parameter vector of interest� say �� if estimating � within a conditional model� conditional on
zt� does not entail a loss of information relative to estimating the vector in a full model which
does not condition on zt� Furthermore� zt is called strongly exogenous if it is weakly exogenous
for the parameters of the conditional model and forecasts of yt can be made conditional on
zt without loss of forecast precision� Finally� zt is called super exogenous for � if zt is
weakly exogenous for � and policy actions that a�ect the marginal process of zt do not a�ect
the parameters of the conditional process� Hence� weak� strong and super exogeneity are
the relevant concepts for estimation� forecasting and policy analysis� respectively �Ericsson�
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Hendry � Mizon ����
��� In the following the term exogeneity refers to the relevant concept
for the respective context if no speci�c form of exogeneity is mentioned�

All the models we have presented so far are reduced form models in that they do not
include instantaneous relations between the endogenous variables yt� In practice it is often
desirable to model the contemporaneous relations as well and therefore it is useful to consider
a structural form

��
��yt � ��yt�� � ��

��yt�� � � � �� ��
p���yt�p�� � C�Dt � B�zt � vt� �����

where vt is a �K � �� zero mean white noise process with covariance matrix �v and the
��� ��

j �j � �� � � � � p� ��� C� and B� are structural form parameter matrices� The reduced
form corresponding to the structural model ����� is given in ���
� with �j � ���

��
����

j �j �
�� � � � � p � ��� C � ���

��
��C�� B � ���

��
��B� and ut � ���

��
��vt� Of course� a number of

restrictions are usually imposed on the general forms of our models� These restrictions are
important at the estimation stage which will be discussed next�

� Estimation

Since estimation of some of the special case models is particularly easy some of these cases will
be considered in more detail in the following� We begin with the levels VAR representation
����� under the condition that no restrictions are imposed� Then estimation of the VECM
����� is treated and �nally more general model variants are discussed�

��� Estimation of an Unrestricted VAR

Given a sample y�� � � � � yT and presample values y�p��� � � � � y�� the K equations of the VAR
����� may be estimated separately by least squares �LS� without loosing e�ciency relative
to generalized LS �GLS� approaches� In fact� in this case LS is identical to GLS as shown
by Zellner ���
��� De�ning

Y � �y�� � � � � yT � and Z � �Z�� � � � � ZT���� where Zt�� �

�
���
yt��

���
yt�p

�
��� � �����

the LS estimator of A � �A� � � � � � Ap� can be written compactly as

�A � � �A� � � � � � �Ap� � Y Z ��ZZ ����� �����

Under standard assumptions �see� e�g�� L�utkepohl �������� the LS estimator �A is consistent
and asymptotically normally distributed�

p
Tvec� �A� A�

d� N���� �A� or� more intuitively� vec� �A�
a� N�vec�A��� �A�T �� �����

Here vec denotes the column stacking operator which stacks the columns of a matrix in a

column vector�
d� signi�es convergence in distribution and

a� indicates �asymptotically dis�
tributed as � The covariance matrix of the asymptotic distribution is � �A � plim�ZZ ��T ����
�u so that an even more intuitive albeit imprecise way of writing the result in ����� is

vec� �A� 	 N�vec�A�� �ZZ ���� � �u��

	



Although this result also holds for I��� cointegrated systems �see Park � Phillips ���

�
��
��� Sims� Stock � Watson ������� L�utkepohl ������ Chapter ���� it is important to
note that in this case the covariance matrix � �A is singular whereas it is nonsingular in
the usual I��� case� In other words� if there are integrated or cointegrated variables� some
estimated coe�cients or linear combinations of coe�cients converge with a faster rate than
T ���� Therefore� the usual t�� ��� and F �tests for inference regarding the VAR parameters�
may not be valid in this case as shown� e�g�� by Toda � Phillips ������� As an example
consider a univariate �rst order autoregressive process yt � �yt�� � ut� If yt is I��� and�
hence� � � �� the LS estimator �� of � has a nonstandard limiting distribution� As is well�
known from the unit root literature �e�g�� Fuller ����
�� Dickey � Fuller �������� the quantityp
T ������ converges to zero in probability� that is� the limiting distribution has zero variance

and is degenerate� whereas T ��� � �� has a nondegenerate nonnormal limiting distribution�
Although inference problems may arise in VAR models with I��� variables� there are also
many unproblematic cases� Dolado � L�utkepohl ����
� show that if all variables are I���
or I��� and if a null hypothesis is considered which does not restrict elements of each of the
Ai �i � �� � � � � p� the usual tests have their standard asymptotic properties� For example� if
the VAR order p 
 �� the t�ratios have their usual asymptotic standard normal distribution
�see also Toda � Yamamoto ����	� for a related result��

If the white noise process ut is normally distributed �Gaussian� and the process yt is
I���� then the LS estimator in ����� is identical to the maximum likelihood �ML� estimator
conditional on the initial values� It is also straightforward to include deterministic terms
such as polynomial trends in the model ������ In this case the asymptotic properties of
the VAR coe�cients remain essentially the same as in the case without deterministic terms
�Sims� Stock � Watson ��������

The covariance matrix �u may be estimated in the usual way� Denoting by �ut the LS
residuals� that is� �ut � yt � �AZt���

��u �
�

T �Kp

TX
t��

�ut�u
�
t and !�u �

�

T

TX
t��

�ut�u
�
t �����

are possible estimators� Both estimators are consistent and asymptotically normally dis�
tributed independent of �A� that is�

p
T ���u��u� and

p
T �!�u��u� have asymptotic normal

distributions independent of �A if su�cient moment conditions are imposed �see L�utkepohl
������ and L�utkepohl � Saikkonen �����a��� These properties are convenient for inference
purposes�

��� Estimation of a VECM

If the cointegrating rank of the system under consideration is known and one wishes to
impose a corresponding restriction� working with the VECM form ����� is convenient� In
deriving estimators for the parameters of ����� the following additional notation is used�

�Y � ��y�� � � � ��yT �� Y�� � �y�� � � � � yT���� U � �u�� � � � � uT � � � � ��� � � � � � �p���

and X � �X�� � � � � XT��� with Xt�� �

�
���

�yt��
���

�yt�p��

�
��� � ���	�






For a sample with T observations and p presample values� the VECM ����� can now be
written compactly as

�Y � �Y�� � �X � U� ���
�

Given a speci�c matrix �� the LS estimator of � is easily seen to be

�� � ��Y � �Y���X
��XX ����� �����

Substituting in ���
� gives
�YM � �Y��M � �U�

where M � I�X ��XX ����X� For a given r� � 	 r 	 K� an estimator �� of � with rk���� � r
can be obtained by a canonical correlation analysis or� equivalently� a reduced rank regression
based on the latter model� Following Johansen ����	�� the estimator may be determined by
de�ning

S�� � T���YM�Y �� S�� � T���YMY �
��� S�� � T��Y��MY �

��

and solving the eigenvalue problem

det�
S�� � S ���S
��
�� S��� � �� ���
�

Let the ordered eigenvalues be 
� 
 � � � 
 
K with corresponding eigenvectors V �
�v�� � � � � vK � satisfying 
iS��vi � S ���S

��
�� S��vi and normalized such that V �S��V � IK� Choose

�� � �v�� � � � � vr�

and
�� � �YMY �

��
��� �� �Y��MY �

��
�����

that is� �� is obtained as LS estimator from the model

�YM � � �� �Y��M � !U�

An estimator of � is then �� � ���� �� Using ������ a feasible estimator of � is obtained
as �� � ��Y � ��Y���X

��XX ����� Under Gaussian assumptions these estimators are ML
estimators conditional on the presample values �Johansen ���

� �������

In this approach the parameter estimator �� is made unique by the normalization of the
eigenvectors and �� is adjusted accordingly� However� these are not econometric identi�cation
restrictions� Therefore only the cointegration space but not the cointegration parameters
are estimated consistently in this approach� In order to estimate the matrices � and �
consistently� it is necessary to impose identifying restrictions� Without such restrictions only
the product �� � � � can be estimated consistently� An example of identifying restrictions
which has received some attention in the literature� assumes that the �rst part of � is an
identity matrix� � � � �Ir � � ���� where �� is a ��K � r�� r� matrix� For r � �� this restriction
amounts to normalizing the coe�cient of the �rst variable� If uniqueness restrictions are
imposed it can be shown that T � �� � �� and

p
T ���� �� converge in distribution �Johansen

����	��� Hence� the estimator of � converges with the fast rate T and is therefore sometimes
called superconsistent� In contrast� the estimator of � converges with the usual rate

p
T �

The estimators of � and � are consistent and asymptotically normal under general as�
sumptions� p

Tvec����� � � � � � ��p���� ��� � � � � � �p����
d� N������

�

�



and p
Tvec���� ��

d� N������
��

Here the asymptotic distribution of �� is nonsingular so that standard inference may be used
for the short�term parameters �j� On the other hand� the �K� �K�� covariance matrix ���

can be shown to have rank Kr and is therefore singular if r 	 K� This result is due to
two forces� On the one hand� imposing the rank constraint in estimating � restricts the
parameter space and on the other hand� � involves the cointegrating relations which are
estimated superconsistently�

It is perhaps interesting to note that an estimator of A can be computed via the estimates
of � and �� That estimator has the advantage of imposing the cointegrating restrictions on
the levels version of the VAR process� However� its asymptotic distribution is the same as in
����� where no restrictions have been imposed in estimating A� Computing the covariance
matrix estimator !�u from the residuals of the VECM estimation the asymptotic distribution
is the same as for the levels VAR form treated in the previous subsection and it is asymp�
totically independent of �� and ��� Extensions of these results for the case where the true
DGP is an in�nite order VAR process are considered by Saikkonen ������ and Saikkonen �
L�utkepohl ����
��

��� Estimation of Restricted Models and Structural Forms

E�cient estimation of a general structural form model such as ����� with restrictions on
the parameter matrices is more complicated� Of course� identifying restrictions are neces�
sary for consistent estimation� In practice� various overidentifying restrictions are usually
available� typically in the form of zero restrictions on ��

j �j � �� � � � � p � ��� C� and B��
In addition there may be a rank restriction for �� given by the number of cointegrating
relations� Alternatively� �� may be replaced by the product ������ if identifying restrictions
are available for the cointegrating relations and"or the loading matrix ��� Restrictions for
�� are typically zero constraints� meaning that some cointegrating relations are excluded
from some of the equations of the system� In some cases it is possible to estimate �� in a
�rst stage� for example� using a reduced form procedure which ignores some or all of the
structural restrictions on the short�term parameters� Let the estimator be ���� Because the
estimators of the cointegrating parameters converge at a better rate than the estimators of
the short�term parameters they may be treated as �xed in a second stage procedure for the
structural form� In other words� a systems estimation procedure may be applied to

��
��yt � �� ���

�

yt�� � ��
��yt�� � � � �� ��

p���yt�p�� � C�Dt � B�zt � �vt� �����

If only exclusion restrictions are imposed on the parameter matrices in this form� standard
three stage LS or similar methods may be applied which result in estimators of the short�term
parameters with the usual asymptotic properties�

Some care is necessary with respect to the treatment of exogenous and deterministic
variables� If all exogenous variables are I���� no problems arise and parameter estimators
with usual properties are obtained� If zt contains I��� variables� however� the properties
of the estimators depend on the cointegration properties of zt� In particular� cointegration
between exogenous and endogenous variables has to be taken into account appropriately �see�
e�g�� Boswijk ����	��� Important results on estimating models with integrated variables are
also due to Phillips and his co�workers �e�g�� Phillips ���
�� ������ Phillips � Durlauf ���

��
Phillips � Hansen ������� Phillips � Loretan ��������






If deterministic variables are to be included in the cointegration relations this requires a
suitable reparameterization of the model� Such reparameterizations for intercepts and linear
trend terms are presented in Section ���� where tests for the cointegrating rank are discussed�
In that context a proper treatment of deterministic terms is of particular importance� There�
fore a more detailed discussion is deferred to Section ���� In a subsequent analysis of the
model the parameters of the deterministic terms are often of minor interest and therefore
the properties of the corresponding estimators are not treated in detail here �see� however�
Sims� Stock � Watson ��������

� Model Speci�cation and Model Checking

��� Testing for the Model Order and Exclusion Restrictions

Unrestricted VAR models usually involve a substantial number of parameters which in turn
results in rather imprecise estimators� Therefore it is desirable to impose restrictions that
reduce the dimensionality of the parameter space� Such restrictions may be based on eco�
nomic theory or other nonsample information and on statistical procedures� Of course� for
structural models nonsample information is required for imposing identifying constraints�
On top of that there may be further overidentifying constraints on the basis of a priori
knowledge�

Tests are common statistical procedures for detecting possible restrictions� For example�
t�ratios and F �tests are available for this purpose� These tests retain their usual asymptotic
properties if they are applied to the short�run parameters in a VECM whereas problems may
arise in the levels VAR representation as explained in the previous section� A particular set
of restrictions where such problems occur is discussed in more detail in Section 	��� In case
of doubt it may be preferable to work on the VECM form�

In practice� it is not uncommon to start from a model with some prespeci�ed maximum
lag length� say pmax� and apply tests sequentially� eliminating one or more variables in each
step until a relatively parsimonious representation with signi�cant parameter estimates has
been found� For example� in a VECM a sequence of null hypotheses H� � �pmax�� � ��
H� � �pmax�� � � etc� may be tested until the null hypothesis is rejected� Similarly� single
coe�cients in individual equations may be tested� Before such a procedure can be used� a
decision on pmax has to be made� Occasionally this quantity is chosen by some theoretical
or institutional argument� For instance� one may want to include lags of at least one year
so that four lags have to be included for quarterly data and twelve lags may be used for a
monthly model� An inappropriate choice of pmax may not be very severe in some respect
because if the order is chosen too small such a problem may be discovered later when the
�nal model is subjected to a series of speci�cation tests �see Section ����� On the other
hand� too large a value of pmax may be problematic due to its impact on the overall error
probability of a sequential procedure� If a very large order pmax is used� a long sequence of
tests may be necessary which will have an impact on the overall Type I error of the testing
sequence� that is� the choice of pmax will have an impact on the probability of an inadequate
selection of p�

Of course� it is also possible that the actual DGP does not have a �nite order VAR
representation� Ng � Perron ����	� consider some consequences for choosing the lag order
by sequential testing procedures in univariate models in this context� Instead of sequential
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tests one may alternatively choose the lag length or determine exclusion restrictions by model
selection procedures which will be discussed next�

��� Determining the Autoregressive Order by Model Selection

Criteria

Because the cointegrating rank r is usually unknown when the choice of p is made� it is useful
to focus on the VAR form ����� at this stage� Various model selection criteria are available
that can be used in this context� The general approach is to �t VAR�m� models with orders
m � �� � � � � pmax and choose an estimator of the order p which minimizes some criterion�

Many of the criteria in current use have the general form

Cr�m� � log det�!�u�m�� � cT��m�� �����

where det��� denotes the determinant� log is the natural logarithm� !�u�m� � T��PT
t�� �ut�u

�
t

is the residual covariance matrix estimator for a model of order m� cT is a sequence indexed
by the sample size� and ��m� is a function which penalizes large VAR orders� For instance�
��m� may represent the number of parameters which have to be estimated in a VAR�m�
model� The term log det�!�u�m�� measures the �t of a model with order m� Since there is
no correction for degrees of freedom in the covariance matrix estimator the log determinant
decreases �or at least does not increase� when m increases� Note that the sample size
is assumed to be held constant and� hence� the number of presample values set aside for
estimation is determined by the maximum order pmax� The estimator �p of p is chosen to be
the order which minimizes the criterion ����� so that the two terms in the sum on the right
hand side of ����� are balanced optimally for Cr��p��

The following criteria are popular in applied work�

AIC�m� � log det�!�u�m�� �
�

T
mK�� where ��m� � mK� and cT �

�

T
�

�see Akaike ������ �������

HQ�m� � log det�!�u�m�� �
� log logT

T
mK�� where ��m� � mK� and cT �

� log logT

T
�

proposed by Hannan � Quinn ������ and Quinn ���
�� and

SC�m� � log det�!�u�m�� �
logT

T
mK�� where ��m� � mK� and cT �

logT

T
�

due to Schwarz ����
� and Rissanen ����
�� The AIC criterion asymptotically overestimates
the order with positive probability whereas the last two criteria estimate the order consis�
tently �plim �p � p or �p � p a�s�� under quite general conditions� if the actual DGP has
a �nite VAR order and the maximum order pmax is larger than the true order� These re�
sults not only hold for I��� processes but also for I��� processes with cointegrated variables
�Paulsen ���
���� Denoting the orders selected by the three criteria by �p�AIC�� �p�HQ� and
�p�SC�� respectively� the following relations hold even in small samples of �xed size T 
 �

�see L�utkepohl ������ Chapters � and �����

�p�SC� � �p�HQ� � �p�AIC��
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Model selection criteria may also be used for identifying single coe�cients that may be
replaced by zero or other exclusion restrictions� After a model has been set up� a series
of checks may be employed to con�rm the model s adequacy� Some such checks will be
mentioned brie�y in a subsequent section� Before that issue is taken up� procedures for
specifying the cointegrating rank will be reviewed�

��� Specifying the Cointegrating Rank

In practice� the cointegrating rank r is also usually unknown� It is commonly determined
by a sequential testing procedure based on likelihood ratio �LR� type tests� Because for a
given cointegrating rank Gaussian ML estimates for the unrestricted reduced form VECM
are easy to compute� as shown in Section ���� LR test statistics are also easily available� The
following sequence of hypotheses may be considered�

H��r�� � rk��� � r� versus H��r�� � rk��� � r�� r� � �� � � � � K � �� �����

The testing sequence terminates if the null hypothesis cannot be rejected for the �rst time�
If the �rst null hypothesis� H����� cannot be rejected� a VAR process in �rst di�erences
is considered� At the other end� if all the null hypotheses can be rejected� the process is
assumed to be I��� in levels�

Although� under Gaussian assumptions� LR tests can be used here it turns out that the
limiting distribution of the LR statistic under H��r�� is nonstandard� It depends on the
di�erence K � r� and on the deterministic terms included in the DGP� In particular� the
deterministic trend terms in the DGP have an impact on the null distribution of the LR
tests� Therefore LR type tests have been derived under di�erent assumptions regarding the
deterministic trend parameters� Fortunately� the limiting null distributions do not depend
on the short�term dynamics and� hence� critical values for LR type tests have been tabulated
for di�erent values of K � r� under alternative assumptions for deterministic trend terms�

In this context it turns out that the model ������ where the deterministic and stochastic
parts are separated� is a convenient point of departure� Therefore we consider the model

yt � �� � ��t � xt �����

with
�xt � �xt�� � ���xt�� � � � �� �p���xt�p�� � ut� �����

It is easy to see that the process yt has a VECM representation

�yt � �� � ��t � �yt�� �
p��X
j��

�j�yt�j � ut

� � � �� � ���

�
yt��
t� �

�
�

p��X
j��

�j�yt�j � ut

� � � ��y�t�� �
p��X
j��

�j�yt�j � ut�

���	�

where �� and �� are as de�ned below ���	�� � � ������ �� � �� � ��� and y�t�� � �y�t�� � t�����
Depending on the assumptions for �� and �� di�erent tests can be obtained in this framework�
An overview is given in Table �� In the following the di�erent cases will be discussed brie�y�
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Table �� Models and LR Type Tests�

Assumption for
deterministic term Model Reference

�� � �� � � �yt � 	yt�� 

Pp��

j�� �j�yt�j 
 ut Johansen �
���� 
����

�� arbitrary �yt � �� 
	yt�� 

Pp��

j�� �j�yt�j 
 ut Johansen �
��
� 
����

�� � � �yt � �	 � ���

�
yt��



	


Pp��

j�� �j�yt�j 
 ut Johansen � Juselius �
����

�yt � 	�yt�� � ���� 

Pp��

j�� �j�yt�j 
 ut Saikkonen � Luukkonen �
����

�� arbitrary �yt � �� 
	yt�� 

Pp��

j�� �j�yt�j 
 ut Johansen �
����

�� �� �� ���� � � �yt � ��� � 	�yt�� � ���� 

Pp��

j�� �j��yt�j � ���� 
 ut Saikkonen � L�utkepohl �
����

��� �� arbitrary �yt � � 
 �	 � ���

�
yt��
t� 


	


Pp��

j�� �j�yt�j 
 ut Johansen �
���� 
���� 
����

�yt � �� 
 ��t
	yt�� 

Pp��

j�� �j�yt�j 
 ut Perron � Campbell �
����

�yt � ��� � 	�yt�� � ��� � ����t� 
�� Saikkonen � L�utkepohl �
����



Pp��

j�� �j��yt�j � ���� 
 ut L�utkepohl � Saikkonen �
����

Case �� �� � �� � �

Although this case� where yt � xt� is not important for applied work because a zero mean
term can rarely be assumed� it is still useful to consider it �rst� It is particularly easy to
derive LR tests for the rank of � under this assumption� The LR statistic can be obtained
by estimating

�yt � �yt�� � ���yt�� � � � �� �p���yt�p�� � ut ���
�

subject to rk��� � r� and rk��� � K as discussed in Section ���� It can be shown that for
a sample y�� � � � � yT and presample values y�p��� � � � � y� the LR test statistics can in fact be
obtained from the ordered generalized eigenvalues 
� 
 � � � 
 
K from ���
�� Johansen s
���

� ���	� LR trace statistic for testing ����� is given by

LR�r�� � �T
KX

j�r���

log��� 
j�� �����

As mentioned earlier� the limiting distribution under the null hypothesis is nonstandard and
depends on the dimension of the process and the cointegrating rank r� or� more precisely�
on the di�erence K � r�� Critical values are tabulated� for instance� in Johansen ���

�
Table �# ���	� Table �	���� It may be worth noting that the asymptotic distribution remains
valid if the ut are not Gaussian� but have other suitable distributions� For the other cases
listed in Table � and brie�y discussed in the following� the test statistics can be computed
analogously by suitable modi�cations of the quantities in ���
��

Case �� �� arbitrary� �� � �

In this case a nonzero mean term is accommodated whereas a deterministic linear trend
term is excluded by assumption� Three variants of LR type tests have been considered in
the literature for this situation plus a number of asymptotically equivalent modi�cations�
As can be seen from Table �� the three statistics can be obtained easily from VECMs�
The �rst test is obtained by dropping the ��t term in ���	� and estimating the intercept
term in the VECM in unrestricted form and hence� the estimated model may generate
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linear trends� The second test enforces the restriction that there is no linear deterministic
trend in computing the test statistic by absorbing the intercept � � ���� in ���	� into the
cointegration relations� Finally� in the third test the mean term �� is estimated in a �rst
step and is subtracted from yt� Then the estimation procedure with rank restriction for �
is applied to ����� with xt replaced by !xt � yt � ���� A suitable estimator ��� is proposed
by Saikkonen � Luukkonen ������ who also show that the asymptotic distribution of the
resulting test statistic under the null hypothesis is the same as that of the LR test for the
case �� � �� � �� It is shown in Saikkonen � L�utkepohl ������ that the latter test can have
considerably more local power than the other two LR tests� Thus� based on local power it
is the �rst choice if �� � ��

Case �� �� arbitrary� �� �� �� � ��� � �

In this case at least one of the variables has a deterministic linear trend because �� ��
�� whereas the cointegration relations do not have a linear trend due to the constraint
� ��� � �� The resulting tests are perhaps the most frequently used ones for determining
the cointegrating rank in applied work� It may be worth emphasizing� however� that for the
�K � r� matrix � to satisfy � ��� � �� �� �� � implies that r 	 K� Hence� if a trend is known
to be present then it should also be allowed for under the alternative and consequently even
under the alternative the rank must be smaller than K� In other words� in the present setting
only tests of null hypotheses rk��� � r� 	 K � � make sense� This result is a consequence
of the fact that a linear trend is assumed in at least one of the variables ��� �� �� whereas a
stable model with an intercept cannot generate a linear trend�

Both test statistics which have been proposed for the presently considered case can be
obtained from VECMs with rank restriction for �� as can be seen in Table �� The �rst test
uses the same intercept model as the �rst test for the case �� � �� In the present case the
asymptotic properties are di�erent� however �see Johansen ����	��� The second test for the
presently considered situation was proposed by Saikkonen � L�utkepohl ����
�� In this case
the mean and trend parameters are estimated in a �rst step by a feasible generalized LS
procedure� the trend is subtracted from yt to yield �xt � yt � ��� � ���t and then the test
statistic is computed via the VECM ����� with xt replaced by �xt� using ��xt � �yt� ��� and
noting that ��� � �� Again it turns out that trend adjusting �rst and then performing the
test may result in considerable gains in local power �see Saikkonen � L�utkepohl ����
���
The null distributions are tabulated in the references given in Table ��

Case �� �� and �� arbitrary

In this case both the variables and the cointegrating relations may have a deterministic
linear trend� Three di�erent LR type tests and some asymptotically equivalent relatives
have been proposed for this situation� The corresponding models are also listed in Table ��
Again� all test statistics can be obtained conveniently via the VECMs using the techniques
of Section ���� The �rst model is set up in such a way so as to impose the linearity of the
trend term� The second model includes the trend term in unrestricted form� As mentioned
earlier� in principle such a model can generate quadratic trends� Of course� such trends are
excluded here by assumption� that is� the �i� i � �� �� must obey appropriate restrictions�
These restrictions are not imposed in the estimation which leads to the Perron�Campbell
test statistic� Finally� the last test in Table � is again based on prior trend adjustment and
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estimation of the resulting VECM for the trend adjusted variables� The trend parameters
are again estimated in a �rst step by a generalized LS procedure� Critical values for all
these tests may be found in the references given in Table �� In a simulation comparison
L�utkepohl � Saikkonen ������ found that none of the three tests is uniformly superior to
its competitors�

Further issues

A comprehensive survey of the properties of LR type tests for the cointegrating rank as well
as a substantial number of other tests that have been proposed in the literature is given by
Hubrich� L�utkepohl � Saikkonen ����
�� We refer the interested reader to that article for
further details� Here we will only add a few speci�c remarks�

Instead of the pair of hypotheses in ����� one may alternatively test H��r�� � rk��� � r�
versus H�

� �r�� � rk��� � r� � �� LR tests for this pair of hypotheses were also pioneered by
Johansen ���

� ����� and are known as maximum eigenvalue tests� They are based on a
statistic

LRmax�r�� � �T log��� 
r����

and can be applied for all the di�erent cases listed in Table �� They also have nonstandard
limiting distributions� Critical values can be found in the literature cited in the foregoing�

For univariate processes �K � �� the testing sequences reduce to a test of H� � r � �
against H� � r � �� In other words� the null hypothesis of the process being I��� is tested
against the I��� alternative� All the tests can be generalized to this situation except those
for the case � ��� � � because the latter tests require that the alternative is at most r � K��
which can obviously not hold for K � �� LR tests corresponding to the other cases were
proposed by Dickey � Fuller ������ and Fuller ����
�� They are very popular in applied
work and are known as augmented Dickey�Fuller �ADF� tests�

The limiting distributions of the LR statistics are not only valid for normally distributed
�Gaussian� processes but also under more general distributional assumptions even if the LR
statistics are computed under Gaussian assumptions� In that situation these tests are� of
course� just pseudo LR tests� Saikkonen � Luukkonen ������ show that some of the tests
�based on �nite order VAR processes� remain asymptotically valid even if the true DGP has
an in�nite VAR order� This result is of interest because in practice tests for unit roots and
cointegration are usually applied to the univariate series or subsystems �rst to determine the
order of integration for the individual variables or the cointegrating properties of a subset
of variables� However� if the full system of variables is driven by a �nite order VAR process�
then the generating process of the individual variables may be of in�nite order autoregressive
type �see L�utkepohl ������ Sec� 
�
��� Hence� for the sake of consistency it is reassuring to
know that the tests remain valid for this case� L�utkepohl � Saikkonen �����b� analyze this
situation in more detail� In particular� they consider the impact of lag length selection in
this context�

There is a notable di�erence between the asymptotic properties of the tests and their
actual performance for samples of the size typically available in economics� A large scale
simulation study comparing the small sample properties of many of the tests is also performed
by Hubrich� L�utkepohl � Saikkonen ����
��

Instead of the sequential testing procedures model selection criteria may be used for
determining the cointegrating rank� This possibility is considered� for instance� by L�utkepohl
� Poskitt ����
��
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��� Model Checking

Once a model has been speci�ed and estimated its adequacy is usually checked with a range
of tests and other statistical procedures� Many of these model checking tools are based
on the residuals of the �nal model� Some of them are applied to the residuals of individ�
ual equations and others are based on the full residual vectors� Examples of speci�cation
checking tools are visual inspection of the plots of the residuals and their autocorrelations�
In addition� autocorrelations of squared residuals may be considered to check for possible
autoregressive conditional heteroscedasticity �ARCH�� Although it may be quite insightful
to inspect the autocorrelations visually� formal statistical tests for remaining residual auto�
correlation should also be applied� Such tests are often based on LM �Lagrange Multiplier�
or Portmanteau statistics� Moreover� normality tests of the Lomnicki�Jarque�Bera type may
be applied to the residuals �see� e�g�� L�utkepohl ������� Doornik � Hendry ��������

There are also procedures for checking the stability and possible nonlinearity of a model
�Granger � Ter�asvirta �������� These procedures are used for detecting potential structural
shifts during the sample period� They range from performing prediction tests as discussed in
L�utkepohl ������ to computing recursive residuals �Doornik � Hendry ������� or applying
CUSUM type tests �Kr�amer� Ploberger � Alt ���

�� or recursive tests for cointegration
�Hansen � Johansen �������� In addition out�of�sample forecasts are sometimes used for
model checking when new data become available� If rival models for the same economic re�
lations are available� encompassing tests may be applied to compare them �Hendry ����	���
Although the signi�cance of individual coe�cients or groups of parameters is often investi�
gated at the model speci�cation stage� these tools are also available for model checking� For
a more detailed discussion of model checking see Doornik � Hendry �������

If model defects such as residual autocorrelation or ARCH e�ects are detected at the
checking stage this is usually regarded as an indication of the model being a poor repre�
sentation of the DGP and e�orts are made to �nd a better representation by adding other
variables or lags to the model� by including nonlinear terms or changing the functional form�
by modifying the sampling period or getting other data�

� Uses of Vector Autoregressive Models

When an adequate model for the DGP of a system of variables has been found it may be
used for forecasting and economic analysis� Di�erent tools have been proposed for the latter
purpose� For instance� there has been an extensive discussion of how to analyze causal rela�
tions between the variables of a system of interest� In this section forecasting VAR processes
will be discussed �rst and then the concept of Granger�causality will be introduced which is
based on forecast performance� It has received considerable attention in the theoretical and
empirical literature� In Subsection 	�� impulse responses are considered� They may also be
regarded as instruments for analyzing causal relations between variables� Finally� forecast
error variance decompositions and policy analysis are discussed in Subsections 	�� and 	�	�
respectively�

�	



��� Forecasting VAR Processes

����� Known Processes

Neglecting deterministic terms and exogenous variables the levels VAR form ����� is partic�
ularly convenient to use in forecasting the variables yt� Suppose the ut are generated by an
independent rather than just uncorrelated white noise process� Then the optimal �minimum
MSE� ��step forecast in period T is the conditional expectation�

yT��jT � E�yT��jyT � yT��� � � �� � A�yT � � � �� ApyT���p� �	���

Forecasts for larger horizons h 
 � may be obtained recursively as

yT�hjT � A�yT�h��jT � � � �� ApyT�h�pjT � �	���

where yT�jjT � yT�j for j � �� The corresponding forecast errors are

yT�� � yT��jT � uT���
yT�� � yT��jT � uT�� � A�uT���

���
yT�h � yT�hjT � uT�h � $�uT�h�� � � � �� $h��uT���

�	���

where it is easy to see by successive substitution that

$s �
sX

j��

$s�jAj� s � �� �� � � � � �	���

with $� � IK and Aj � � for j � p �see L�utkepohl ������ Sec� ������� Hence� ut is the
��step forecast error in period t�� and the forecasts are unbiased� that is� the forecast errors
have expectation �� As mentioned earlier� these are the minimum MSE forecasts� The MSE
matrix of an h�step forecast is

�y�h� � Ef�yT�h � yT�hjT ��yT�h � yT�hjT ��g �
h��X
j��

$j�u$�
j� �	�	�

For any other h�step forecast with MSE matrix ��
y�h�� say� the di�erence ��

y�h� � �y�h� is
a positive semide�nite matrix� This result relies on the assumption that ut is independent
white noise� i�e�� ut and us are independent for s �� t� If ut is uncorrelated white noise and
not necessarily independent over time� the forecasts obtained recursively as

yT �h� � A�yT �h� �� � � � �� ApyT �h� p�� h � �� �� � � � � �	�
�

with yT �j� � yT�j for j � �� are just best linear forecasts �see L�utkepohl ������ Sec� ������
for an illustrative example��

It may be worth pointing out that the forecast MSEs for integrated processes are generally
unbounded as the horizon h goes to in�nity� Thus the forecast uncertainty increases without
bounds for forecasts of the distant future� This contrasts with the case of I��� variables for
which the forecast MSEs are bounded by the unconditional covariance �y of yt� This means�
in particular� that forecasts of cointegration relations have bounded MSEs even for horizons
approaching in�nity�
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The corresponding forecast intervals re�ect this property as well� Assuming that the
process yt is Gaussian� that is� ut � iid N����u�� the forecast errors are also multivariate
normal� This result may be used to set up forecast intervals of the form

�yk�T�hjT � c�����
k�h�� yk�T�hjT � c�����
k�h�� �	���

where c����� is the ��� �
�
���� percentage point of the standard normal distribution� yk�T�hjT

denotes the kth component of yT�hjT and 
k�h� denotes the square root of the kth diagonal
element of �y�h�� that is� 
k�h� is the standard deviation of the h�step forecast error for the
kth component of yt� Obviously� if 
k�h� is unbounded for h��� the same is true for the
length of the interval in �	����

To illustrate these issues consider the following bivariate VAR��� example process with
cointegrating rank �� �

y�t
y�t

�
�

�
� �
� �

� �
y��t��
y��t��

�
�

�
u�t
u�t

�
� �	�
�

The corresponding VECM representation is

�yt �

�
� ��
� �

�
yt�� � ut �

�
�
�

�
������yt�� � ut�

that is�

� �

�
�
�

�
� � � � �������

For this process it is easily seen that $� � I� and

$j � Aj
� �

�
� �
� �

�
� j � �� �� � � � �

which implies

�y�h� �
h��X
j��

$j�u$�
j � �u � �h� ��

�

�� 
��

�� 
��

�
� h � �� �� � � � �

where 
�� is the variance of u�t� Moreover� the conditional expectations are yk�T�hjT � y��T
�k � �� ��� Hence� the forecast intervals are�

y��T � c�����
q

�k � �h� ��
��� y��T � c�����

q

�k � �h� ��
��

	
� k � �� ��

Obviously the length of this interval approaches in�nity for h���
On the other hand� multiplying �	�
� by�

� ��
� �

�

gives �
� ��
� �

�
yt �

�
� �
� �

�
yt�� �

�
� ��
� �

�
ut

which implies that the cointegration relation zt � y�t � y�t � u�t � u�t is zero mean white
noise� Thus� the forecast intervals for zt for any forecast horizon h are of constant length�

�zT�hjT � c�����
z�h�� zT�hjT � c�����
z�h�� � ��c�����
z� c�����
z��
where 
�z � Var�u�t��Var�u�t���Cov�u�t� u�t� is the variance of zt and zT�hjT � � for h 
 �
has been used�

��



����� Estimated Processes

In practice the parameters of a VAR process are usually estimated� We will now consider
the implications for the forecast precision� For that purpose� we denote the optimal h�step
forecast by yT�hjT as in �	��� and furnish its counterpart based on estimated coe�cients by
a hat�

�yT�hjT � �A��yT�h��jT � � � �� �Ap�yT�h�pjT � �	���

where� of course� �yT�jjT � yT�j for j � � and the �Ai �i � �� � � � � p� are estimated parameters�
The corresponding forecast error is

yT�h � �yT�hjT � �yT�h � yT�hjT � � �yT�hjT � �yT�hjT �

�
h��X
j��

$juT�h�j � �yT�hjT � �yT�hjT ��
�	����

At the forecast origin T the �rst term on the right�hand side involves future residuals only
whereas the second term involves present and past variables only� provided only past variables
have been used for estimation� Consequently� if ut is independent white noise� the two terms
are independent� Moreover� under standard assumptions� the di�erence yT�hjT � �yT�hjT is
small in probability as the sample size used for estimation gets large� Hence� the forecast
error covariance matrix in this case is

��y�h� � Ef�yT�h � �yT�hjT ��yT�h � �yT�hjT ��g
� �y�h� � o����

�	����

where o��� denotes a term which approaches zero as the sample size tends to in�nity� Thus�
for large samples the estimation uncertainty may be ignored in evaluating the forecast pre�
cision and setting up forecast intervals� In small samples� including a correction term is
preferable� however� In this case the precision of the forecasts will depend on the precision
of the estimators� Hence� if precise forecasts are desired� it is a good strategy to look for
precise parameter estimators� For the stationary case� see L�utkepohl ������ Chapter �� for
further details and� for the nonstationary case� see Reimers ������� Engle � Yoo ���
�� and
Basu � Sen Roy ���
�� for further discussion�

��� Granger�Causality Analysis

����� The Concept

The causality concept introduced by Granger ���
�� is perhaps the most widely discussed
form of causality in the econometrics literature� Granger de�nes a variable y�t to be causal for
another time series variable y�t if the former helps predicting the latter� Formally� denoting
by y��t�hj�t

the optimal h�step predictor of y�t at origin t based on the set of all the relevant
information in the universe %t� y�t may be de�ned to be Granger�noncausal for y�t if and
only if

y��t�hj�t
� y��t�hj�tnfy��sjs�tg� h � �� �� � � � � �	����

Here %t nA denotes the set containing all elements of %t which are not in the set A� In other
words� y�t is not causal for y�t if removing the past of y�t from the information set does not
change the optimal forecast for y�t at any forecast horizon� In turn� y�t is Granger�causal for
y�t if the equality in �	���� is violated for at least one h and� thus� a better forecast of y�t

�




is obtained for some forecast horizon by including the past of y�t in the information set� If
%t � f�y��s� y��s��js � tg and �y�t� y�t�

� is generated by a bivariate VAR�p� process�

�
y�t
y�t

�
�

pX
i��

�
����i ����i
����i ����i

� �
y��t�i
y��t�i

�
� ut� �	����

then �	���� is easily seen to be equivalent to

����i � �� i � �� �� � � � � p� �	����

It is perhaps worth mentioning that Granger�causality can also be investigated in the
framework of the VECM� Writing that model for the presently considered bivariate case as

�
�y�t
�y�t

�
� �� �

�
y��t��
y��t��

�
�

p��X
i��

�
����i ����i
����i ����i

� �
�y��t�i
�y��t�i

�
� ut�

it is easy to see that �	���� is equivalent to ����i � � �i � �� � � � � p � �� and the element
in the lower left hand corner of �� � is also zero� Of course� in a bivariate situation the
cointegrating rank r can only be �� � or �� where r � � is the only case which may involve
genuine cointegration� In that case� � and � are ��� �� vectors and

�� � �

�
��
��

�
���� ��� �

�
���� ����
���� ����

�
�

Thus� in this case� ���� � � needs to be checked in addition to ����i � � �i � �� � � � � p � ��
�see also Mosconi � Giannini ��������

Economic systems usually consist of more than two relevant variables� Hence� it is
desirable to extend the concept of Granger�causality to higher dimensional systems� Di�erent
possible extensions have been considered �see� e�g�� L�utkepohl ������� Dufour � Renault
����
��� One possible generalization assumes that the vector of all variables� yt� is partitioned
into two subvectors so that yt � �y��t� y

�
�t�

�� Then the de�nition in �	���� may be used for
the two subvectors y�t� y�t rather than two individual variables� If %t � fysjs � tg and
yt is a VAR process of the form �	����� where the �kh�i are now matrices of appropriate
dimensions� the restrictions for noncausality are the same as in the bivariate case so that y�t
is Granger�noncausal for y�t if ����i � � for i � �� � � � � p �L�utkepohl ������ Sec� ��������

This approach is not satisfactory if interest centers on a causal relation between two
variables within a higher dimensional system because a set of variables being causal for
another set of variables does not necessarily imply that each member of the former set is
causal for each member of the latter set� Therefore it is of interest to consider causality of y�t
to y�t if there are further variables in the system� In this context� di�erent causality concepts
have been proposed which are most easily explained in terms of the three�dimensional VAR
process

yt �

�
��
y�t
y�t
y	t

�
�� �

pX
i��

�
��
����i ����i ��	�i
����i ����i ��	�i
�	��i �	��i �		�i

�
��
�
��
y��t�i
y��t�i
y	�t�i

�
��� ut� �	��	�

Within this system causality of y�t for y�t is sometimes checked by testing

H� � ����i � �� i � �� � � � � p� �	��
�

��



These restrictions are not equivalent to �	����� however� They are equivalent to y��t��j�t
�

y��t��j�tnfy��sjs�tg� The information in past y�t may still help improving the forecasts of y�t
more than one period ahead if �	��
� holds �L�utkepohl �������� Intuitively this happens
because there may be indirect causal links� e�g�� y�t may have an impact on y	t which in
turn may a�ect y�t� Thus� the de�nition of noncausality corresponding to the restrictions in
�	��
� is not in line with an intuitive notion of the term� For higher dimensional processes
the de�nition based on �	���� results in more complicated nonlinear restrictions for the VAR
coe�cients� Details are given in Dufour � Renault ����
��

����� Testing for Granger�Causality

Wald tests are standard tools for testing restrictions on the coe�cients of VAR processes
because the test statistics are easy to compute in this context� Unfortunately� they may
have nonstandard asymptotic properties if the VAR contains I��� variables� In particular�
Wald tests for Granger�causality are known to result in nonstandard limiting distributions
depending on the cointegration properties of the system and possibly on nuisance parameters
�see Toda � Phillips ��������

Dolado � L�utkepohl ����
� and Toda � Yamamoto ����	� point out a simple way to
overcome the problems with these tests in the present context� As mentioned in Section
���� the nonstandard asymptotic properties of the standard tests on the coe�cients of coin�
tegrated VAR processes are due to the singularity of the asymptotic distribution of the
LS estimators� Hence� the idea is to get rid of the singularity by �tting a VAR process
whose order exceeds the true order� It can be shown that this device leads to a nonsingular
asymptotic distribution of the relevant coe�cients� overcoming the problems associated with
standard tests and their complicated nonstandard limiting properties�

More generally� as mentioned in Section ���� Dolado � L�utkepohl ����
� show that
whenever the elements in at least one of the complete coe�cient matrices Ai are not restricted
at all under the null hypothesis� the Wald statistic has its usual limiting ���distribution�
Thus� if elements from all Ai� i � �� � � � � p� are involved in the restrictions as� for instance� in
the noncausality restrictions in �	���� or �	��
�� simply adding an extra �redundant� lag in
estimating the parameters of the process� ensures standard asymptotics for the Wald test�
Of course� if the true DGP is a VAR�p� process� then a VAR�p � �� with Ap�� � � is also
an appropriate model� The test is then performed on the Ai� i � �� � � � � p� only�

For this procedure to work it is neither necessary to know the cointegration properties of
the system nor the order of integration of the variables� Thus� if there is uncertainty with
respect to the integration properties of the variables an extra lag may simply be added and
the test may be performed on the lag augmented model to be on the safe side� Unfortunately�
the procedure is not fully e�cient due to the redundant parameters�

It may be worth noting that the procedure remains valid if an intercept or other deter�
ministic terms are included in the VAR model� as a consequence of results due to Park �
Phillips ���
�� and Sims� Stock � Watson ������� A generalization of these ideas to Wald
tests for nonlinear restrictions representing� for instance� other causality de�nitions� is dis�
cussed by L�utkepohl � Burda ������� Testing for Granger�causality in in�nite order VAR
processes is considered by L�utkepohl � Poskitt ����
a� and Saikkonen � L�utkepohl ����
��

��



��� Impulse Response Analysis

����� Concepts and Ideas

Tracing out the e�ects of shocks in the variables of a given system may also be regarded as
a type of causality analysis� If the process yt is I���� it has a Wold moving average �MA�
representation

yt � $�ut � $�ut�� � $�ut�� � � � � � �	����

where $� � IK and the $s can be computed recursively as in �	���� The coe�cients of this
representation may be interpreted as re�ecting the responses to impulses hitting the system�
The �i� j�th elements of the matrices $s� regarded as a function of s� trace out the expected
response of yi�t�s to a unit change in yjt holding constant all past values of yt� Since the
change in yit given fyt��� yt��� � � �g is measured by the innovation uit� the elements of $s

represent the impulse responses of the components of yt with respect to the ut innovations�
In the presently considered I��� case� $s � � as s��� Hence� the e�ect of an impulse is
transitory as it vanishes over time� These impulse responses are sometimes called forecast

error impulse responses because the ut are the ��step ahead forecast errors�
Although the Wold representation does not exist for nonstationary cointegrated processes

it is easy to see from Section 	���� that the $s impulse response matrices can be computed
in the same way as in �	��� �L�utkepohl ������ Chapter ���� L�utkepohl � Reimers ��������
In this case the $s may not converge to zero as s�� and� consequently� some shocks may
have permanent e�ects� Assuming that all variables are I���� it is also reasonable to consider
the Wold representation of the stationary process �yt�

�yt � &�ut � &�ut�� � &�ut�� � � � � � �	��
�

where &� � IK and &j � $j�$j�� �j � �� �� � � ��� Again� the coe�cients of this representation
may be interpreted as impulse responses� Because $s �

Ps
j�� &j� s � �� �� � � �� the $s may

be regarded as accumulated impulse responses of the representation in �rst di�erences�
A critique that has been raised against forecast error impulse responses is that the under�

lying shocks are not likely to occur in isolation if the components of ut are not instantaneously
uncorrelated� that is� if �u is not diagonal� Therefore� in many applications the innovations
of the VAR are orthogonalized using a Cholesky decomposition of the covariance matrix �u�
Denoting by P a lower triangular matrix such that �u � PP �� the orthogonalized shocks are
given by �t � P��ut� Hence� in the stationary case we get from �	�����

yt � '��t � '��t�� � � � � � �	����

where 'i � $iP �i � �� �� �� � � ��� Here '� � P is lower triangular so that an � shock in the
�rst variable may have an instantaneous e�ect on all the variables� whereas a shock in the
second variable cannot have an instantaneous impact on y�t but only on the other variables
and so on�

Since many matrices P exist which satisfy PP � � �u� using this approach is to some
extent arbitrary� Even if P is found by a lower triangular Choleski decomposition� choosing
a di�erent ordering of the variables in the vector yt may produce di�erent shocks� Hence�
the e�ects of a shock may depend on the way the variables are arranged in the vector yt� In
view of this di�culty� Sims ���
�� recommends to try various triangular orthogonalizations
and check the robustness of the results with respect to the ordering of the variables� He

��



also recommends using a priori hypotheses about the structure if possible� The resulting
models are known as structural VARs� They are of the general form ������ In addition� the
residuals may be represented as vt � R�t and �t is a �K��� vector of structural shocks with
covariance matrix E��t�

�
t� � ��� Usually it is assumed that �� is a diagonal matrix so that

the structural shocks are instantaneously uncorrelated� The relation to the reduced form
residuals is given by ��

�ut � R�t�
In recent years� di�erent types of identifying restrictions were considered �see� e�g�� Wat�

son ������ and L�utkepohl � Breitung ������ for discussions�� The aforementioned triangular
system is a special case of such a class of structural models with P � ��

�
��R� Obviously�

identifying restrictions are required to obtain a unique structural representation� In the early
literature� linear restrictions on ��

� or R were used to identify the system �e�g�� Pagan ����	���
Later Blanchard � Quah ���
��� King� Plosser� Stock � Watson ������� Gali ������ and
others introduced nonlinear restrictions� To motivate the nonlinear constraints it is useful
to consider the moving average representation �	��
� and write it in terms of the structural
residuals�

�yt � (��t � (��t�� � (��t�� � � � � � �	����

where (s � &s�
�
�

��R �s � �� �� � � ��� The long run impact of the structural shocks on yt
is given by limn�� �yt�n���

�
t � limn�� $n��

�
��R �

P�
s�� (s � )(� If the shock �jt has a

transitory e�ect on yit� then the �i� j�th element of )( is zero� Hence� the restriction that �jt
does not a�ect yit in the long run may be written as the nonlinear constraint

e�i )(ej � e�i�IK � &� � &� � � � ����
�

��Rej � ��

Here ei �ej� is the ith �jth� column of the identity matrix� It can be shown that for a
cointegrated system with cointegrating rank r� the matrix )( has rank n � r so that there
exist n� r shocks with permanent e�ects �e�g�� Engle � Granger ���
����

Imposing this kind of nonlinear restrictions in the estimation procedure requires that
nonlinear procedures are used� For instance� generalized methods of moments �GMM� esti�
mation may be applied �see Watson �������� In the following subsection we will discuss the
estimation of impulse responses when estimators of the model parameters are available�

����� Asymptotic Theory and Bootstrapping

If an estimator ��� say� of the VAR coe�cients summarized in the vector � is available�
estimators of the impulse responses may be obtained as

��ij�h � �ij�h����� �	����

Assuming that �� has an asymptotic normal distribution�

p
T ���� ��

d� N�������� �	����

the �ij�h are also asymptotically normally distributed�

p
T ���ij�h � �ij�h�

d� N��� 
�ij�h�� �	����

where


�ij�h �
��ij�h
���

���
��ij�h
��

�	����

��



and ��ij�h��� denotes the vector of �rst order partial derivatives of �ij�h with respect to
the elements of �� The limiting result in �	���� holds if 
�ij�h is nonzero which in turn is
guaranteed if ��� is nonsingular and ��ij�h��� �� �� Note that the covariance matrix ��� may
be singular if there are constraints on the coe�cients or� as mentioned earlier� if there are
I��� variables� The partial derivatives will also usually be zero in parts of the parameter
space because the �ij�h generally consist of sums of products of the VAR coe�cients and�
hence� the partial derivatives will also be sums of products of such coe�cients which may
be zero� Nonzero partial derivatives are guaranteed if all elements of � are nonzero� In
other words� �tting subset VAR models where all those coe�cients are restricted to zero
which are actually zero� helps to make the asymptotics work� Of course� in practice it is
usually unknown which coe�cients are zero� Therefore some pretesting is applied in �nding
a parsimoniously parameterized model�

In practice� bootstrap methods are often used to construct con�dence intervals �CIs� for
impulse responses because these methods occasionally lead to more reliable small sample
inference than asymptotic theory� Moreover� the analytical expressions of the asymptotic
variances of the impulse response coe�cients are rather complicated� Using the bootstrap for
setting up CIs� the precise expressions of the variances are not needed and� hence� deriving
the analytical expressions explicitly can be avoided� Unfortunately� the bootstrap does not
necessarily overcome the problems due to a singularity in the asymptotic distribution which
results from a zero variance in �	����� In other words� in these cases bootstrap CIs may not
have the desired coverage� For a critical discussion see Benkwitz� L�utkepohl � Neumann
�������

��� Forecast Error Variance Decomposition

In practice forecast error variance decompositions are also popular tools for interpreting
VAR models� Expressing the h�step forecast error from �	��� in terms of the orthogonalized
impulse responses �t � ���t� � � � � �Kt�

� � P��ut from �	����� where P is a lower triangular
matrix such that PP � � �u� gives

yT�h � yT�hjT � '��T�h � '��T�h�� � � � � � 'h���T���

Denoting the ijth element of 'n by �ij�n� the kth element of the forecast error vector becomes

yk�T�h � yk�T�hjT �
h��X
n��

��k��n���T�h�n � � � �� �kK�n�K�T�h�n��

Using that the �kt are contemporaneously and serially uncorrelated and have unit variances
by construction� it follows that the corresponding forecast error variance is


�k�h� �
h��X
n��

���k��n � � � �� ��kK�n� �
KX
j��

���kj�� � � � �� ��kj�h����

The term ���kj�� � � � � � ��kj�h��� is interpreted as the contribution of variable j to the h�
step forecast error variance of variable k� This interpretation makes sense if the �it can be
interpreted as shocks in variable i� Dividing the above terms by 
�k�h� gives the percentage
contribution of variable j to the h�step forecast error variance of variable k�

�kj�h� � ���kj�� � � � �� ��kj�h����

�
k�h��

��



These quantities� computed from estimated parameters� are often reported for various fore�
cast horizons� Clearly� their interpretation as forecast error variance components may be
criticized on the same grounds as orthogonalized impulse responses because they are based
on the latter quantities�

��� Policy Analysis

If there are superexogenous variables in the system ������ the model may also be used directly
for policy analysis� In other words� if a policy maker a�ects the values or properties of zt the
e�ect on the endogenous variables may be investigated within the conditional model ������
If the policy maker sets the values of zt the e�ect of such an action can be analyzed by
considering the resulting dynamic e�ects on the endogenous variables similar to an impulse
response analysis� In general� if zt represents stochastic variables� it is more natural to think
of policy actions as changes in the distribution of zt� For instance� a policy maker may shift
the mean of zt� Again� such changes can be analyzed in the context of our extended VAR
models� For details see� for example� Hendry � Mizon ����
��

� Conclusions and Extensions

Since the publication of Sims ���
�� critique of classical econometric modeling VAR pro�
cesses have become standard tools for macroeconometric analyses� A brief introduction to
these models� their estimation� speci�cation and analysis has been provided� Special atten�
tion has been given to cointegrated systems� Forecasting� causality� impulse response and
policy analysis are discussed as possible uses of VAR models� In some of the discussion
exogenous variables and deterministic terms are explicitly allowed for and� hence� the model
class is generalized slightly relative to standard pure VAR processes�

There are now di�erent software packages that support VAR analyses� For example�
PcFiml �see Doornik � Hendry ������� and EVIEWS may be used� Furthermore� packages
programmed in GAUSS exist which simplify a VAR analysis �see� e�g�� Haase et al� ��������

In practice� further model generalizations are often useful� For instance� to obtain a
more parsimonious parameterization allowing for MA terms as well and� hence� considering
the class of vector autoregressive moving average processes may be desirable �see Hannan
� Deistler ���

�� L�utkepohl � Poskitt ����
b��� Extensions of these models to cointe�
grated systems are discussed by L�utkepohl � Claessen ������� Bartel � L�utkepohl ����
�
and Poskitt � L�utkepohl ����	�� Especially for �nancial time series modeling the conditional
second moments is sometimes of primary interest� Multivariate ARCH type models that can
be used for this purpose are� for instance� discussed by Engle � Kroner ����	�� Generally�
nonlinearities of unknown functional form may be treated nonparametrically� semiparamet�
rically or seminonparametrically� A large body of literature is currently developing on these
issues� For some references see H�ardle� L�utkepohl � Chen �������
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