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On weak Brownian motions of arbitrary order!

Hans Follmer?, Ching-Tang Wu®, = Marc Yor!

Abstract

We show the existence, for any & € N, of processes which have the same
k-marginals as Brownian motion, although they are not Brownian motions.
For k = 4, this proves a conjecture of Stoyanov. The law P of such a “weak
Brownian motion of order k” can be constructed to be equivalent to Wiener
measure P on C[0,1]. On the other hand, there are weak Brownian motions
of arbitrary order whose law is singular to Wiener measure. We also show
that, for any € > 0, there are weak Brownian motions whose law coincides

with Wiener measure outside of any interval of length ¢.
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2 On weak Brownian motions of arbitrary order

1 Introduction

Our main aim in this paper is to construct families, indexed by k& € N, of stochastic
processes (X;);>o which look more and more like Brownian motions, as k increases,

although they are not Brownian motions.

Theorem 1.1. Let k € N. There ezists a process (X¢)o<i<1 which is not Brow-
nian motion such that the k-dimensional marginals of X are identical to those of

Brownian motion.

In particular, we solve Stoyanov’s conjecture which corresponds to the case k = 4:

There exists a process X with Xy = 0 satisfying the following two conditions:

(i) Xy — X5 ~ N(0,t —s), for all s < t.

(ii) Any two increments X, — Xy, and Xy, — Xy, are independent, for 0 < t; <ty <
ty < ty.

But X is not a Brownian motion; see, Stoyanov ([19], p.292); also ([20], p.316).

A process (X;)o<t<1 whose k-dimensional marginals coincide with those of Brow-
nian motion will be called a weak Brownian motion of order k. For any k > 1, we
are going to show that there is a weak Brownian motion of order £ whose law is
equivalent to, but differs from, Wiener measure. This amounts to the existence of a
random variable ® > 0 on C[0, 1], such that for every ¢;,---,t; <1,

E]P’[®|Xt17)th]:1’ ¢¢1 (1)

with respect to Wiener measure P. In order to obtain such @, it suffices to construct
U, uniformly bounded (by 1/2, say), such that

EP[\II|Xt1a:th]:Oa \I/$_é0 (2)

for every ti,---,t; < 1. That (2) implies (1) is obvious: take ® = 1 4+ W¥. As
a consequence, densities ® generating a weak Brownian motion of order k£ can be
chosen arbitrarily uniformly close to 1.

In Section 3 we characterize functionals ¥ € L?(PP) with vanishing projections of
order k (i.e., satisfying (2)) in terms of the integrands appearing in the representation
of ¥ as a stochastic integral of Brownian motion. In Section 4, this characterization
will be used in order to construct such U’s in L*°(IP), hence weak Brownian motions

of any order k£ whose law is equivalent to Wiener measure. But we will also show



On weak Brownian motions of arbitrary order 3

that there are weak Brownian motions of arbitrary order whose law is singular to
Wiener measure.

In Section 5 we construct weak Brownian motions with an even stronger property.
We show that, for any € € (0, 1), there exists a probability measure P on C[0, 1] which
is different from Wiener measure P but coincides with P outside of any interval
of length e. In particular, P defines a weak Brownian motion of order & for any
k < e7' —1, but the resemblance to Brownian motion goes much further. Actually,
this construction is valid in a very general context, where the reference measure P
is the law of a non-degenerate Markov process.

If X is a weak Brownian motion of order £ > 4, then X admits a continuous

version whose paths have quadratic variation
(X)e=1; (3)

see Proposition 2.1. This property allows us to apply Ito calculus in a strictly
pathwise manner (Follmer [4]) even though X may not be a semimartingale. In
particular, the It6 integral

/0 F(X)dX,

exists as a pathwise limit of non-anticipating Riemann sums along dyadic partitions
for any bounded f € C' and satisfies It6’s formula. Given the existence of the

quadratic variation in (3), a weak Brownian motion of any order k£ > 1 satisfies

E [/Otf(Xs)dXs] =0 (4)

for any bounded f € C?, since Ito’s formula allows us to compute the left hand side
of (4) from the 1-dimensional marginals of X. Property (4) may be viewed as a weak
form of the martingale property. In Section 7 we introduce the corresponding notion
of a weak martingale. We show that, in the class of continuous semimartingales
which satisfy condition (3), weak martingales can be characterized as weak Brownian
motions of order 1.

In Section 6 we consider Gaussian semimartingales of the form

t pru
X, =W, — / / l(u,v)dW,du,
0 Jo

where (17};) is a Brownian motion and [ is a continuous Volterra kernel. We formulate

criteria in terms of [ for X to be either a Brownian motion or a weak Brownian
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motion of order 1. In particular, we show that there are Gaussian semimartingales
other than Brownian motion which have quadratic variation (X); = ¢ and are weak

Brownian motions of order 1.

2 General properties of weak Brownian motions

We first give a definition of weak Brownian motions of order k.

Definition 2.1. Let £ € N, and let X = (X;)o<t<1 be a real-valued stochastic
process. We shall say that (X;)o<i<1 is a weak Brownian motion of order k if for
every k-tuple (t1,%a,---, 1),

law
(Xi, Xpyo -5 X0) "2 (Buy, Biy, -+, Byy), (5)

where (By)o<i<1 is a Brownian motion.

Using this terminology, we can write Stoyanov’s conjecture as: There exist weak
Brownian motions of order 4 which are not Brownian motions. Theorem 1.1 shows
that this conjecture is true, and that it is also valid for any order £.

Proposition 2.1. Let X be a weak Brownian motion of order k.
1) If k > 2, then X admits a continuous version.
2) If k > 4, then X has quadratic variation

(XD =t (6)

Proof. 1) The existence of a continuous version follows from Kolmogorov’s criterion.

2) Under our hypothesis, we have

E (Z ()(SHI—)(&,)Z—t)2 —E (Z (Bsi+1—Bsi)2—t>2 , (7

si€7,5i<t si€T5i<t
for any finite partition 7 of [0,1]. These expectations converge to 0 if we consider
any sequence of partitions (7,,) such that sup, ., (sit1 — s;) goes to 0. Therefore,
the quadratic variation (X ), exists as a limit in £? and satisfies (X); = t. Moreover,
if we choose the sequence (7,) of dyadic partitions, then the series (indexed by n)
of the expectations in (7) converges, and so we get

]iy{n Z (X8i+1 - X51)2 =t

1:8;€Tp,5; <t

a.s.. O
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Remark 2.1. Suppose that (X;)o<;<1 is a continuous weak Brownian motion of
order k > 1, and denote by P its law on C10,1]. Let us assume that P is concentrated
on the set of continuous paths which have quadratic variation (X); = t along the
sequence of dyadic partitions; the preceding proposition shows that this assumption
is satisfied if k¥ > 4. Under this assumption we can apply It6 calculus in a strictly
pathwise manner; see Follmer [4]. Denoting by (X;) the coordinate process on
C10, 1], we obtain

/Ot F(X,)dX, = F(X,) — F(Xo) — %/Ot F1(X,)ds,

for any bounded function f € C*(R'), where F satisfies F' = f. By Fubini’s theorem

we see that
B[ [ s0xax] = e - Brow) - 5 [ Broc)ds

only depends on the one-dimensional marginals of X. Thus, any weak Brownian
motion of order k > 1 satisfies

E [/Otf(Xs)dXs] =0 (8)

under the additional assumption that (6) is satisfied. This implies that X is a weak
martingale in the sense of Definition 7.1 below; see also Carmona-Petit-Yor [1] and

Petit-Yor [15] for analogous “weak”notions.

Remark 2.2. A continuous weak Brownian motion may have a non-zero quadratic
variation without being a semimartingale. Here is an example in the case k = 1.
Let (B;)o<t<1 be a Brownian motion. The process X defined by

Bta t S

Y

DN | =

Xt ==
1
Bi+(V2-1)B, 1, t> 5
is a continuous weak Brownian motion of order 1 and satisfies
d(X); =dt, t<s3,
d(X), =(V2-1)%dt, t>1

But X is not a semimartingale.
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Remark 2.3. For £ = 1, condition (6) is not automatically deduced from (5).

Indeed, the process with bounded variation
Xt = \/ZNa

where N ~ N(0,1), satisfies (5) but not (6). We may even find Gaussian continuous
semimartingales (X;), with a non-trivial martingale part, which satisfy (5) for k = 1,

but not (6). For example, the process X = (X;)o<t<x/s given by
t
Xt = Mt + / Mudu,
0

where (M;)o<i<r/s is a Gaussian martingale with quadratic variation e *sint, i.e.,
My = Be-t gy with a Brownian motion B. Clearly, X; ~ N(0,t) for all ¢ € [0, 7/4],
but

(X)y = (M); = e 'sint.

Let us now assume that X is a continuous semimartingale with quadratic varia-

tion (X); =t and with absolutely continuous drift term. Thus, X takes the form

t
X, = B, +/ vs ds, 9)
0

where B is a Brownian motion and (v;) is a previsible process satisfying

t
/ B [Jva]] du < 0o
0

for all £ > 0. The next proposition provides a characterization of weak Brownian

motions of such type.

Proposition 2.2. A process X of the form (9) is a weak Brownian motion of order
k if and only if for every t; <ty < --- <tp_1, then dt-almost surely, fort > t;,_1,

E[vt|Xt17Xt2a”';th_laXt] = 0 (10)

Proof. 1) Suppose that X given by (9) is a weak Brownian motion of order k.
Then, for every bounded Borel function ¢ : R¥"! — R, and every bounded function
f € CYR), X satisfies

ty
E QO(tith Tt 7th,1) / f(Xs)dXS] = 07 (11)
te—1
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since the above stochastic integral is identical to

F(X,) - F(X,, ) — / F(x

where F(z) = [ f(y)dy. Hence, from our hypothesis, the left-hand side of (11)
is equal to the same quantlty for Brownian motion, hence is equal to 0. (10) now
follows easily.

2) Conversely, assuming that (10) holds, we proceed by iteration with respect to
j < k, in order to show finally that the joint characteristic function

exp( Z)\ th th_1)>]

Gr( A1y Aty -, tg) ==

(A €ER, t) <ty < -+ <ty <1y) equals

k
exp (—% Z A (t; — tj_l)) .
j=1
Hence, let us assume, for instance, that with obvious notation
=
Gr—1 (A1 Agy+ ooy Ap—13ti, o, - o+, 1) = €xp (—5 Z A3 (t; — tj—l)) ;
j=1

and applying It6’s formula to obtain, for ¢ > ¢;_4,

Ok (A1, Agy oo, Apstr, to, v Tk, T)

k—1
1

]
Fide /
th—1

AQ t
—?k/ Ok (A1, Agy o, Ags by, to, - -+ e, u)du. (12)
te—1

k—1
Uy €XP (lz/\J Xi; — th—l)) exp (iAe(Xy — thl))] du
j=1

It now follows from (10) that for ¢ > ¢;_1,

t
tp—1

Hence, the identity (12) simplifies into a linear integral equation for @y (A1, Ag, - - -, Ag;

k—1
Uy, €XP (z Z Aj( Xy — th_1)> exp (i)\k(Xu — th_l))] du = 0.
7=1

t1,t9, -+, tk_1,t) which, when solved, yields the desired equality. O
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Remark 2.4. Using a similar argument we may extend this proposition to a pair

to processes X, Y given by

t t
X, = B, +/ Usds, Y, =B, +/ v,ds,
0 0

where B and B’ are two Brownian motions. Then (X;) and (Y;) have the same
distributions of order £ if and only if for all ¢t; < --- < t;, j € {0,1,---,k — 1},
t e [tj, tj_|_1], dt—a.s.,

E[ut|Xt1 =Ty, ,th = xj,Xt = .’E] = E[Utu/rtl =1, 'a}/;fj = Ty, }/;f = .T] (13)
This result also extends Petit-Yor [15].

Proof. By analogy with the proof of Proposition 2.2, we use ¢ for X and ¢} for
Y. Assume ¢ | = ¢f . If ¢ = ¢}, from (12) we get

[ k—1
E |ugexp (ZZ (X, — th_1)> exp (i (X, — th))]
i j=1

k—1
= F |vexp (iZAj(Ytj - Ytjl)> exp (i (V; — Yy,))
7j=1

) (14)

which implies (13). Conversely, if (14) holds, then we consider ¢y (t1,- - -, tk_1,t) as

the solution of a linear equation and this results in ¢;¥ = @} . O

Remark 2.5. In fact, it may be interesting to exploit (12) more completely by

considering (12) as a linear equation for
t— ¢k()‘la T /\k;tl, crey g, t)a

which can be expressed in terms of ¢;_; and

u— B

k—1
Uy €XP (zz Ai( Xy — th_l)) exp (i ( Xy — Xy, _,))
j=1

Ultimately, this method seems to relate E[v,|Xy,,- -, Xy, |, X,] to the k-marginals
of X.
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Of course, the only Gaussian process with two-dimensional Brownian marginals
is Brownian motion. But, we may also ask, for £ < 3, about the existence of
semimartingales (X;) which would satisfy (5) but not (6). In particular, does there
exist an absolutely continuous process X; = fot vsds which satisfies (5) for k < 37
The preceding remark shows that the answer is positive for £ = 1, and part (i) of
the following proposition gives a characterization of such examples. Parts (ii) and

(iii) provide partial negative answers in the case k = 2.

Proposition 2.3. (i) If the process (X;) given by

t
Xt:/ vy du, (15)
0

is a weak Brownian motion of order 1, then du-a.s

Bl X, = 3 (16)

(i) If X satisfying (15) is a weak Brownian motion of order 2, then for any s,

du-a.s., u > s,
Xu - Xs

Efv,| X5, Xy] = m

(17)

Furthermore, u — v, cannot be right-continuous in L'.

(iii) There is no continuous process with bounded variation (Xs;s < 1) such that
law
(X., X)) "2 (B,, B). (18)

and

1
/ |dX,| € L*(P). (19)
0
Proof. 1) The first assertion is a general consequence of the “weak scaling” property
(law)
Xt —_ \/-EXI’ (20)

for any given ¢; see Appendix of Pitman-Yor [16]. However, we sketch the proof.
For f € C! with compact support, we have

Blx] = 50+ B t e
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Then we take derivative with respect to ¢, which yields

GO =5 (B[ (Vix)]) = 52 [ (Vix) ] = 2B LX),

On the other hand, we have
Elv f'(Xy)] = E[E[v| X f' (X)),

which yields the result. Or we may use an argument similar to the proof of the
second assertion.

2) Let s < t. From our assumption, we have

E[f(Xo)g(X:)] = E[f(Bs)g(By)],

for all bounded functions f and g in C?(R). The left-hand side is equal to

E [f(Xs) (g(Xs) + t g’(Xu)vudu)] |

while the right-hand side is given by

E [f(Bs) (g(Bs) + % /St g"(Bu)du>] :

In particular, for fixed s and u > s, we have, for du-a.s.

E[F(X)d (Xl = S B [F(B)"(B)]. (1)

Let us introduce
¢s,u(xa y) = E[Uu‘Xs = anu = y]

Then, taking for ¢” a bounded function ¢ with compact support, we may rewrite
(21) as
B 1
B18) [ ewivonns.n| = 1EUBIB. @)
It follows from Fubini’s Theorem, and the conditional distribution of B, given B,
that

1 — B,
¢s,u(BSay) =3 (y ) s dy —a.s.,

2\ u—s

which is equivalent to the above statement.
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3) Suppose that X satisfying (15) is a weak Brownian motion of order 2 and that v
is right-continuous in L'. Then from (17), we get
1 [Xu - X

Elvs| X, = 3 liinE

1
Xs} = —Flvg| X,
u— 2

Hence, E[vs|Xs] = 0. But (V) also satisfies (16); hence X; = 0, which is not a weak

Brownian motion of order 2.
4) We now prove the assertion (iii). If (18) and (19) are satisfied, then

E

> ()(&+1-—-)(%)2] =, (23)

4:8; <t
for 0 < s1 <89 < ---< 8, <1. But on the other hand,

1
Z (XSZ.Jrl —Xsi)Q < (/ |dXs|) <sugt‘Xsi+1 - X,
0

. 2:8;
1:5;<t i

)< ([ )’

Hence, by dominated convergence, the left-hand side of (23) converges to 0 as

sup, |si11 — s;| — 0, which is a contradiction. O

3 Criteria for Brownian functionals with vanishing projec-

tions of order k&

Let us consider a Brownian motion (By)i>o and a functional ¥ € L?(By) with
E[¥] = 0, where By, = o(By;t > 0). By It6’s representation theorem, there exists a
unique class of predictable processes (¢,) satisfying

E[/Oood}idu} < 00

W=A¢mm. (24)

such that

Our aim in this section is to formulate conditions on the integrand (v,) which
guarantee that ¥ has vanishing projections of order k, in the sense of equation (2).
Let us first consider the case k = 1.
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Proposition 3.1. The functional U in (24) satisfies
E[V|By] =0, (25)

for all t, if and only if
E[Yu|B,] =0, du—a.s.. (26)

Proof. (25) is equivalent to: for all ¢t and A,

2
E [\I! - exp (i)\Bt + %)] =0.

But this expectation is equal to

t 2
iNE [/ bn - EXP (i)\Bu + %) du] — 0.
0

This proves immediately the equivalence between (25) and (26). O

Remark 3.1. Note that finding solutions of (26) is easy, whereas, a priori, finding
solutions of (25) looks hard. The reason is that in (25) we look for a variable ¥
which satisfies infinitely many constraints, whereas in (26), we look for a process
(1) which, for (almost) every u, satisfies only one constraint. Here is a construction
of a square-integrable predictable process 1 #Z 0 which satisfies condition (26). Let
f # 0 be a continuous function on C[0,1] which has zero expectation and finite

variance under the law of the Brownian bridge. For each u € (0, 1] define
Yu = f(X)

where .
X' = — (Bw — tBy), (t<1).

Vu

Since X* is a standard Brownian bridge which is independent from B,, we obtain
Ethy|By] = E[f(X*)] =0

for any u € (0,1]. Thus, we have shown the existence of a functional ¥ € L? with
vanishing projections of order 1. Note that, in view of Theorem 1.1, we have to
construct a bounded functional with this property. This additional step will be

carried out in Section 4.
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Remark 3.2. Let us give two further proofs for the sufficiency of condition (26).
1) (25) is satisfied if and only if for all f € C°(R) and for all ¢,

B f(B.)] = 0. (27)

It is well known that for fixed ¢, Itd’s representation theorem of the random variable
f(Bt) is .
F(B) = EIF(BI+ [ Pl £) (BB,
0

Therefore, (27) is satisfied if and only if

B [ / - (Pt_u(f'))(Bu)du] 0

and so (26) implies (27), hence (25). We note that, more generally, this argument

Bt:| ’

where, on the right hand side, E[¢,|B,] is chosen in a measurable way.
2) We enlarge the filtration of (B,) with B;. Then we get, for u < ¢,

“ B, — B,
Bu:ﬁqst)+/ : dS,

0 t—s

yields the following identity

E[V|B] = E [ / ' Bl BB,

where (51@)@0 is a Brownian motion with respect to the enlarged filtration (B :=

B, V o(By)); in particular, 3% is independent from B;. Therefore,
t

E[W|B] = E [/ YudBa Bt]
0

t t
_ 0 Yu(B — Bu) ‘ ]
_ E[/O bud B Bt]+E[/0 2t du B,

_ /t Elyu(B. — BJ)|B)] ,

t—u

Since

Elpu(Br — By)|Bi] = E[(B; — Bu)E[thu| Bu]| By]
- BtE [E[wu|Bu]|Bt] —-F [BuE[¢u|Bu]|Bt] ) (28)

we see that condition (26) implies (25).
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In fact, using (26), we can solve equation (25) completely as follows:

Proposition 3.2. The solutions of (25) consist precisely in the variables

/ budB,

Yy = / ' @su(Bu; (Bh, b < 5))dB" (29)
0

for a measurable process s, (By; (Bh, h < 5)) in all “4” variables, such that

E [/ / ©? o(Bu; (Bh, h < s))dsdu] < 00.
o Jo

Proof. ;From the equivalence of (25) and (26), and a measurability argument, all

with

we need is to represent v, as a stochastic integral with respect to (dﬂgu)). In fact,
the representation (29) is a particular case of the following representation of any
variable ¢, € L*(B,) as:

= BB + [ pua(Bui (B < 5)d5
0
To prove this representation, it suffices to consider variables v, of the form:

F(BF(BY b <wu),

which are total in L?(B,). We then use the classical representation result for the
filtration of Brownian motion (here: 3®), together with the fact that B, = BM v
0(By). O

We need the following extension of Proposition 3.1 to the higher dimensional

case.

Proposition 3.3. For the functional ¥ in (24) to satisfy the condition
E[9|By,,---,By] =0, (30)
forallty <ty <--- <ty, it is necessary and sufficient that
E [{4|By,-+,By_,,Bi] =0, (31)

for dt-almost all t, and for all t; < --- < tp_1 < t.
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Proof. 1) In order to show that condition (31) is sufficient, it is enough to show
ug = E[V- fi(By) - fr(By)] =0,

for all fi,---, fr € C*,and all t; < --- <t < 1. We write

tr
Je(Bie) = Pty fy(Brey) + / (Praufl) (BB,

tp—1

Therefore,

Ug = Ug—1 + Vg,
where

up—r:= B[O fi(By) - (i1 - (Po—ty 1 f5)) By 1)) 5 (32)
and
tr
w = B|U-fi(By) - fir(By,) /t (P uf)(B)B,

= [ B ABY B (P A B (33)

tp—1

Due to the assumption (31) we have v, = 0, and since
ug := E[V E[fi(By) - fe(By)Il = 0,

we obtain u; = .-+ = u, = 0 by iterating the argument. Conversely, if, in analogy
to the proof of Proposition 3.1, we take
A2u

ful) = exp (m + 7)

in (32), then we see from (33) that condition (31) is also necessary for (30) to hold.
2) For an alternative proof of the sufficiency of (31), we enlarge the filtration (B;)
with (By,,- -, By,). This is easy since we need only make these enlargements with
By,, then between times [t1, t2], with By,, etc. Explicitly, we get, for t; 1 < u < t;,

“ B _B
B = A% + / Bu =By,

tia Li—$

where (ﬂ&ti))ti_lgugti is a Brownian motion relative to (BJ") := B,Vo(B,)). Applying
a similar argument as in Remark 3.2, we get the desired result. 0
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Remark 3.3. The existence of a bounded predictable process (1/;) which satisfies
condition (31) can be shown by iterating the construction in Remark 3.1. Such an
iterative construction will be carried out in the proof of Theorem 4.1. There we
have to use some additional care since we want to ensure that the resulting function

U is not only square-integrable but even bounded.

4 Construction of weak Brownian motions of order k

In this section we are going to prove Theorem 1.1. Let k£ € N. First we show that
there exists a weak Brownian motion of order k£ whose law is equivalent to Wiener
measure. As pointed out in the introduction, it suffices to construct a bounded
functional of Brownian motion with vanishing projections of order k, and we will

use the characterization of such functionals given in Proposition 3.3.

Theorem 4.1. Let k € N. There exists a bounded nonzero measurable function ¥
on C|0,00) such that, for any 0 < t; < --- < t} < 00,

E[\Ij|Xt1,"',th] :0 (34)
with respect to Wiener measure P.

Proof. We proceed by induction.

1) The assertion is trivially true for & = 0: simply take a bounded nonzero measur-
able function ¥ such that E[¥] = 0. Let us now assume that the assertion holds
for a given n > 0. Thus, there exists a nonzero measurable function ® on C0, co)
which satisfies (34) for £ = n and is bounded in absolute value by 1. We are going
to construct a bounded measurable function ¥ on C[0,00) which satisfies (34) for
k=n+1.

2) We fix ¢y > 0. Consider the Brownian bridge

t
X=X, - t—Xt0 (0 <t <tp),
0
the induced Brownian motion
L+t 4

\/t_o Xt-to/(1+t)

and the bounded random variable

Bj = (t>0),

Y = o B,
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Note that ¢ depends on X only via X%; in particular (1), X%) is independent of
the o-field Fy, = o(Xy,;u > to). Due to (34), assumed to hold for k = n, we can
conclude that

E[@b‘th"'aXtmﬁto} = E[w‘Xff,---,X;O,.ﬁto]
— Bl )

t19°

= E[v]BY.--.BY]

= E[CI) |XS17' "’Xsl]
= 0, (35)

for any t; < --- <t,, where | = max{i : t; < ty} and s; is defined by s;-to/(1+s;) =
..
3) Let ¢ > 0, define the stopping time

T :=inf{t >ty : | X — Xy4| > ¢} (36)
and the bounded predictable process

0 t S th
=
¢I{T2t} t> 1.

Fort >ty and for 0 < t; < --- < t, <t we have

B || X, X P | = Liron B [ | Xy, X g | = 0

due to (35), hence
E [wt |Xt1a e ,th’Xt] =0

for any t > 0 and for 0 < t; < --- < t, < t. Thus, Proposition 3.3 allows us to
conclude that the functional

v = / BdX, = V(X7 — X))
0

satisfies
E [\IJ ‘tha Tt 7th7Xt] = 0.

Moreover, ¥ is bounded in absolute value by ¢ and ¥ # 0. O
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Corollary 4.1. For k > 1 and for any € € (0, 1) there ezists a measurable function
O, on C[0,1] with | ®. — 1 ||< € such that the coordinate process (Xi)o<i<1 5 @

weak Brownian motion of order k under P, = &, - P.

Proof. Take ¢ = € in the preceding construction of U. The functional ¥y = E[¥|F]
satisfies (34) for 0 < t; < --- <t < 1, and &, = 1 + ¥y, viewed as a measurable
function on C|0, 1], defines a measure P. = ®.- P ~ P on C|0, 1] with the desired
properties. ]

Note that, due to the Hahn-Banach theorem, we have shown, ipso facto, the

following theorem.

Theorem 4.2. Let kK € N. The set

k
I, = {H filXy) ity te < 1; f; 0 bounded, Boml—measurable}

i=1
is not total in L'(P).

Remark 4.1. The existence of a functional ¥ € L?(P) with vanishing projections
of order k (see Remarks 3.1 and 3.3) implies the non-totality of TTj, in L?(P). In order
to prove the non-totality of I, in L!(P), we need the refined construction in our
proof of Theorem 4.1 which guarantees that the resulting functional ¥ is actually
bounded.

We may illustrate the construction of weak Brownian motion made in Theorem

4.1 as follows.

Proposition 4.1. Let k € N, and 0 < tg < 1. Consider two independent Brownian
motions (W)o<i<i, and (Wt)tzo starting from 0, as well as a 3-dimensional Bessel
process (Ry)i>o0 which starts from 1 and is independent of W and W. Moreover, let
wr be a Bernoulli random variable with values +1, measurable with respect to ft‘;V
and satisfying

Elor Wiy, Wy ] =0, (37)

forty <ty <--- <ty <ty. Then the process (Xi)o<i<1 given by
i) X, =W, 0<t <t
1) Xyt — Xpy = @r(Ry — 1), OgthEinf{s>0: |Rs—1|:%},
i) Xigrsot — Xegrs =Wiy,  0<t<(1=S8)VO0,
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15 a weak Brownian motion of order k, whose law is equivalent to Wiener measure
in C([0,1]).

Proof. 1) First, we shall construct a probability measure P equivalent to Wiener
measure P such that the coordinate process (X;) is a weak Brownian motion under
P. To ¢k, a Bernoulli random variable with value +1, measurable with respect to

FX on Wiener space and satisfying (37), we associate

k 07 t S t07
Py =
SOkI{TZt}, t > o,

with

1
T:: lnf{t>t0 : |Xt_Xt0‘ Z 5}
Then .
M, :=1 +/ ohdX,
0

is bounded and bounded away from 0. We can therefore define a probability measure

P ~ P via
dP t 1 [t
= M; = exp [/ bSdXs——/ bfds],
7 0 2 /o

dpP

where we set

b P
t . Mt -
Under P the coordinate process satisfies
Wta 0 S t< th
Xt = AT d (38)
Wt+/ o, 21,
o 1+ er(Xs — Xy)

where W is a Wiener process under P. Since for b << <t <t <0 <
ty =1,

E[SDﬂXtU Ty th—ﬁXt] = I{TZt}E [E [th|Xt17 T th] ‘Xtu e 7th_1aXt] = 0.

we get that X is a weak Brownian motion of order k£ under P due to Proposition 2.2
and condition (37). From(38) we get i).
2) Writing

Yi = Xigrt — Xy,
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we obtain i
tA(T—to) d
Pk aS
Y, = Wiyt — W, —_— . 39
t = (Wiost to)+/0 1+ orY, (39)
Multiplying both sides of equation (39) by ¢y, we get
_ tA(T—to) ds
Y, =W, —_— 40
=W [ S0 (40)

where W; := ¢ (W;y1r — Wi,) is a Brownian motion independent of (W}).<,. Fur-
thermore, from (40), we obtain that the process

Ry =1+ @Yy

is a BES(3) process starting from 1 and up to

- 1

Hence we get the desired result. O

Since a weak Brownian motion of order k£ > 4 has the same quadratic variation
as Brownian motion, one might suspect that its law is even equivalent to Wiener

measure. The following theorem shows that this is not necessarily so.

Theorem 4.3. For any k > 1, there exists a weak Brownian motion of order k

whose law P on C10,1] is singular to Wiener measure P.

Proof. Let Py ~ P, Py # P be the law of a weak Brownian motion of order k
which is not a Brownian motion (cf. Theorem 4.1). Take an infinite collection
(Y;:(i))ogtg of independent copies of this weak Brownian motion defined on some
common probability space (2, F,Q), and a sequence 0 = sy < 57 < --- converging
to 1. The idea is to construct a new weak Brownian motion by patching together
rescaled versions of the weak Brownian motions Y@, using them as increments
on the different time intervals [s;, s;11). Thus, let us define a continuous process
(Z1)o<t<1 such that, for s, <t <'s,,

n—1

_ (4) (n)
Ly = Z\/Si =81 Y /S —su1 Y, -

i=1 sn=sn—1
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Note that the sequence

n—1
an:szi_Sz’—l 1/1(1) (’I’L:1,2,)
=1

is a martingale with bounded L?-norm, hence a.s. convergent to a Gaussian random
variable Z;. We denote by P the distribution of (Z;)o<i<; on C[0,1].
1) In order to check that the coordinate process (X;)o<t<1 is a weak Brownian motion
under P, we have to show that

E = Eq

—F , (41)

Hfj(th) Hfj(Btj)

for 0 <t <---<t, <1and f; € C.(R'), where E and F denote the expectation
under P and P, respectively. By continuity, it is enough to consider the case t, < 1.
We claim that, for any [ > 1, condition (41) holds if 0 < ¢; < --- <t < s; . This
is clear if [ = 1. Suppose that condition (41) holds for I = n, and let us check it for
[=n+1 For0<ty <--- <ty <spi1,let

Hfj(th)

l:=max{j:t; < s,} <k.

We have

E@ EQ Hf] Zt] H f] an + VSn+1 — Sn Y(TtH:ls)n )

J=l+1 i

k
1142,
j=1

Since Y1) is a weak Brownian motion of order k which is independent of o(Z,; u <
Sn), the right hand side takes the form

Eq

3

114(%)9(2s,)

where
g= Pt,+1—sn (fz+1 e fom (Ptk—tk_lflc)) )

and by our induction hypothesis this is equal to

l
H Xt] sn

Hfj(th)] .
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2) Since Py # P, there exists a bounded measurable ¢ on C[0,1] such that

/ww%¢/¢dp

; 1
oW = <Tsl (Xsiortt(simsion) — Xsiy) ;0 <t < 1)

The random variables

are independent and identically distributed, both under P and under P. By the law
of large numbers, P is concentrated on the set

R N
A=< — @) / dP
{nzz:;g) — 2 O}a

while P(4) = 0. Thus P is singular to P. O

5 Construction of weak Brownian motions which coincide

with Brownian motion outside of any small interval

In this section we give a different construction of weak Brownian motions of order
k. The resulting processes have an even stronger resemblance to Brownian motion:
their law P coincides with Wiener measure P outside of any interval of length & =
(k+1)~.

For J C [0, 1] we use the notation F; = o(X; : t € J), where (X;)o<i<1 denotes
the coordinate process on Q = C|0, 1].

Theorem 5.1. For any ¢ € (0,1), there exists a probability measure P #* P on

C10, 1] which is equivalent to Wiener measure P and satisfies
P=P onF (42)
for any J C [0, 1] such that J¢ contains some interval of length €.

Proof. We take n > 2¢~! and partition the interval [0,1] into the intervals I =
[(k —1)/n,k/n](k = 1,---,n). For each k € {1,---,n}, there exists a random
variable ¢, # 0 bounded in absolute value by 1 such that

¢ is Fr,-measurable (43)
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and
Elpg|Fre] = 0. (44)

For example, we can take

1
(pk:sign<Xu+L—§(Xu+Xk>) (45)

2n

which is Fj, -measurable, has expectation 0, and is independent of Fre. Let P denote

the probability measure on C[0, 1] defined by the density

1n
U=1+— >0 46
+21£[1€0k (46)

with respect to Wiener measure P. Take any J C [0, 1] such that J¢ contains some

interval of length ¢. In particular, J is contained in I} for some [ € {1,---,n}. But
1
E[W|Fr] =1+ 3 (H %) Elp)|Fre] =1
k#l
due to (43) and (44). Thus, P =P on Fre, and this implies P =P on F;. O

Remark 5.1. (1) The measure P constructed in Theorem 5.1 defines a weak Brow-
nian motion of order k for any k < e~ — 1. In fact, for any choice of 0 < ¢; < -+- <
tr < 1, the complement of J = {t1,---,%} contains an interval of length ¢, and so
we have P = P on Tty ti}-

(2) It is interesting to describe the weak Brownian motions constructed in this sec-
tion in terms of the Lévy-Ciesielski construction of Wiener measure P as a random
field (X4)aca of ii.d. Gaussian random variables indexed by a binary tree. Our
construction of P introduces interactions in the random field, and it can be modified
in such a way that P is singular to P. The details will be discussed in a separate

paper.

Note that our proof of Theorem 5.1 does not involve the special properties of
Brownian motion. It is valid whenever P is the law of some non-degenerate Markov
process (X;)o<i<1 with state space (S,S). We only need the property that, for any
0 < s <t <1, the conditional distributions P[-|F( <] are non-degenerate in the

sense that there exists some A € F(,; such that

]P)[A|f(s,t)c] = P[A|X5,Xt]
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is not constant P-a.s.. Then
o =14 —PlA| X, X{]

has the properties (43) and (44) with respect to the interval I = (s,¢). Thus, the
proof of Theorem 5.1 yields the existence of some measure P # P such that P ~ P
and P = P on F; whenever the complement of J contains an interval of length ¢ > 0.
In particular, we can make sure that, for a given £ > 1, P and P have the same
marginals of order k. As a special case, we could consider a Poisson process P and
thus recover and strengthen a result of Szdsz [21] which solved a problem posed by
Rényi [17].

6 Criteria in terms of Volterra kernels

In this section we consider a continuous Gaussian semimartingale (X;);>o defined as
follows in terms of a Brownian motion W and a kernel I:

t pru
X, =W, - / / U, v)dW,du. (47)
0 Jo
We assume that [ is a continuous Volterra kernel, i.e., [ satisfies
l(u,v) =0, for 0 <u<wv<1,

and the function
l(u,v), foru<w,

l(u,v) =
l(v,u), foru>wv,

is continuous on (0,1) x (0,1). We further assume that

/0 t ( /0 ' l2(u,v)dv> < oo (48)

so that (47) is well-defined as the semimartingale decomposition of (X;) in the
filtration (F}V). Clearly X has quadratic variation (X); = .

Remark 6.1. Note that the representation (47) is in general not unique. For ex-
ample, the process X satisfying

t
W,
X, =W, - / ~ du,
0 u
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with a Wiener process W, is again a Brownian motion. Thus X admits two different
Volterra representations: one with Ix(u,v) = 0, the other with Iy (u,v) = 1/u for
v < u. But if we add the condition [ € L*([0, 1] x [0, 1]), the representation (47) is
indeed unique; see, e.g., Hida-Hitsuda [8].

In Section 6.1 we will characterize the case where the process X defined by (47) is
a Brownian motion. In Section 6.2 we obtain criteria for X to be a weak Brownian
motion of order 1. In particular we construct examples of continuous Gaussian
semimartingales which are weak Brownian motions of order 1 but not Brownian

motions.

6.1 Brownian motions defined in terms of Volterra kernels

Hitsuda [9] shows that the law of a centered Gaussian process (X;) on a probability
space (2, F,P) is equivalent to Wiener measure if and only if X admits a Volterra
representation (47) with a square-integrable Volterra kernel [(¢,s). Hence, from
the uniqueness of the Doob-Meyer decomposition we know that if X is a Brownian
motion admitting a Volterra representation (47), then the associated Volterra kernel
[ is not square-integrable unless [ = 0. For the case [ # 0, we can conclude that
(F*) G (F), ie., the filtration generated by X is strictly smaller than the one
generated by W. Otherwise, the representation (47) would be the Doob-Meyer
decomposition of X as a semimartingale in its own filtration. Uniqueness of the
Doob-Meyer decomposition would imply / = 0, which is obviously a contradiction.
But is it possible to find a Volterra representation for Brownian motion, where the
kernel [ is not square-integrable? If so, how does the associated Volterra kernel look
like? The following theorem will provide a characterization of Brownian motions

with Volterra representation (47).

Theorem 6.1. A process (X;)i>o defined by (47) is a Brownian motion if and only
if the Volterra kernel l(t, s) is self-reproducing, i.e., l(t, s) satisfies

I(t,s) = /Osl(t, v)l(s,v)dv, (49)

for all t and for all s < t. In this case, {Xs; s < t} is independent of f;l(t, u)dW,
for any t > 0.
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Proof. 1t follows from Lemma 2.3 in Follmer-Wu-Yor [5] that (X;) is a Brownian

motion if and only if

E [Xs /0 e u)qu] _o, (50)

for all s <t; i.e., if the Gaussian family {Xj; s < t} is independent of fot 1(t, u)dW,.

Since [ is continuous and

E [Xs /Otl(t,u)qu} :/Osl(t,u)du—/Osfoul(t,v)l(u,v)dvdu.

due to (47), equation (50) is equivalent to

/Osl(t, u)du = /Os/oul(t,v)l(u,v)dvdu

for all s < ¢, hence to (49) for all ¢ and for all s < ¢. O

Remark 6.2. The terminology “self-reproducing” is used in Neveu [14] in a differ-

ent context.

Remark 6.3. If [(t, s) satisfies (49), then it satisfies the following properties:
(a) I(t,t) > 0.
(b) U(t,s) < /U(t, t)l(s,s).

(c) Ifi(t,s) # 0, then I(,t) ¢ L'(0,1), and this implies I ¢ L*((0,1) x (0,1)). This
is consistent with the above discussion. In particular we see that a non-zero

self-reproducing Volterra kernel [ is not square-integrable.

Proof. Taking s = t, we have

(1) = / Pt w)du, (51)

which leads to assertion (a). Then it follows from Hélder’s inequality that

) = (/0812“’”)“)%(/0 slz(sa“)dvyé(/Otlz(t,v)dvy( /OSZQ(S,U)dv)%

= VI, t)l(s,s).
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This gives (b). As for (c), assume [ # 0. Since [ is continuous, we see that I(¢,t) # 0
for some ¢ € (0,1) due to (51). Let us write

{s€(0,1):1(s,s) # 0} = | J(as, by),
with disjoint intervals (a;, b;). Substituting (b) in (49), we obtain

1(t,s) < /I, t)l(s,s) /Osl(v,v)dv.

This implies
I(s,s) < l(s,s)/ l(v,v)dv,
0
for all s. Since I(s,s) =0 for s < a := inf; a;, we obtain

/asl(v,v)dv = /Osl(v,v)dv >1 (52)

for all s € | J;[ai, b;]. Either we have a = q; for some i or a is an accumulation point
of (a;). In both cases, (52) implies I(u,u) & L'(0,1). And this implies

1 pru 1
/ / 1 (u,v)dvdu = / l(u, u)du = occ.
0 Jo 0

In order to illustrate Theorem 6.1 more explicitly, let us consider some special

O

cases:
I(t, s) = a(t)b(s),
where a and b are two deterministic continuous functions satisfying:

(C1) a € L0, ] for all ¢ and for all ¢y > 0, a(t) # 0 on the interval (ty,c0).
(C2) b e L?0,t] for all £ > 0 and

L b(u)|
du <
/o (b2 (v)dv) 2™ =
for all ¢t > 0.

Corollary 6.1. Let the process (X;) admit the representation

t u
X, =W, — / a(u)/ b(v)dW,du,
0 0
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with some deterministic functions a and b satisfying the conditions (C1) and (C2).

Then the process X is a Brownian motion if and only if it is of the form

_ t b(u) u
X, =W, — /O T ()0 /O b(r)dW, du. (53)

Proof. In view of Theorem 6.1, it is sufficient to prove that a Volterra kernel (¢, s)
of the form a(t)b(s) satisfies (49) if and only of

b(t
aft) = (54
/ b?(u)du
0
Substituting (¢, s) = a(t)b(s) into (49), we have
a(H)b(s) = a(t)a(s) / b2 () du.

0

According to the condition (C1) we get the desired result. O

As an example, we take b(t) = ¢™ for m > —3. Then the process X given by

t pru
X =W, — (2m+ 1)/ / u” ™ ™AW, du,
0 Jo

is a Brownian motion. This special case has been discussed in Lévy [12], [13], Chiu
[2] and Hibino-Hitsuda-Muraoka [7]. For m = 0 we recover the result of Deheuvels

[3] that
t
=1~ [ Sta
o U

is again a Brownian motion.

6.2 Weak Brownian motions defined in terms of Volterra
kernels
We are now going to show that, in the class of Gaussian semimartingales with

Volterra representation (47), weak Brownian motions of order 1 can be characterized
by an integrated form of (49).
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Theorem 6.2. A process given by (47) is a weak Brownian motion of order 1 if

/0 Ut o) = /0 t /O Ut 0)i(s, v)dvds, (55)

and only if

for all t.

Proof. Let X be defined by (47). Since X is a centered Gaussian process, X is a

weak Brownian motion of order 1 if and only if
E[X{]=t, (56)

Since (X); = t, we have

t
Xf:2/ X dX, +1
0

by It6’s formula. Condition (56) is equivalent to

t
E [/ Xuqu] =0,
0

E [ /0 ‘X, /0 ‘i, v)dedu] =0 (57)

due to (47). But the validity of (57) for all ¢ > 0 is equivalent to the condition

0=E [Xu /OUZ(U, v)de] _ /Oul(u,v)dv—/ou/ﬂvl(u, P)i(v, r)drd,

for all u.

hence to

O

Corollary 6.2. Suppose that l(t,s) = a(t)b(s) for some deterministic continuous
functions a, b satisfying (C1) and (C2). Then a process X given by (47) is a weak
Brownian motion of order 1 if and only if it is of the form (53). In other words,
if the process X given by (47) is a weak Brownian motion of order 1, it is also a

Brownian motion.

Finally, we want to construct a Gaussian weak Brownian motion of order 1 which
is not a Brownian motion. Consider the Volterra kernel of the form

l(u,v) = %gp (U> :

u



30 On weak Brownian motions of arbitrary order

Then [ satisfies (49) if and only if

On the other hand, [ satisfies (55) if and only if

/0 ' o(o)ds = /0 1 /0 ' o(e2)o(2)dad. (59)

Clearly, there are many functions ¢ which satisfy (59), without satisfying (58). To
be quite explicit, consider ¢(z) = ce™*, and we then see that, given a, (59) is

satisfied if and only if
(1—e)

a d 7
/ e (1 - e_“)—u
0 u

whereas (58) is never satisfied for any ¢ # 0. Therefore, we obtain the following

CcC =

theorem.

Theorem 6.3. There exist continuous Gaussian semimartingales (X;);>o with quad-
ratic variation (X); =t which are weak Brownian motions of order 1, but not Brow-

nian motions.

7 Weak martingales and weak Brownian motions of order 1

In the class of continuous semimartingales of the form

1
&:&+/mm (60)
0

weak Brownian motions of order 1 can be characterized by a weak martingale prop-
erty, in analogy to Lévy’s characterization of Brownian motions. To this end, we

introduce the definition of weak martingales.

Definition 7.1. A continuous semimartingale X is called a weak martingale if it

satisfies .
E [ / f(Xs)dXs] —o, (61)
0

for all bounded Borel-measurable functions f, and for all ¢ > 0.



On weak Brownian motions of arbitrary order 31

Remark 7.1. 1) This notion is different from Kazamaki’s weak martingales ([10],

[11]).
2) A different notion is that of a weak increment martingale, i.e., a process (X;)
which satisfies

E[X; — X,|X] =0, for s < t.

This implies that (X;) is a weak martingale, but the converse is not true.

To make Definition 7.1 more precise, if X; = M; 4+ V; is the semimartingale

decomposition of X, we assume

B[Oy <00, and E [/Ot|dv;|] < oo, (62)

for any ¢ > 0. Below, we shall use several times the important fact: if X is a
weak martingale, and Y is independent of X and R¥-valued, then for every bounded
measurable ¢ : R¥ x R — R, and every t,

B[ [ oo xax] =0 (63)

This follows easily from (61) and (62), and the monotone class theorem. In partic-

ular, we may use (63) for Y; = s. Here is a stability property of weak martingales.

Proposition 7.1. If (X;) and (Y;) are two independent weak martingales, then both
(Xt +Y;) and (X4Y:) are weak martingales.

Proof. For the second assertion, we have
d(X.Y;) = XidY; + Yid X,

Since X and Y are independent, hence

B[ [ secricen| = 5[ [ oeroxan] 2 [ [ rxvwax] <o
]

Proposition 7.2. If the process (X;) is a weak martingale of bounded variation
with Xy = 0, then X = 0.



32 On weak Brownian motions of arbitrary order
Proof. Take f(z) = sgn(z), then

t
E[X) = E [ / f(Xumxu] o,
0
This implies X = 0. O

Proposition 7.3. If (X;) is a weak martingale such that Xo = 0, and its local time
at 0 s equal to 0, then X = 0.

Proof. Use Tanaka’s formula. O

Theorem 7.1. Assume that a semimartingale (X;) can be represented in the form
t

X, =M, +/ vgds, (64)
0

where M is a martingale with respect (F;), then (X,) is a weak martingale if and
only if
Elvs| X] =0, ds-a.s.

Proof. For every bounded, Borel function f, the expectation

E [/Otf(Xs)dXs] —0

holds if and only if

t t
0=FE [ / f(Xs)vsds} - / ELF(X,)v.lds,
0 0
which immediately yields the equivalence. O

The next proposition provides a characterization of weak Brownian motions of

order 1 in terms of the weak martingale property.

Proposition 7.4. Assume that (X;) is a continuous semimartingale of the form
(60) with fOtE[|vu|]du < oo for all t. Then X is a weak Brownian motion of order

1 if and only if it is a weak martingale.
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Proof. 1) Since (X;) satisfies (61), and since (X); = ¢, then for all ¢ € R, we obtain,
with the help of It6’s formula
2

Elexp(icX;)] = 1+icE { /0 t exp(ich)dXs] - %E [ /0 t exp(ich)ds}

2 [t
= 1- —/ Elexp(icX;)]ds.
2 Jo
Thus, we have
2
Elexp(icX;)] = exp (—%t) .

This shows that X has the same one-dimensional marginals as Brownian motion.
2) Suppose that (X;) is a weak Brownian motion of order 1. Then we get, for

F € C2(R), again as a consequence of Itd’s formula:

E[ /0 tF’(Xs)dXs] - E[F(Xt)]—F(O)—%E [ /0 tF”(Xs)ds}
= BFEB) - FO) - 5 [ EF @

¢

_ { / F’(Bs)st] _0, (65)
0
For a bounded measurable function f on R, we can choose F,, € C?(R), such that
the derivatives f, := F, satisfy
1 1
i & | [ (5= 70+ [ 16 = FECCIIVL] =0
0 0

n—oo
This implies
t
lim E [/ (o — f)(Xs)dXs] _0,
0

n—oo

hence .
B [ f(Xs)dXs] 0
0

due to (65). O

We now show that weak Brownian motions of order 1 which are stable under

stochastic integration are necessarily Brownian motions.

Proposition 7.5. Let (X;) be a continuous semimartingale of the form (60) such
that every predictable process (e;), with values +1, (fot €:dXs)i>0 i a weak Brownian

motion of order 1. Then (X;) is a Brownian motion.
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Proof. Define
dvi/|dVy|, if dV; # 0,
€ =

1, if dV; = 0.

t t t
X :=/ eSdst/ esst—i—/ dV,|
0 0 0

is a weak Brownian motion of order 1, then it has expectation 0. This implies
E[f) |dV;|] = 0, hence X = B. O

If the process

We now present examples of weak Brownian motions X; = B; + V; of order 1

where dV; is singular with respect to dt.

Proposition 7.6. Let ¢, = F(B;s, s < u) be a predictable process, taking values +1,
and let gy = sup{s < t: By = 0}. If we assume

F(—Bs,s <u)=—F(Bs,s < u), (66)

then the process B,f = €,,|By| is a weak Brownian motion of order 1, and it is not a

Brownian motion.

Proof. (1) From the balayage formula and Tanaka’s formula (see Revuz-Yor [18]),

t t t
Bi= [ b= [ cap+ [ e, (67)
0 0 0

where df, = sgn(B;)dB,. The fact that (Bf) is a weak Brownian motion of order 1

follows from

we know that

ol [ smas) = B[ [ wi@yas]+ 8 [ [ s

> [ / t esf(B:)dLs] — JO)F [ / t edes] —0,
due to (66).

(2) (BY) is not a Brownian motion, since (67) is really its canonical decomposition,

which easily follows by remarking that e, = sgn(B¢), and |Bf| = | By|. O

Here is another example, due to M. Emery.
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Example 7.1. If (B;);»o is a standard Brownian motion, then the process (B)
given by
By, t<1
Bt = (68)
sgn(B1)|By|, t>1

is a weak Brownian motion of order 1.

Example 7.2. Consider the process (B;) given by
B, =sgn(By1)|B,|,  (t>0)

Then (B,) is a semimartingale and a weak Brownian motion of order 1 in its own
filtration (F). But this example is not genuine, since F. = o(sgn(B,)) is not

trivial.

8 Related equations and studies

8.1. Throughout this paper, Brownian motion is our process of reference. Obviously,
we could also address the analogous question for a Poisson process; in this case, an
analogue of Theorem 1.1 was already proved by Szdsz [21], whose construction is
discussed in Stoyanov ([20], Section 24.3, pp.284-285). More generally, one could
consider a Lévy process or even more general processes; see the last paragraph of
Section 5.

8.2. Gyongy [6] shows that the one-dimensional marginals of an It6 process

£ = /0 (65, 0)dW, + (s, w)ds)

are those of a weak solution X; of

t t
X, = / o (s, X)W, + / b(s, X, )ds,
0 0

where o%(s,z) = E[6%*(s)|¢s = x|, b(s,z) = E[3(s)|¢; = z]. Our study goes in the
reverse direction: that is, given a diffusion, to find other processes which admit the

same 1- (or more generally k-) marginals.

Acknowledgment: We thank the referee for his very careful reading of our paper,

which has led to improvements of certain points.
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