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Abstract

We consider a financial market model with interacting agents and study
the long run behaviour of both aggregate behaviour and equilibrium prices.
Investors are heterogeneous in their price expectations and they get stochastic
signals about the “mood” of the market described by the empirical distributions
of the agents’ characteristics. We give sufficient conditions for the distribution
of equilibrium prices to converge to a unique equilibrium, and we study the
asymptotic dynamics of individual expectations. Simulations show that these
dynamics may exhibit large and sudden fluctuations which are not due to ra-
tional adjustments to new market information but to a distinct herd behaviour.
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1 Introduction

Standard financial market models usually assume identical investors who share the
same rational expectations of a future asset price, and who instantaneously and ra-
tionally discount all market information into the present price. From this academic
point of view, temporary price overreactions like bubbles and crashes reflect ratio-
nal changes in the valuation of an asset rather than irrational shifts in sentiment of
investors.

Traders, by contrast, often consider markets as being less rational. Many believe
that technical trading is possible, that some kind of “Market psychology” exists and,
that herd effects unrelated to economic fundamentals can cause bubbles or crashes.
Some traders even see the market itself as possessing its own mood or personality;
for example they may describe the market as nervous or enthusiastic.

In recent years, financial theory is searching for alternative approaches that could
explain these market realities. One approach is to model economies with interacting
agents, see, e.g., Kirman (1998), Kirman (1993) or Follmer (1974). This allows to
bring in techniques from the theory of interacting Markov processes or from Markov
random field theory; see, e.g., Durlauf (1993), Ioannides (1995) or Brock (1991).

Most of these papers share the same analytical core: A countable infinity of agents
is interacting either locally with their “neighbours” or globally via the empirical
distribution of individual agents’ characteristics. In the context of statistical physics,
the emphasis is on models with local interaction. But for applications in economics,
it makes immediate sense to introduce an additional dependence on macroeconomic
information incorporated in the empirical distribution, i.e., one should combine both
local and global interaction.

In this paper we concentrate on the role of global interaction and provide the
technical background for more general models. The joint effects of global and local
interaction will be investigated in Horst (1999a).

We propose a simple financial market model where agents are heterogenous in
their expectation about the future price of some risky asset. These expectations are
based on exogenous economic fundamentals, on their own past expectation and on
a random signal about the “mood” of the market. This “mood” is described by the
empirical distribution of the agents’ individual states.

First we will analyse the dynamics of the empirical distribution of individual
opinions, using a law of large numbers across the set of agents. Given the external
economic fundamental h; and some random signal e;; about the “mood” m; of the
market in period ¢, the evolution of the process {m;};—¢12,.. will be deterministic:

M1 = U(My, eg41, he).

Using some results from the theory of “random systems with complete connections”,
we can provide sufficient conditions for the “mood” of the market to converge to a
unique equilibrium. In a second step we shall show that the microscopic process,



i.e., the process describing the states of agents’ individual characteristics converges
weakly to a unique stationary measure.

Finally, we study the dynamics of the induced equilibrium prices. The equilibrium
price process {p; }ten Will evolve in a random environment, where the environment is
related to a random fluctuation in the behavioural characteristics of agents. More pre-
cisely, the process of temporary equilibrium prices {p; }sen will satisfy the recurrence
relation

Pit+1 = f(ptamt—l-l)-

First of all we analyse the dynamics of this process given that it evolves in a sta-
tionary environment, i.e., we shall assume that the “mood” of the market is already
in equilibrium. In a second step we consider affine linear price dynamics in a non-
stationary environment. Furthermore, we obtain a continuous-time limit for the stock
price process both in the stationary and in the non-stationary situation.

Numerical simulations show that, even if the distribution of the process describing
the empirical distribution individual agents’ characteristics converges weakly to a
unique stationary measure, this process may exhibit large and sudden fluctuations.
These fluctuations do not reflect rational adjustments to new economic fundamentals
but are due to a distinct herd behaviour.

The paper is organised as follows. In Section 2 we specify our model. Section 3 is
devoted to the study of the process {m; };cn. In Section 4 we consider the asymptotic
distribution of the microscopic process, i.e., we analyse the long run dynamics of the
process describing the individual characteristics of agents. Section 5 is devoted to
the analysis of the dynamics of temporary equilibrium prices. In Section 6, we obtain
a continuous time limit for the stock price process {P;};>¢ if the transformation f
takes an affine linear form. In Section 7 we consider some numerical simulations
which show that, although the equilibrium price process converges in law to a unique
equilibrium, it may exhibit large and sudden fluctuations. Section 8 concludes.

2 The Model

2.1 Asset Prices as Temporary Equilibria

Let us describe the model for the price evolution of a speculative asset. We consider
a financial market model with a countable infinite set A of economic agents who
are active on this market. The market contains a risk-free bond bearing interest at
a constant rate r and a single risky asset. The price process of the risky asset is
denoted by {p;}i-12,...-

Given a proposed stock price p in period ¢, each agent a € A forms an excess
demand z(p, p¢), where p¢ denotes an individual reference level for agent a in period
t. We shall interpret p§ as a price expectation for the following period. pf is allowed
to depend on the proposed stock price p.



In this paper we concentrate on the following binary situation. At each time ¢ the
individual state z{ of agent a € A takes one of two different values, i.e,

zy € {—1,+1},
and his price expectation takes the form
p{(p) = 9(z{,p1-1,D)
for some measurable function g : {—1,4+1} x R? - R.

Example 2.1 1. Consider a model with optimistic (z¢ = +1) and pessimistic

(x¢ = —1) information traders. Independent of the proposed price p, the price
expectation of an information trader takes the log-linear form
Inp§(p) = Inppy + B(In(F + 2f) —Inp1), 5> 0. (1)

Thus, the expectation of an information trader is based on the idea that the next
price moves closer to his current subjective perception F+xz{ of the fundamental
value of the asset at time t.

2. Alternatively, we could study a model where fundamentalists (z} = +1) and
chartists (x¢ = —1) are active on the market and consider the following log-
linear expectations of the form

g(+1,pi—1,p) = cPIn(F — pi_y1), cp >0,
9(=1,pi-1,p) = ey In(p — pi—1), cn > 0. 2)

Thus, the dynamics of equilibrium prices will be induced by an underlying microscopic
process {7, }en = {(2%)aca}ien on the configuration space S := {—1, +1}* which
describes the stochastic evolution of all the individual states. Let us first consider a
situation, where only finitely many investors are active on the market. To this end
we fix a sequence {A,}nen of finite subsets of A which satisfies A, 1 A. If only the
traders in A, are active on the market, the equilibrium stock price p; at time t is
determined by the market clearing condition of zero total excess demand. In this
case the sequence {p;}en of temporary equilibrium prices becomes a process defined
by the implicit equation

1
> 2(pr g(af, pro1,p) = 0,
i.e., p; solves
my + 1 1—m7?
t2 Z(ptag(+1apt—1apt)) + 9 L Z(ptag(_lapt—lapt)) =0.
Here, m} := ﬁ > eca, T¢ denotes the “average opinion” ( at time ¢) for all traders

belonging to the set A,,.



Let Sy be the subset of all configurations z = {2%},c4 € S which admit an
empirical average along the fixed sequence of finite subsets A, 1 A, i.e. for each

z € Sy the limit .
i) = Jim o 3 ®

ac€A,

exists. The microscopic process will live on the subspace Sy and we will call m; :=
m(z;) the mood of the market at time ¢.

In the limit of an infinite set of agents the equilibrium price p; at time ¢ solves
the implicit equation

my+ 1 1—-m
t2 Z(ptag(+1apt—17pt))+ 2 L

Z(pt, g(_lapt—lapt))-

Assumption 2.1 There ezists a real valued measurable transformation f :[—1,1] X
R — R such that the implicit equation

m+1 1—m
52, 9(+1. p,p)) + —5—2(p,9(=1,p,p)) = 0.
admits a unique solution
p = f(m,p)

for any pair (m, p) € [-1,1] x R.

In particular, the stock price process {p;} obeys the relation

b= f(mtaptfl)- (4)

Thus, in our model the microeconomic characteristics represented by the process
{z;}1en generate — via the aggregate or macroeconomic quantities {m;},cny — an en-
dogenous random environment for the evolution of the stock price. In order to
study the asymptotic dynamics of equilibrium prices, we have to analyse the long
run dynamics of individual characteristics.

Example 2.2 Let us illustrate our general setting by choosing a special demand func-
tion z derived from a standard mean-variance utility mazximisation problem.

Note that for each agent a € A and a for any given price process {p;}, the dy-
namics of his wealth process {W} =1, is given by

tl:—l =1+ )W+ (P — (L 47)pe) 2,

where 2z is the number of shares purchased at date t.
Suppose that all investors are myopic mean variance mazximisers. In this case,
the utility function of an agent a € A takes the form

a

U (2) = B (We,) — &

LVEWE),
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where &} and V,* denote the conditional expectation and the conditional variance,

Vi = Eg[(Wtil)z - (E?Wt(fkl)z]a

based on the information available to this agent at time t. The parameter n® describes
the risk aversion of agent a.

Let us be more specific and assume that the risk aversion and the beliefs about the
conditional variance of excess returns per share are the same for all investors.:

77a =1, V;:a( t+1) = 0t2

for all a € A. However, we assume that investors are heterogenous in their expected
value about future prices. More precisely, for a proposed stock price p at time t each
agent a forms an individual expectation p},,(p) about the equilibrium price in the next
period t + 1. His optimal demand Z} for shares at time t solves

maX{]Et( h) — 77Va( )}

Thus,

capy _ Pen (@) — (1 +7)p
Zi(p) = 2 .

noy
Similar dynamics are considered in, e.g., Brock (1991), and Brock and Hommes
(1995). Suppose that individual expectations given a proposed stock price p take the
form

Pra(p) =p+g(@},pi1) (5)

for some measurable real valued function g : {—1,+1} x R — R, which is assumed to

be linear in the first argument. The total supply of the risky asset is equal to zero.
Under this assumptions, the dynamics of equilibrium prices is described as follows.

If only the traders in A, are active on the market, the market clearing condition yields

bt = \A ‘Zg T, P 1 (\A | thapt 1)-

a€A,

In the limit of an infinite set of agents, the equilibrium price process takes the form

1
bt = ;g(mt,pt—ﬂ = f(mtapt—l)a

where my = m(x;) is the mood of the market at time t.

! The assumption of homogenous beliefs on variance is made for analytical tractability. However,
Nelson (1992) provides some justification for homogeneity of beliefs on variance.



2.2 The Dynamics of Individual Characteristics

How does an agent a choose his next state x7 ;7 Consider price expectations of the
form (1). We assume that the conditional probability that agent a € A is optimistic
at date ¢ + 1 is a function of

1. his state z{ in the previous period,
2. some (exogenous) economic fundamentals h; revealed at date ¢,
3. the “mood” m; of the market in the previous period.

From an economic point of view it seems reasonable to assume that investors do not
know the exact value m;. Instead, we assume that they get some noisy signal e;;
about the “mood” of the market. For example, e;;; could be a signal about the
fraction of chartists or optimistic information traders among all investors who are
active in the market.

Let us be more precise. The processes {e;}ien and {h;}ien will evolve on metric
state spaces E and H, respectively, equipped with their respective Borel-o-algebras
&€ and H. Throughout this paper the state space H is assumed to be compact.

We assume that the external conditions {h;}n follow a Markov process with
transition kernel K. Furthermore, the conditional law @Q(m;-) of the signal e € E
given the “mood” m € [—1,1] of the market is described by a stochastic kernel @
from ([—1,+1], B([—1,+1])) to (E,&). Thus,

err1 ~ Q(m(wy);-)-

Since in this paper we concentrate on the role of mean field interaction, we specify
the conditional choice probabilities 7, of investor a at time ¢, given the signal e; 1,
the ”external field” h; at date ¢ and given the present configuration x; = {xf},c4 as

Ta(Tfy ) = S|Teesy1, ) = (2P = 5|27, €1, he).

In particular, we assume that this decision only depends on the agent’s own state z7;
the interactive influence of the whole configuration z; = {z¢},c4 only is felt through
the signal e;,; about the empirical average m; defined in (3). Due to the binary
structure of the individual states, these probabilities may be written in the form

1 _
m(xf = 8|zt e, hy) = 3 (1 + s(A(ers1, he) + Aewgr, he)zy)) (6)

where s € {—1,+1} and A\, A\ : E x H — R are measurable functions.

Example 2.3 Let us assume a “logit” form for the conditional choice probabilities,
i.e., suppose that
W(.T?_H = 8|x;:l7 €t+1, ht) =



exp{sf(Jery1 + Txl + hy)} ()
exp{sfB (Je 1+ Tx¢ + hy)} + exp{sB (Jer + Txd + hy)}

where J,T,8 > 0, as in, e.g., Kirman (1998) or Ioannides (1995). In this case we
have we that

Me,h) = tanh{8(Je+T + Kh)} + tanh{s(Je — T + Kh)},
AMe,h) = tanh{B(Je+ T + Kh)} — tanh{3(Je — T + Kh)}.

In this paper we assume that different agents make their transitions to a new state
independently of each other, given the common signal e;,; and the external condition
hi. Thus, the dynamics of the microscopic process {z; } is described by a Markov chain

(daesr|2r, erpr, he) = [ [ w(dafyy|2f, e, hu). (8)
acA

on the product space S = {—1,+1}* in the random environment described by the
process {(eir1,ht) bien. Such a process may be viewed as a probabilistic cellular
automata (PCA) in a random environment. The special case hy = h and e; = my is
analysed in Follmer (1994).

The full dynamics is described by the Markov process {(zy, €111, ht) }ien on the
state space Sy X E x H with transition kernel

P(dz, dé, dh|z, e, h) = I1(dZ|z, e, h) @ Q(m(x); dé) ® K (h; dh).

Note that in our case the random variables {z¢},c4 are conditionally independent
for a given pair (esy1,hs). Using the strong law of large numbers, the dynamics of
the empirical mean on the interval [—1,1] is easily calculated.

Proposition 2.1 We have

miy1 = U(mt, (6t+1, ht)),

where
u(m, e, h) = Ae, h) + A(e, h)m. 9)

Proof: Let e € E and h € H be given. We put A := {a € A : 2! = +1}
and Ay = {a € A : z} = —1}. Observe that the random variables {zf ;}sca+
and the random variables {z{, ;},c4- are conditionally independent and identically
distributed. Thus, the assertion follows immediately by applying the strong law of
large numbers for i.i.d. random variables across agents. O

In particular, we conclude from the above proposition that the configuration x4
admits almost surely the empirical average defined in (3) if z; does. With other
words, the microscopic process {z; }ten stays almost surely in Sy as soon as the initial
configuration zy belongs to Sy.



Definition 2.1 The process {(my, hy) }1en will be called the macroscopic process.

In section 3 we shall see that the macroscopic process is a Markov process, while the
process {(esy1,h:)} which generates all observable “macroeconomic” information
will not have the Markov property.

Suppose that the Markov process {(my, i) }1en admits a unique stationary mea-
sure p* and that the initial distribution is given by this invariant distribution. In
this case the macroscopic process is stationary and ergodic. Thus, since the sequence
{p+}1en of temporary equilibrium prices satisfies the recurrence relation

Pt+1 = f(mt:pt):

the stock price process evolves in a stationary environment. Based on analytical
properties of the transformation f we will be able to formulate sufficient conditions
which guarantee ergodicity of the induced equilibrium price process {p;}ien. If the
transformation f takes a linear form, then the “mood” drives the price process into
a probabilistic equilibrium as soon as the sequence {m;}icn settles down to a unique
equilibrium in the long run. This will be done in Section 5.

3 Dynamics of the Macroscopic Process

3.1 Motivation

As outlined at the end of Section 2, one of the main purposes of this paper is to
analyse the asymptotic behaviour of the process {m;};cn describing the dynamics of
the “mood” of the market. Observe that, due to the strong law of large numbers,
the conditional distribution of my;,; given the microscopic configuration z; and the
external condition h; depends on z; only through the empirical average m(z;) = my.
In particular, given an initial configuration zy € Sy and an initial external condition
ho € H, it suffices to study a stochastic process {(my, e;y1, ht) }1en On the state space
[—1,+1] x E x H given by

Mmyy1 = U(mt, €41, ht)
€i+1 Q(mt; ) (10)
hip1 ~ K(hg-),

in order to analyse the asymptotic distribution of the sequence {m;};cn. Note that
by the theorem of Ionescu Toulcea there exists for each pair (m,h) € [-1,+1] x H
of initial values a probability measure P, , on the canonical pace space, such that
(mo, ko) = (m, h) Py, p, — a.s. and such that

miy1 = u(mt: €t+1, ht); (11)
Ponless € Ale, by, mp,ei_1,...] = Prples € Amy] = Q(my, A), A€E,
Pm,h[h’t-l—l (- B‘@t, hta My, €41, - - ] = Pm,h[hH—l € B|ht] = K(h,t, B), B € H,

8



i.e., the process {(my, €111, hy) hen “exists”. Let us first verify that the macroscopic
process has the Markov property. To this end, we denote by E,, , the expectation
with respect to the probability measure P, p.

Lemma 3.1 The macroscopic process {(my, hy) }en is a homogeneous Markov chain
with transition operator U defined on B([—1,+1] x H), the set of all bounded mea-
surable real valued functions f on [—1,+1] x H, by the equation

Uf(m,h) = (u(m, e, h), h)Q(m,de) ® K (h,dh).

ExH

Proof: Let f € B(X x H). For t € N we put m®) = (my,...,m;); e and h® are
defined analogously. Using the law of iterated expectations we obtain

Emn [f(mH—l, ht+1) |m(t), h(t)]
= Bpp [Ern [f (u(me, ers1, be), hepr)|m®, O 0] m® | p0)]

= Enp {/ Fu(me, 1y b)), Busr) K (hey dhygr)[m®, RO
H

= (u(mt, €t+17 ht), ht+1)Q(mt, d6t+1) ® K(ht, dht+1) Pm,h — a.s.

ExH

|

The rest of this section is devoted to the analysis of the macroscopic process. To
this end, we propose a “random system with complete connections” as a mathematical
framework to describe and analyse the sequence {(my, h;)}en. We will use some
general results about random systems with complete connections provided in losefescu
and Theodorescu (1968), Tosefescu and Gregorescu (1993) and Norman (1963).

3.2 Random System with Complete Connections and Com-
pact Markov Processes

In this subsection we introduce the concept of a “random system with complete
connections” and consider a special system, whose associated Markov process turns
out to be our macroscopic process. Using general ergodicity criteria provided in
Tosefescu and Theodorescu (1968) and Norman (1963), we will formulate sufficient
conditions which guarantee the existence of a invariant measure for the Markov chain
{(my, ht) }+en Imposing an additional mixing condition will then ensure convergence
in law of the macroscopic process to a unique equilibrium p* as ¢t — oo.

Let us first introduce some notation. (€2, F,P) denotes a given probability space.
(M, M) and (X, X) are measurable spaces. Z denotes a stochastic kernel defined
on M x X and v : M x X — M is a measurable mapping. For each [ € N we put
XO =TT, X, 0 =@ _, &, and ¢V := (1,6, ..., ) € X,



We define a sequence {v;}sn of mappings v; : M x X® — M, by the relation

’Ul(gaCl) = U(gacl)
ve(&,¢) = (v 1(&¢EY), G).

Abusing our notation we put

v(§,¢) =6, ¢ =v( G o ou(6,G), EeM. (12)
Definition 3.1 e Following Iosefescu and Theodorescu (1968) we will call the
quadruple

Y= ((MM),(X,X),Z,v)

a homogeneous random system with complete connections (RSCC).

e Given an initial value £, a RSCC induces two stochastic processes (on the canon-
ical path space) {&}i—o,1,2,.. and {(i}i=12,... taking values in (M, M) and (X, X),
respectively, by the relation

§t41 = U(&, Ct+1)a (13)

and
Pe(Ce1 € A&, Go &1, Gim1, - - -) = Z (&, A), A€ X.

These processes are called the assoctated Markov process and signal pro-
cess, respectively.

e Let d denote a metric on M. A RSCC is called o distance diminishing
model, if the transformation v satisfies the following mean contraction
property: There exists a constant 0 < 1 such that

\ [ dwte 010€. )26 a0)| < ate ),

uniformly in ( € X (£,£' € M).
e For any I,n € N and for each £ € M we define functions Z]'(€,-) on X by
the relation (see Iosefescu and Theodorescu (1968), Chapter 2.1.1.1.3):

Zl(faA(l)) =< [Z(&,dG¢) [ Z(v(E G),déa) , (14)
Z(v(& ¢ )) dCl)1A<l>(€(l)) 1>2

Z(¢, A(l) n=1
Z0(E A7) = {flzlgdg)Z" H0(€,6),AD) n>2

With other words: Z,(€,-), respectively, Z]'(€,-) denotes the distribution of the
vectors () and (Cat1y- -+ Carr), respectively. The system Y is called uniformly

10



ergodic (in the strong sense), if for every | € N there exists a probability
measure Z° on (X, x®) such that

lim Zp (¢, AY) = Z°(AD)
n—oo

uniformly with respect tol € N, € € M and A®Y € XU, Thus ¥ is uniformly
ergodic if Z'(&; ) converges uniformly in & € M to Z7°(-) in the norm of total
variation.

Observe that by the recursive structure (13), the Markov process & = {& }1en associ-
ated to the Random system X satisfies almost surely the relation

§t1 = U(ﬁo; C(H—l))-

Let us denote by Z the transition kernel of the process &, i.e., Z is a stochastic kernel
on M x X defined by

Z(&,B):=Z(£,By) with Bn:={CeX:v()eB}, BeM.

By Supp, (&) we denote the support of the measure Z”({f, ).

For distance diminishing models with compact state space M the following two
conditions are sufficient for weak convergence of the distributions u; of & to a unique
probability measure p* on (M, M) as t — oo; see, e.g., Lemma 2.1.55, Lemma 2.1.58,
Lemma 2.1.59 and Theorem 2.1.40 in Iosefescu and Theodorescu (1968).

Condition (C1): (“Lipschitz Condition for the transition kernel Z”) There exists
a constant C' > 0 such that

sup sup ‘Z(é-a A) - Z(fla A)|
AEX g€ d(¢, &'

Condition (C2):

< C < 0. (15)

lim d(Supp,(€), Suppn(£')) =0

n—o0

for all £,& € M.

Usually, Condition (C1) can easily be checked. Below, we shall provide a sufficient
condition for (43) to hold true. In many cases, however, Condition (C2) is hard to
verify. Imposing an additional “mixing condition” on the transition kernel 7, we shall
obtain another criteria for regularity of the associated Markov process (see Theorem

3.2 below).

Definition 3.2 A Markov process {&:}ien with state space (M, M) and transition
operator U is called aperiodic on a Banach space (L, ||-||1) if there exists a bounded
linear operator U on L such that

lim ||U™ — U>|l. (16)

n—oo

The process is called regular, if in addition U*®(L) is one dimensional.

11



Remark 3.1 Let £ = {&}en be a Markov chain taking values in a compact metric
space (M,d). Suppose that its transition operator U is reqular on a dense subset L
of C(M). From the above definition, and by the Riesz representation theorem it is
easily seen, that in this case the process & admits a unique stationary probability p*
on (M, M). Furthermore, the distributions u; of & converge weakly to p* for any
wnitial distribution py as t — oo.

Suppose that the measures Z(&;-), £ € M have a “lower bound” which does not de-
pend on &. For distance diminishing models the following condition ensures regularity
of the associated Markov process; see Norman (1963), Theorem 4.1.1.

Condition (C3): There exists a measure v on (X, X), a constant ¢ > 0 and a
set A* € X such that v(A*) =1

Z(&A)>cw(A'NA), AeX

and
/ Aw(£,C), v(€', ) (de) < 0d(E, ). (17)

Note that (17) is satisfied if, for example, the mapping v satisfies the contraction
condition

d(v(€,¢),v(£,¢)) < 0d(&,¢)

uniformly in ¢ € X.

Let us now consider the dynamics of the macroscopic process. In order to analyse
the asymptotic behaviour of the Markov chain {(m, h;)}teny We now introduce a
random system >* with the following ingredients:

M = [-1,+1] x H, & = (my, hy),
X = EXH, Q1= (ers1,M41),
V(& Grr) = (w(m, epy, be), Bega),
Z(&;-) = Q(my;) @ K(hy;). (18)
Here, u is the mapping defined in (9). For the rest of this paper H is assumed to be
a compact subset of R and || - || denotes the Euclidian distance on R?. Furthermore,

we assume that the function u defined in (9) has the following mean contraction

property.
Condition (C4):

/ |u(my, e, h) — u(mg, e, he)|Q(my; de) < 0]|(my, h1) — (Mg, ho)||, 6 < 1. (19)
E
Remark 3.2 Some straightforward calculations show that the function u satisfies

the mean contraction condition (19) as soon as the individual transition probabilities
defined in (6) satisfy the following condition: There exists a constant 0 < 1 such that

sup |5\(€, h)| < 9, |5\(€, h) - 5‘(eahl)| + |)\(€, h) - )\(6, hl)| < 9|h - hl|
e,h
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Lemma 3.2 1. If the transformation u defined in (9) satisfies the mean contrac-
tion property (19) then the system ¥* is distance diminishing.

2. If the transition kernels Q) and K satisfy Condition (C1) with constants Cg and
Ck respectively, then the kernel Z defined by (18) satisfies Condition (C1) with
constant C = Cg + Ck.

3. Suppose that the measures Q(m;-), m € [—1,41], have a density g(m, -) which
s uniformly Lipschitz continuous in the first argument, i.e.,

sup |g(m176) - g(m256)| S Co|m1 - m2|7
e

for some constant Cy. In this case the stochastic kernel () satisfies Condition
(C1) with constant C = C.

Proof:

1. This assertion follows from

/ ||(u(m, e, h), h) — (u(mm, e, k), h)||Z(m, h; de, dh)
= [|u(m,e, h) — u(m,e, 7})|Q(m, de)
< 0[(m, h) — (m, h)||-

2. Let A€ EQH and (my, h1), (mao, he) € [—1,+1] X H be given. For each h € H
and any e € E we put A(h) := {e € E: (e,h) € A} and A(e) :={h € H :
(e,h) € A} respectively. Using Fubini’s theorem we obtain

(I|(ma, ha) = (ma, ho)|) ™| [4(Z(ma, has de, dh) — Z(mag, hy; de, dh))|
< ([[(ma, hy) — (ma, ha)l[)” (IIA (m1; de) — Q(my; de)) ® K (ha, dh)|

+ ‘fA(K(hl; dh) — K (hy; dh)) ® Q(ms, de)‘)

< g QL AT Qm A gy, )|
K(h1;A(e))—K(ha;A(e

+| el |i(zl)_)h2\( : ())Q(mmd@)‘
S CQ =+ CK

Taking suprema yields the desired result.

3. This assertion is obvious.

13



3.2.1 Compact Markov Processes

In order to analyse the asymptotic distribution of the process {m;}en we will now
use results about compact Markov processes provided in Norman (1963), Chapter 3.
Our aim is to show that the transition operator of the macroscopic process is regular
on the set of all bounded Lipschitz continuous functions on [—1,1] x H. According
to Remark 3.1 this guarantees the existence of a unique stationary measure p* and,
moreover, convergence in law of the process {(my, hy) hen to p*.

To this end, we introduce some additional notation. If (M,d) if a metric space
and f € B(M) is a bounded measurable function we put

o @) = £
z#Y d(ZE, y)

A function f on M will be called Lipschitz if m(f) < co. By L(M) we denote the
set, of all bounded Lipschitz functions on M, i.e.,

L(M) :={f : [[fllip < oo}

Note that L(M) is a normed linear space with respect to both |- | and || - ||5;,. We
denote by A(f) the oscillation of f, i.e.,

A(f) :=sup|f(z) = f(y)l-

T,y

m(f) [fllzip := m(f) + | floo-

After this preliminaries we can now show that the transition operator U of the macro-
scopic process satisfies the so-called Doeblin-Fortet-Inequality (inequality (20) be-
low), provided that the transformation u defined in (9) satisfies the mean contraction
property (19).

Lemma 3.3 Assume that the transition kernel Z defined in (18) satisfies Condition
(C1). If the transformation u defined in (9) satisfies the mean contraction property
(19), then there exists a positive constant R such that the transition operator U of
the process {(my, hy) hien satisfies the following inequality on L([—1,+1] x H):

m(Uf) < 6m(f) + Rl floo < (R4 D[|f]|Lip- (20)

Proof: The proof of this lemma is merely a modification of the proofs of Lemma 1.3
and Theorem 1.2 in Norman (1963). For all f € L([—1,+1] x H) we have

Uf(m, h) = / F(u(m, e, ), B)Q(m, de) ® K (h, dF).

Therefore
U f (e, ) — U f (o, )|
/ Fu(ma, e, h), B) — f( (3, €, ha), )| Qs de) ® K (hy, d) (21)

‘ [ Futm, 1), )@, de) © K (s, 08) = Qo de) @ K ()|
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Condition (C1) yields the following estimate for the second term:

‘/f(u(mg,e, ha), h)(Q(my, de) ® K (hy, dh) — Q(ms, de) ® K (hs, dh))
< 20[flsol[(ma, h1) — (ma, ho)]l-

Since f is Lipschitz continuous we have that

om0, 1) = S0l 1) D) o 7omy, s e, i)
[[(u(m, e, h), h), (u(m, e, h), h)|] C
< / |u(mq, e, h1) — u(ma, e, ho)|Q(mq; de)

< Om(f)]I(m1, hi) — (m2, ho)||.

The last inequality follows from the mean contraction condition (19). Hence we can
estimate term (21) by
Om(f)[[(m1, h1) — (ma, hs)||

and therefore
U f(my, hy) — Uf(mgy, hy)|
[[(ma, hn) = (ma, he) ||
Taking the supremum over all (m, h) # (m/', h’) on both sides yields the desired result.
]

< 20| fleo + Om(f).

Definition 3.3 A Markov process with compact state space M, whose transition
operator U satisfies the Doeblin-Fortet inequality (20) and maps L(M) into L(M)
boundedly with respect to the norm || - ||1ip is called a compact Markov process in
the sense of Norman (1963).

Corollary 3.1 The Markov process {(ms, hi) hen is a compact Markov process if the
function u satisfies the mean contraction property.

Proof: The proof follows immediately from Lemma 3.3 because

WU fllzip < (B4 D[ fllzip + [Ufloo < (B +2)|]]1ip

for any Lipschitz function f. O
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3.2.2 Existence and Uniqueness of Invariant Measures

The proof of the following theorem can be found in, e.g, losefescu and Gregorescu
(1993), page 94.

Theorem 3.1 Let u satisfy the mean contraction property. Under Condition (C1)
the macroscopic process admits at least one stationary probability.

The next theorem, which follows from general results about RSCCs in losefescu
and Theodorescu (1968) and Norman (1963), provides sufficient conditions for the
macroscopic process to converge to a unique equilibrium.

Theorem 3.2 Suppose that the function u satisfies the mean contraction property.

1. Under Conditions (C1) and (C2) the process {(my, ht) hen is regular on the
Banach space (L([—1,+1] x H), || - ||Lip)-

2. Under Condition (C1) and (C3) the macroscopic process is regular on the Ba-
nach space (L([—1,+1] x H), || - ||Lip)-

In particular, in both cases the Markov chain {(my, hy) hien admits a unique stationary
measure |4 and the macroscopic process converges in distribution to p*.

Proof:

1. Due to Corollary 3.1 the process {(my, hs) }en is @ compact Markov process.
Recall that the theorem of Ionescu-Tulcea and Marinescu is applicable to the
transition operator U of a compact Markov process; see, e.g., Chapter 3 in
Norman (1963). Thus, one can show that U is regular as soon as ¢ = +1 is
the only eigenvalue of modulus one of U and if the only continuous solutions of
Uf = f are constants; see Theorem 2.1.57 in losefescu and Theodorescu (1968).

However, due to condition (C2) ¢ = 41 is indeed the only eigenvalue of mod-
ulus 1 of U by Lemma 2.1.55 in Iosefescu and Theodorescu (1968). Lemma
2.1.56 in Iosefescu and Theodorescu (1968) states that the only eigenfunctions
corresponding to the eigenvalue ¢ = 1 are in fact constants.

2. This assertion follows immediately from Theorem 4.1.1 in Norman (1963).

Definition 3.4 In the sequel we shall call the random system X* reqular, if the as-
sociated Markov process {(my, hy) hen s reqular on (L([—1,+1] < H), || - ||Lip)-

16



4 Dynamics of the Microscopic Process

This section is devoted to the study of the long run dynamics of the microscopic
process {z;}ien, ¢ = {27 }aca, describing the evolution of all the individual states.
We shall assume that the individual transition probability 7 in (6) is bounded away
from zero uniformly in (e, h) by some constant ¢'. If, for example, 7 takes the “logit”
form (7), this assumption is obviously satisfied, if F is some bounded subset of R.

Our aim is to show that the regularity of the macroscopic process {(my, ht) }en
induced by Conditions (C1) and (C2) or by Conditions (C1) and (C3), implies regu-
larity of the microscopic process {z;}sen-

In Subsection 4.1 we will show that for any fixed a € A the Markov chain My} :=
{(z¢, my, ht) hen is regular on the set of all bounded Lipschitz continuous functions
on {—1,4+1} x [-1,+1] x H. From this it is easy to show that for any finite set
A C A the Markov process M = {({z¢}aca, ms, h) hien is also regular. As the
random variables {x¢},c4 are conditionally independent given the pair (e, h) it will
turn out that the family of the invariant measures corresponding to the processes M4
(A € A) is consistent. From this we will deduce that the distribution of the process
{z; }1en converge weakly to a unique equilibrium as ¢ — oc.

Observe that the microscopic process {z; }ieny may be regarded as a Markov chain
evolving in a radom environment. In Subsection 4.2 we shall consider the dynamics
of this process given that the macroscopic process is already in equilibrium, i.e., we
study the situation where the process {x;}+en evolves in a stationary environment.

4.1 Regularity of the Microscopic Process
We define a metric d on {—1,+1} x [-1,+1] x H by

d((z,m, h), (z',m' b)) = |z —2'| + |m —m'| + |h — R'|.
Let us first verify the following simple result.

Remark 4.1 Suppose that Condition (C1) is satisfied. Then the following Lipschitz
condition holds true for all a € A and for all (e,h) € E X H:

| [5{m(A; 2% €, h)Q(m; de) — m(A; 4, e, h)Q(m; de)} |

sup — - ” < C < 0.
(m,20) £ (my*), (A, B) Im —m| + [z — y|
(22)
Proof: For z* = y“ the assertion follows from Condition (C1). For z* # y* the
assertion follows from |m — m| + |z — y*| > 2. O

Theorem 4.1 Assume that the kernel Z defined by (18) satisfies Conditions (C1)
and (C2) or Conditions (C1) and (C3). Suppose further that the transformation u in
(9) satisfies the mean contraction condition (19). Then the Markov process Mgy :=
{(z¢, my, hy) hen with state space {—1,+1} x [—1,1] x H is regular on L({—1,+1} X
[—1,+1] x H) for any a € A.
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Proof: Let us fix a € A. Without loss of generality we may assume that the external
field {h;}ien is almost surely constant and neglect the dependence on the parameter h
in our notation. First, we shall show that the process M4 is a compact and regular
Markov process. Its transition operator is defined on B({—1,+1} x [—1,+1]) by the
relation

Uf(z®* m)= /f(ya,u(m, e))m(dy®|z*, e)Q(m, de).

Since u satisfies the mean contraction condition (19), we can deduce that this operator
satisfies the Doeblin-Fortet inequality (20). Indeed, for each f € L({—1,+1} x
[—1,+1]) we have

Uf(z®m) =Uf(y",m)| (23)

< | [ 10, utm, )il )Q(ms de) ~ mlayly, Q0 de»\

n \ [ 0 utm, ) = utm, D) (v, ) de) (24)

< Clfloo(|m —m[ +[2% = y*[) + Om(f)|m — m|
< ACfloo +0m(f)} (Im — mf + |2 = y*))

by Remark 4.1. This shows that the Markov process {(z¢, m;) }ten is compact in the
sense of Norman (1963).

As the transition probability 7 in (6) is assumed to be uniformly bounded away
from zero, the distribution of the process My, after n steps, given mg = m, has
support

{=1,+1} x Supp,(m).

Here Supp,(m) denotes the support of the distribution p, on m, (given my = m).
Hence, regularity follows from Condition (C2) and Theorem 3.2 (1.) above.

If Conditions (C1) and (C3) are satisfied we can use techniques provided in Nor-
man (1963), Chapter 4, and proceed as follows: For each [ € N, for any given pair
(z,m) € {—1,+1} x [-1,+1] and for each A € B(({—1,+1} x E)!) we put

Ry(x,m;A) = /Q(m, dei)m(dxy|z, e1)Q(u(m, e1); des)m(dxs|z1, €2) - - -

- Qu(m; eV); dey)m(day|z_1, €)1 4 0 (eW, 21),
[Ri(z,m; A) — Ri(y,m; A)|

r; = sup sup _ ,
A (2;m)#(y,m) im —m| + |z — y|
r; = sup sup |Ri(z,m;A)— Ri(y,m;A)|.

A (z;m)#(y,m)

Using (24) and the mean contraction property (19) it is easy to see that

AUS) < A(f)ri +20m(f)
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for any Lipschitz continuous function f on {—1,+1} x [—1,+1].
For I € N we denote by U' the n—fold iteration of the operator U. Using the
mean contraction property (19) again, we obtain by induction that

AULF) < A(f)rr +200m(f) < r*A(f) + 20m(f), (25)

where 7* := sup, r}.

Suppose that 7* < 1. In this case it follows immediately from the proof of Theorem
4.1.1 in Norman (1963) that U is regular on L({—1,4+1} x [—=1,+1]). Indeed, we can
adopt this proof word by word. Thus, it remains to show that r* < 1.

To this end, we will first show that r := sup;r; < oco. For that it is obviously
enough to show that

|Ry(x,m; A) — Ry(x,m; A)|

Ty :=supsup sup — < oC.
I A zm#m |m — m|

For | € N we put (dz"|z,e®) = 7(dz,|z, e,) - - - 7(dx;|z;_1, ;). Thus, for all4,j € N
and for any A € B(({—1,+1} x [~1,+1])**7) we have that

|Ri+j(z,m; A) — Riyj(z, m; A)|

< | [ {Qutm: e ums £9): ) — Qufm; ) Qs ulms ) )}
7(dz |z, )14 o (elH9), x(i+j))|

[ @utms de) {Qyuom; £9); de?) = Qi ) et}

7T(dgﬁ(iﬂ') |z, e(i+j))1A o (e(i+j), x(i+j))|
*w/kQAmuk@%—QMmdé%}Qﬂwmw@%mﬂU

7(dz) |z, e@+))1 4 o (eH9), x(z’+j))| .

IN

Using Condition (C1) and the contraction property of the transformation u we obtain
|Riyj(z,m; A) — Riyj(x, m; A)|
< fj/ u(m, ) — u(m, e®)|Q;(m, de) + 7;lm — m| < (76" + 73)|m — m|.
Dividing by |m — m/| and taking the supremum on both sides, we get
Fivj < 750" + 7.

Since 7,41 > 7; we can conclude that

7
suprl<—9<oo
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because

de) n, d
o= sup sup Qm e) — Qlm, e>7r(dy|x,e,h)
AeB({—1,+1}xE) zm;ém |m_ |
A
< sup sup |Q(m; A) — Dl
AEE m#Mm |m m|

by Condition (C1). Now recall that the individual transition probability 7 in (6)
is assumed to be bounded away from zero by some constant ¢ > 0. Without loss
of generality we may assume that 2¢’ = ¢, where ¢ > 0 is the constant given by
Condition (C3).

We define a measure v, on ({—1,+1} x E; B({—1,+1} x E)) by the relation

Va(A) = (%5+1(A1) + %5_1(,41)) VAN 4y), A=A x A (26)

Using this measure, we can define a family {v;,;}, jen of stochastic kernels on [—1, +1]x
B(({=1,+1} x E)!) by the following equation:

vpa(ms A) = v (A) 1 <r
rl T £) = fI/I(daj(r),de(’"))Rl_r(xr,u(m, e d(@z), eI (2B, e®) 1> 7

Here, v} denotes the product measure [[,_, v.(-) on B(({~1,+1} x E)!). Observe
that |v,;(m; A) —v(m; A)| =0 for [ <r. For [ > r we have that

Vg (m; A) = vy (m; A)

= ‘/y:(dx(’"),de(’")) [Rl,r(xr,u(m, e dey i1, dxyyq, - - -, dey, dr))
Ry, (x,, u(m, el ) de,1,dx,q,- --,del,dxl)} lA(e(l),x(l))‘
rl_r/l/:(d:c(’"),de(”)|u(m, e — u(m, e™)|

IN

< 107 m—m| < ref"|m —m|,

where the last but one inequality follows from Condition (C3). In particular, we can
deduce that
A(vp(5 A)) < 2ro0". (27)

Note furthermore that
Ri((x,m); A) > 2™my,  (m; A).

Thus, we can define another family {;},en of stochastic kernels on {—1,+1} x
[—1,+1] x B(({—=1,+1} x E)') via the equation

Ri((z,m); A) = c2min{“l}u,,l(m; A)+ (1 — chin{T’l}) tri((z,m); A).
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From (27) we deduce that
sup AR[(, A) < 262min{7‘,l}07‘7.00 + (1 _ chin{r,l}) ,
A

and, as 1o, < 00, it is easily seen that for r sufficiently large
ARL(, A) <1
uniformly in [ € N. Thus r* < 1 which proves our assertion. O

Theorem 4.1 allows us to prove local convergence of the microscopic process
{z:}1en towards a unique equilibrium. To this end, we denote by Az, the system of
all finite subsets of A. For any A € Ay, we put

Sy = {-1,+1}* x X x H,
My = {({z{}aca, M, ht) ben.

Obviously, M4 is a Markov chain with compact state space S4. On S4 we define a
metric d4 by the relation

da((z,m, h), (&', m/ 1)) =" 27| — 2| + ||(m, h) — (m/, 1),

acA

where w : A — N is a weight function which satisfies Y, , 27 < oc.
Note that for any A € A, the conditional transition probability

Ma(dz|x,e,h) = H m(dy®|z®, e, h)

a€A

of the process {{z%}4c}ien is bounded away from zero uniformly in (e, h). Thus,
Remark 4.1 remains valid if we replace 7(-|x,e, h) by T4(-|z,e,h) (A € Aro) and
|m —m| + |z — y| by da((x,m, k), (z',m',A’)) in (22). In particular, we can deduce
that the transition operator U, of the process M, is a Doeblin-Fortet operator.

An inspection of the proof of Theorem 4.1 shows that all arguments remain valid,
if we consider the process M, instead of the process M(,3. We just have to modify
the measure v, in (26). Thus, we can conclude that the Markov chain M}y is regular
on the set L(S,4) for any A € Ap,..

Since the processes M4, A € Ap,c, are regular, we can study the family {114} ac,,,
of the corresponding stationary measures.

Lemma 4.1 The family {114} ac4,,, is consistent.

Proof: Let A C A" € Ar, and B € B(S4). Without loss of generality we may
assume |A| = |A'|+ 1. Let f € C(S4) be Lipschitz continuous. The regularity of the
processes M on L(S4) and M4 on L(Sy) yields

0 = lim [ULf = ppa(f)loo
= lim [URf = py ()l
= lim [U3f = pa(f)leo-
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Thus, pa(f) = pa(f) for any f € C(S4) and therefore
i (Bx {-1,41}) = ua(B) (B € B(S4)).
This proves consistency. O

In order to show that the microscopic process {z;}ien converges in law to a
unique stationary measure as ¢ — oo, we will now define an operator U on the
set B({—1,+1}# x [~1,1] x H) by the equation

Uf(x,m, h) = /f(y,u(m,e, h), B)I(dy|z, e, ) ® Q(m, de) ® K (h, dh),

where II is defined in (8). Note that for any A € Ap, the operator U, is the
restriction of U to the set B(S,), the set of all bounded measurable and real valued
functions f on Sy := {—1,+1}* x [~1,1] x H, which depend only on the coordinates
in S4. Thus, for any B(S4) measurable function f we have

Unf =Uf.

Let us denote by p the unique measure with marginal distributions {pa}aca,,,. If
f 54— Ris a bounded continuous local function, i.e, if f depends only on finitely
many coordinates, there exists a local set A € Ay, such that

Tim [U"f(@) = () = Jim (U (2) = pialf) oo = O, (28)

If f is quasilocal, i.e., if f can be uniformly approximated by local functions, equa-
tion (28) follows by uniform approximation. (Recall that any continuous real valued
function f on S4 is quasilocal.) Hence,

Jim [U f — u(f)] =0

for any bounded continuous function f on S 4. This proves local, and therefore weak
convergence of the distributions of the Markov chain {(z¢, my, ht) }ten to the unique
equilibrium p. Thus, we have shown:

Theorem 4.2 If the macroscopic process {(my, hy) hien is regular, and if the individ-
ual transition probability m in (6) is bounded away from zero, then the microscopic
process {x;}en converges in law to a unique stationary measure.

4.2 The Microscopic Process in a Stationary Environment

Next, we shall analyse the microscopic dynamics given that the macroscopic process is
already in equilibrium, i.e., we assume that the initial distribution pg of the process
{(m¢, ht) }ten is given by its unique probabilistic equilibrium p*. Without loss of
generality we will restrict ourselves to almost surely constant external fields.

The proof of the following proposition can be found in Iosefescu and Theodorescu
(1968), p. 135.
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Proposition 4.1 Suppose that g = p*. Then the signal sequence {€441}en 1S Sta-
tionary and ergodic.

We shall now show that the microscopic process {x;}in becomes stationary in the
long run, provided it evolves in a stationary environment. To this end, we shall
use some general results about recursive chains and about stochastically recursive
sequences provided in Borovkov (1998).

Definition 4.1 1. A sequence {X(t)}sen of random variables taking values in a
measurable space (X, X) is called a recursive chain (RC) governed by the
sequence {m }ten if for all t > 0 and for all A € X the following holds true:

PIX(t+1) € AIF] = PX(t + 1) € Alney, X(2)]
Here, Fy =o(n, ..., M1, X(0),..., X (2)).

2. A random sequence {X (t)}ien taking values in (X, X) is called a stochasti-
cally recursive sequence (SRS) controlled by the driving sequence {n;}en
taking values in a measurable space (E, &) if the random variables X (t) (t € N)
obey the equation

X(t+1)=f(X(®),ne41)

for some measurable function f : X x F — R.

Remark 4.2 1. Observe that the microscopic process {zi}ien is a RC with gov-
erning sequence {€;i1}ien-

2. Recall that with no loss of generality, the stationary sequence {e;}1en can always
be extended to a sequence defined for all integers —oo < t < oo.

Let us introduce the shift transformation 7', generated by the stationary sequence
{ei }1ez, which acts on the canonical path space 2 according to the formula

T((wy Wi, - - ) = (Weg1, Wesa, - - ),

where w = (wy)en € Q.

We can now use general ergodicity criteria for RCs provided in Borovkov (1998),
to show that the microscopic process converges in an appropriate sense to a stationary
process.

Theorem 4.3 Suppose that the macroscopic process is in equilibrium and that the
individual transition probability m 1s uniformly bounded away from zero. Then there
exists a stationary sequence of random variables Y = {Y (t) }ien, Y (t) = {Ya(t) }aca,
defined on a common probability space with {(xy, es1)hen, such that the microscopic
process converges locally to Y in the sense of a strong coupling. More precisely, for
any local set A € Ap,. the following holds true:

tlim Py [Yo(k) =2p for all k>t and for all a € Al = 1.
—00

The distribution pg of Y (0) is invariant for the process {x;}ien.
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Proof: Let us first fix a finite set A € Ap, and put z; = {27},c4. Using Theorem
13.3 in Borovkov (1998) and the conditional independence of the random variables ¢
(a € A), we can define a stochastically recursive sequence z4 = {24 () }ien, 24(t) =
{24(t) }aca, on a common probability space with the sequence {(z, €141)}ten such
that

z Faw z forall teN,

and such that the sequence z* satisfies the relation

At +1) = {f(e err, 0 }aea, de,  z(t+1) = fef e 0f),  (29)

for some measurable transformation f : {—1,+1}x Ex[0,1] — {—1,+1} independent
of a. Here, {af}ien (@ € A) is an i.i.d. sequence of random variables taking values in
[0,1], and the sequences {ei i1 }ien, {0 }ten (@ € A) are independent.
For a fixed s > 1 we shall define a sequence of random variables {YA(¢)};>s by
the relation
YA =T (s +1),

ie., YA(=s) = 24(0) = 28!, YA(—=s + 1) = {f(24(0), e_s41,2%,) }aca, etc. Obviously
we have that YA(t) = 24(t) implies YA(t +n) = z4(t + n) for all n € N,

As the individual transition probability 7 is bounded away from zero, it is easy
to see that

Jim B, (U{Y:‘(t) - zA(t)}) —1.
t=1

Therefore we can deduce from the proof of Theorem 11.3 in Borovkov (1998) that

there exists a stationary sequence Y4 = {Y4(t)lien, Y2A(t) = {va(t)}aca which

satisfies the relation (29) and such that

lim P« [ya(t) = 2,(t) forallt>n and forall a € A] = 1. (30)
n—oo

In particular, the sequences {y,(t) }ten (a € A) are conditionally independent given
the process {e;11}en-

Now we can define the desired process Y by the relation Y (¢) = {y,(t) }aca. Obvi-
ously, this process is stationary and the sequences {y, (%) }:en, @ € A, are conditionally
independent given the signal sequence {es ;1 }en-

From (30) and from stationarity of the process Y it is now obvious that the
distribution g of Y'(0) is invariant for the microscopic process {z;};en and that z;
converges locally to y as t — oo. O

At the end of this section we would like the draw the readers attention to the
following point. At the first glance it might seem that the conditional invariant
probability v* of the microscopic process is given by a product measure, i.e., v*(:) =
[I,c4v(-). This, however, does not necessarily hold true as the following example
shows.
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Example 4.1 Suppose that {e;}ien is a stationary Markov process taking values in
the space E = {+, —}. The transition matriz D¢ is given by

{3 )

Furthermore, we fiz a,a' € A, and {z%}1en and {af }1en are Markov chains with state
space {—1,41} evolving in the random environment generated by the process {e;}ien.
The respective conditional transition probabilities Dt and D~ are given by

= {15 as p et =158 T3 )

Some straightforward calculations show that Plzf , = 1|z§ = 1,2¢ = 1] = Plaf,, =
lz¢ =1] = % Observe, however, that

a a 3
Ple; = +|zf =23, = 1] = 1

and therefore
32 11 7

BEERPEIRET
Now suppose that the invariant measure v* of the microscopic process is a product
measure. In this case we would have that v*(-) = [P, (;;2%)v(dz®) (a € A) and we
would get the following equality:

Plaf’ = 1|zf = af,, = 1] (31)

!

Vg, =ag, =1) = v(af =1y =1)
— [ Blati, = vl pldat) [ Blat,, = viatlo(da?)
As v* is invariant it would follow that

! 7 7 I}
P[$?+1 = 1|$?]P[$?+1 = 1|$?] = ]P’[I?H =1= $?+1|$? ,x?]

= Plafy, = 1af, = L2y, 2f]Plaf, |2).

In general, however, this equation is wrong as (31) shows.

5 Dynamics of Equilibrium Prices

This section is devoted to the study of equilibrium price dynamics in a random
environment. The random environment is related to a random fluctuation in the
behavioural characteristics of agents, for example, in the proportion between different
types of traders who are active on the financial market. More precisely, we will analyse
price processes {p; }eny Which take the form

Pty1 = f(ptamt+1)a (32)
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as in (4). Here f : R2® — R denotes a measurable function and {m;};cn is the
stochastic process which describes the mood of the market analysed in Section 3.

In the first subsection we will analyse the stock price process corresponding to (32)
in a situation, where the mood of the market forms a stationary environment. Thus,
we study the dynamics of the process {p;}ien given that {m;}en is a stationary and
ergodic sequence of random variables, i.e., we assume that the mood of the market
is already in equilibrium.

Using some general results provided in Borovkov (1998), we can prove that the
distribution of p; converges weakly to a unique equilibrium as ¢ — oo, provided that
the environment is on average not too destabilising.

In the second subsection we study affine linear price dynamics in a non-stationary
environment. More precisely, we consider the case

Prr1 = f(mug)pe + g(myta), (33)

where f, g : [-1,1] — R are Lipschitz continuous functions, and where the macro-
scopic process is a non-stationary Markov chain. Here again, our aim is to analyse
the asymptotic distribution of p; as ¢t — oo.

We know from Section 3 that there exists a unique stationary probability measure
w* for the Markov process {(my, h¢) }1en, provided that the transition kernel Z defined
in (18) and the function v in (9) satisfy certain technical assumptions. Throughout
this section we will assume that the random system >* analysed in Section 3 is
distance diminishing and regular. By P,« we denote the induced probability measure
on the canonical path space if the initial distribution of the macroscopic process is
given by p*.

5.1 Asymptotic Dynamics of Equilibrium Prices in a Sta-
tionary Environment

In this subsection we assume that this macroscopic process already starts in its prob-
abilistic equilibrium, i.e., its initial distribution g is given by p*. In particular,
the sequence {m;}cn is stationary and ergodic. Therefore, the price process {p;}ien
evolves in a stationary environment.

Several ergodicity conditions of SRSs are discussed in Borovkov (1998). Some
of the most general ergodicity and stability theorems for stochastically recursive se-
quences are based on the concept of so-called renovation events. Other ergodicity
conditions are stated in terms of certain analytical properties of the transformation
f. For our purposes an approach which uses a mean contraction property of the
transformation f seems to be appropriate.

Let us consider the following conditions concerning the iterates

flp,m™) == f(;my) 00 f(-,mg) o f(p,m1) (n€N),

where pg = p is the initial price at time ¢ = 0; see also Borovkov (1998), Chapter 2,
Section 8.
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Assumption 5.1 1. (“Boundedness in Probability”) For some py € R and for
each § > 0 there exists N = N(6) such that for all n > 1 we have that

P {|po — f(po,m™)| > N} < 6.

2. (“Contraction in the mean”) The function f = f(p,m) is continuous in p and
there exists an integer v > 1, a number f > 0, and a measurable function
c: R — R, such that for all p;,ps € R the following inequalities hold true:

|f(p1:m(r)) _f(anm(T)” < C(mla"'amT)|p1 _p2|a
1
;lEm Ine(my,...,my) < —p. (34)

3. (“Strong law of large numbers”) The sequence {Inc(mjy, ..., Mjrir—1)}jen sat-
wsfies the strong law of large numbers.

Recall that with no loss of generality, the sequence {m;};cn can always be extended

to a sequence defined for all integers —co < t < oo. For stationary sequences, the

necessary extension to t < 0 can always be realised using a theorem of Kolmogorov.
The following result appears as Theorem 12.2 in Borovkov (1998).

Theorem 5.1 Suppose that Assumption 5.1 is satisfied. Then there exists a station-
ary sequence of random variables { X, }ien, Xi(w) = wy, on the canonical path space,
which obeys the equation X1 = TX, = f(Xi, my), and such that for each fized p we
have

T f(p,m*)) = X, ast— oo with probability one. (35)

The distribution p of Xy is invariant for the sequence {p;};. In particular, the process
{pthen converges in distribution to p.

Remark 5.1 1. For our financial market model the above theorem provides a
bound for the aggregate effect of interaction between different types of traders,
which ensures that the induced price fluctuations are stationary in the long run.
Beyond this bound the price process may become highly unstable. In fact, in an
affine linear model, c.f. Erample 5.2 below, the trajectories converge to zero
or to infinity and their growth or decay exceeds an exponential rate if the term
LBy« Inc(my, ..., m;) in (34) is positive.

2. If the transformation f takes an affine linear form, Theorem 5.1 is a discrete
time version of Theorem 4.2 in Féllmer and Schweizer (1993)

Example 5.1 (Generalised auto-regression) Suppose that the equilibrium price dy-
namics obey the recurrence relation

pre1 = G(f(mu) F(pr) + g(mu)), (36)

where F,G : R — R are Lipschitz continuous:

|F(p1) — F(p2)| < crlpr —p2|, |G(p1) — G(p2)| < calpr — pal-
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The following proposition is taken from Borovkov (1998).

Proposition 5.1 Under the above restriction the sequence (36) specified in Example
5.1 satisfies parts 1 and 2 of Assumption 5.1 if

In |cpeg| + By In | f(me)] <0 and E,(In|g(mo))t < oc. (37)

Example 5.2 Let us consider the price dynamics induced by the interaction of noise
traders and fundamentalists as in Féllmer and Schweizer (1993). In this case, the
evolution of the logarithmic stock price process {Inp;}ien is governed by (36) with

G) =Pl =p. fm) = ST gy — T

for some constants ci,co < 0. Here, F* € R denotes some fized, say long run,
fundamental value of the asset, and r := 2";;1 denotes the fraction of fundamentalists
among all traders being active in the market.

Suppose that the inequalities (37) are satisfied. By Proposition 5.1, in order to
prove the a.s. convergence of the sequence {Inp;}en to a stationary process { X hen
in the sense of (35), it remains to verify part 3 of Assumption 5.1: We have to
show that the sequence {In|f(m;)|}en satisfies a strong law of large numbers. This,
however, follows immediately from Proposition 4.1 and Proposition 4.3 in Krengel
(1988) as {my}ien is strictly stationary and ergodic.

On the other hand, we can show that the trajectories of the price process are in
no sense stable if (37) in not satisfied. Suppose that

E, In|f(mg)| = ¢ > 0.

In this case, the paths of the equilibrium price process exhibits super-exrponential
growth or decay. In fact, our stock price process takes the form

pe =exp(Y; +InF),
where the process {Y;}ien satisfies the recurrence relation
Yign =Y = f(my)Yy
see Fdollmer and Schweizer (1993). Thus

t
[npy| = Yol [[1/(ma)l, Yo=Inpo—InF.
i=1

Therefore
1 1 t
zln|lnpt| = 7 (ln|Yo| + E ln|f(mi)|> .

i=0
and, due to the strong law of large numbers, we obtain

.1
tll)Iglogln|lnpt| =c P, —as

This is a discrete-time version of Theorem 4.1 in Féllmer and Schweizer (1993).
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5.2 Affine Linear Price Dynamics in a Non-Stationary Envi-
ronment

Let us now consider an affine linear dynamics for the equilibrium price process. More
precisely, we assume that the process {Inp,;};cn obeys the recurrence relation

Inpe = f(my) Inp + g(my),

where f and g are Lipschitz continuous functions. In this subsection we do not as-
sume that the random environment for the evolution of the stock price process is
generated by a stationary and ergodic process. As far as we know very little is known
about stochastically recursive sequences evolving in a non-stationary environment. If
the governing sequence {n;}en of a SRS {X;}ien converges in the sense of a strong
coupling to a stationary process {7} }1en, then the results of the preceeding subsection
remain valid under some strong contraction conditions; see Borovkov (1998), Chapter
3. However, this assumption seems to be too restrictive for our purposes. Further-
more, the author believes that such a condition is, if at all, hard to verify. However,
using the special structure of the process {m;};cn one can prove the following theo-
rem, see Horst (1999b), Theorem 2.4.

Theorem 5.2 Let f and g be Lipschitz continuous and suppose that the macro-
scopic process is reqular on L([—1,+1] x H). If, moreover, E,« In|f(mg)| < 0 and if
E,- max{ln|g(mg),0} < oo, then there exists a unique probability measure v* on R
such that the the stock price process converges in law to v* as t — oo.

Remark 5.2 Observe that in our present setting the mood of the market drives to
price process {p; }ien into equilibrium as soon as the macroscopic process settles down
to a stationary measure in the long run.

6 Convergence to a Diffusion Model

Large part of financial economic theory is based on models with continuous-time
security trading. These models are relevant insofar as they may characterise the
behaviour of models in which trading occurs discretely in time. Thus, it seems natural
to check whether the limit of our discrete-time security market model, as the length of
periods between trades shrink to zero, produces the effect of continuous-time trading
and to identify a “canonical candidate” for the resulting continuous-time asset price
process. This approach has been taken by Duffie and Protter (1992) and by Féllmer
and Schweizer (1993) among others.

In this section we shall obtain a continuous-time stock price process S = {S;}+>0
by passage to the limit from the discrete-time equilibrium price process analysed in
the previous subsection. The convergence concept we use is weak convergence on the
Skorohod space D, endowed with the Skorohod topology.
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We denote by p, the logarithmic stock price at time ¢ and consider an affine linear
dynamics, i.e.,
Pir1 — Pt = f(me1)pe + g(migr)-

The functions f and g are assumed to be Lipschitz continuous and {m;};cn is again
the stochastic process which describes the random fluctuations in the behavioural
characteristics of agents.

For each n € N we shall consider a suitably defined sequence of random variables
™ = {(fl", g) }1er obtained from the process 1 = {(f(m¢), g(m¢)) }1en- Applying an
invariance principle to this process and assuming a certain “goodness” property, we
obtain a convergence result for the logarithmic security price processes P" = { P"};en
(n € N) defined by

i — B =P+ g (38)

In the following subsection we follow the approach taken by Féllmer and Schweizer
(1993) who analysed an Ornstein-Uhlenbeck process evolving in an ezogenously pro-
duced random environment. However, in contrast to their model, we consider equi-
librium price dynamics generated by endogenously produced random fluctuations in
the proportion between different types of traders who are active on the market.
Throughout this section we will assume that the RSCC X* analysed in Section
3 is regular. In Subsection 6.1 we consider price dynamics evolving in a stationary
environment, i.e., we will assume that the macroscopic process already starts in its
probabilistic equilibrium pg*. Using a functional central limit theorem we show that
the process {¢™ },cn converges in distribution to a continuous diffusion process Z with
deterministic drift vector B and volatility matrix C'. Therefore, in the continuous-
time limit the evolution of the random environment is described by a diffusion process.
In Subsection 6.2 we study the continuous-time limit in a non-stationary situation.
We establish a convergence result for the equilibrium price process evolving in a non-
stationary environment. It is possible to apply an invariance principle to functionals of
non-stationary Markov processes if, for example, the distributions converge strongly,
i.e., in the norm of total variation, to some invariant measure p*. As we can only verify
weak convergence of the macroscopic process to u*, we will approximate the process
¥ = {(f(m¢), g(my)) }+en and consider a slight perturbation of our original stock price
process. In this case we shall see that in the continuous-time limit the dynamics of the
random environment can be described by a diffusion process with deterministic drift
vector B and volatility matrix C' describing the random environment. The quadratic
characteristic C' lies in an e-neighbourhood of C for a given ¢ > 0. Furthermore,
we shall demonstrate that the induced sequence of semimartingales describing the
evolution of the random environment is indeed “good”. This allows us to derive a
continuous-time limit for the equilibrium price process.
From our point of view these results may justify the assumption of a stationary
and ergodic random environment for the asset price process made in Subsection 6.1.
The following basic property of our regular and distance-diminishing RSCC ¥*
analysed in Section 3 which appears as Theorem 2.1.57 in Tosefescu and Theodorescu
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(1968), turns out to be essential for the proof of Theorem 6.1 below.

Proposition 6.1 There exists for each Lipschitz continuous function f on[—1,+1] X
H constants L(f) > 0 and a < 1 such that

U'f = 1" (f)leo < L(f)e. (39)

The constant L(f) depends on f only through its Lipschitz constant m(f) and through
its global mazimum |f|s-

6.1 Continuous-Time Dynamics in a Stationary Environment

Let us introduce the following notation. By Law(X,P) we denote the distribution of
a random variable X under the measure P. Furthermore, we define

pr = Eus f(mo) = p*(f), 1y = Eug(mo) = 17 (9),

[nt] [nt]

f?:—%Z(( m) — g, g = }Z g(me) — ) (t €R),

and put
Fi:=0({ms, hs};s <t) (t>0).

In this subsection we will apply an invariance principle to the stochastic processes
Y™ = {(f", 97) }ter, (n € N) and show that this sequence of semimartingales converges
in law to the continuous Gaussian Martingale CW, where W = (W;,W,) is a 2-
dimensional Brownian motion and

C = ( Or Ojg )
Ofg Oy

with
o7 = Eu[(f(mo) — up)?1+2) B [(f(mo) — up)(f (me) — )], (40)
U; = K, [(g(mo ,Ug ]+ QZE — t1g)(9(me) — pg)l, (41)
0ty = Eu[(f(m ) - w)(g(mo) — g)] (42)
+ 3 B [(£(m0) = g) (9(mo) = pg) + (9(me) — pg) (f (mo) — py)]-

t>1

Theorem 6.1 Suppose that the initial distribution po of the macroscopic process is
giwen by the unique stationary measure p* and let f and g be Lipschitz continuous
functions. Then the sequence of processes ) = {¢" }nen = {(f1', 97")ter tnen converges
in distribution to the Gaussian martingale CW :

Law(y"™, Py ) — Law(CW,P,.) (n — o).
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Proof: Without loss of generality we may assume that p*(f) = p*(g9) = 0. First,
recall that the sequence {(f(my), g(m¢)) }+en is stationary and ergodic. Next, observe
that due to the Lipschitz continuity of the function f there exists constants L(f) > 0
and o < 1 such that

By Lf (e )1 Foll = B o f (musn)]| = [U°f(mo) = 07 (f)] < L(f)a’ Ppue —acs.
(43)
by (39). In particular,
D B [ (ma) [ Fo] 1, < o0, (44)
>0
which implies that the series on the right hand side in (40) converges absolutely;
see, e.g., Jacod and Shiryayev (1987), Theorem VIII 3.97, and note that the results
about invariance principles for stationary sequences in Jacod and Shiryayev (1987)
remain valid, if one considers a one-sided (stationary) sequence {m;};en instead of
the doubly infinite one {m;}icz.
As the function f+ g is also Lipschitz continuous, (44) is satisfied with f replaced
by f+g, ie,
D B 1 (ma) + g(me) | Fol| |1, < o0, (45)
>0
and we can conclude that the series in (42) is also absolutely convergent.
Following the proof of Theorem VIII 3.79 and of Theorem VIII 3.97 in Jacod and
Shiryayev (1987), the process ™ admits a representation of the form
U= V- Y+ M)

vn
where V" = Y, Mj* = (M[J;t]’M[!:zt]) = Minyg. Here, Y = {Vi}ten = {(V],Y9) }een
is a vector of stationary processes and M = {M,}en = {(M/, M?)}ien is a two
dimensional vector of square integrable {F;}-martingales which satisfy

B, [(M{)’) = to}, B [(M{)’] = to.
More precisely, Mtf takes the form
M{ = {Bu [f(my)|F] — By [ (ms) | Fo]}- (46)
§>0

MY is defined analogously. It is well known, see, e.g., Jacod and Shiryayev (1987),
Chapter VIII that

1 w
Law (—Mf’",]P’u*) — Law(o;Ws,Pys)  (n— 00)
n

Vn

and

1 w
Law (%Mg,n’ ]PU*) — La’lU(O-gWga]Pu*) (n — OO)
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Here, Wy and W, are standard Wiener processes. Furthermore it follows from the
proof of Theorem VIII 3.79 in Jacod and Shiryayev (1987) that

2 2 2

1 1

1

fan n g,m P
sup ||¢; — —=M|| <sup|f'——=M +sup |g — —=M, =0 (n— o0).
1<T t \/ﬁ t t<T t \/ﬁ t t<T t \/ﬁ t ( )
Here, || - || denotes the Euclidian distance on R? and 2, means convergence in
probability.

Using Theorem 4.1 in Billingsley (1968) and Corollary VIII 3.26 in Jacod and
Shiryayev (1987) it suffices to show that

1. %[Mf, M9y L to g, where [M/, M9] denotes the quadratic co-variation of the
martingales M7/ and M9,

2. v™([0,t],{||z|]| > €}) 2 0 for all € > 0, where v = v™(dt,dzx) is the jump
measure of the martingale M™ .

To show (1.) we can proceed as follows. Using (45) and Theorem VIII 3.97 in Jacod
and Shiryayev (1987) again, we deduce that the processes ¢" = {¢}}iwcr (n € N),
defined by

[nt]
% S (Fma) + g(my))

admit the representation

1
o = _(Y7J;+g _ Y0f+g + Mf—HI)

N [nt]
for a square integrable martingale M/*9 defined as in (46). Observe that
M9 = pmf o M.

Thus, by the polarisation identity

1
(M7, M9 = 5([Mf + M9, M7 + M) — (M7, M) — [M? — MY))
we obtain

1 1

ﬁ[Mf , My = %([Mf + M9, MT + Mg — [MT, Mg — [M9, MO y). (47)
Using Birkhoff’s ergodic theorem, Lemma 9.4.1 in Liptser and Shiryayev (1986),
and ergodicity of the process {f(m:) + g(m:)}en, we conclude from our previous
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considerations that the right hand side in (47) converges almost surely to
t
S { B 1] + M0)%) — B (M) — B [(M9)7]}

= o B (] 0)) = B [(M])?) - . [(Mfﬂ}
[

= g{m,ﬂ( $lmo) + 9]+ 3 B [ m) + omo ) m) + )
B [(£(m0))") = 3 By [£ma) f(mo)]
—Ewug(mo))ﬂ—ZEN*[g<ms>g(mo)1}

=t {Eu* [f(mo)g(mo)] + ZEM* [f(ms)g(mo) + g(ms)f(mo)]}
= tO'f,g. B

Thus,
1
~[M, Mgy 5 4C (0 — 00).
It remains to show (2.). To this end, we denote by ™/ and v™9, respectively, the
jump measure of the martingale M™/ and M™9 respectively.
Since v/ ((0,#] x{|zf| > €}) and v™9((0, ] x {|x,| > €}) tend to zero in probability
as n — oo (e > 0), our assertion follows immediately from the inequality
vM([0,2] % {|[(zs, )| | > €}) < v™([0,¢] x {Jzg| > €/2}) +v™9([0, ] x {|zg| > €/2}).
O
Now we can easily introduce a drift vector B and show how our discrete-time
model converges to a diffusion model with drift B and volatility matrix C. The

canonical drift vector is B := (us, py). To this end, we define for each n € N
continuous-time processes X" = {X}'};>0 and Y™ = {Y;"},>¢ by the relation

o (R A NS > St

and show that the sequence {Z"},eny = {(X™, Y")}nen converges in distribution to a
diffusion process with drift B and dispersion matric C.

Corollary 6.1 Let f and g be Lipschitz continuous functions. Then
Law(Z",P,) — Law(Z,P,-)

where Z is a continuous diffusion with deterministic characteristics (u,C,0), i.e
dZy = pdt + CdW,. Here, = (us, pig) and C and W are as in Theorem 6.1.

*)
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Proof: Following the proof of Theorem 6.1, the process Z" admits the representation

nt
zr=vp v+

where Y™ and M™ are as in the proof of Theorem 6.1. Since Mu — ti as n — 00,

n

the semimartingale {Mt" + @u} converges to Z by Theorem VIII 3.8 in Jacod

ten

and Shiryayev (1987). O

Remark 6.1 The convergence results remain valid for arbitrary measurable functions
f and g as long as the series in (44) and (45) are convergent.

Now we can proceed as in Follmer and Schweizer (1993). We consider for each n € N
a continuous-time process P" := { P}*};cn given by

AP = PP dX] + dY".

We assume that the sequence {(X",Y™)},en converges in distribution to the semi-
martingale Z = (X, Y") and that it is “good” in the following sense.

Definition 6.1 (Duffie and Protter (1992)) A sequence {Z"},en of semimartingales
defined on probability spaces (", F",P") is good, if for any sequence {H"}nen of
cadlag adapted processes the convergence Law((Z™, H"),P?) % Law((Z, H),P) im-
plies the convergence Law((Z", H", [ H*dZ",P")) - Law((Z, H, [ H dZ),P) as
n — oo.

The following result appears as Theorem 3.1 in Follmer and Schweizer (1993).

Theorem 6.2 The sequence {(X™, Y™, P")}phen converges in law to (X,Y, P). Here
P satisfies the stochastic differential equation

dP, = P,_dX; + dY;. (48)
In particular, the prices process {Si}i>o takes the form
Sy = Spexp(P, — P —0).

Remark 6.2 Note that in our model the “volatility coefficients” oy and o, reflect the
aggregate behaviour of traders. For example, the higher the volatility of aggregate be-
haviour at time t = 0 reflected by the terms E, [(f(mo) — ps)?] and Eux [(g(mo) — 1g)?],
the higher the volatility of the resulting stock price process. Thus, in our model, volatil-
ity 1s generated also by the interaction of agents and not only by random fluctuations
of certain fundamental values.
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6.2 Continuous-Time Dynamics in a Non-stationary Envi-
ronment

In the previous subsection we derived a continuous-time model for the evolution of
the stock price using a functional central limit theorem for strictly stationary and
ergodic processes. It turned out that, given that the mood of the market is already
in equilibrium, the random environment for the evolution of the security price process
can be approximated by a diffusion process with deterministic volatility matrix C.

However, this approach, although common in literature, seems to be inconsistent.
The logarithmic security price process {p; }+en evolves in an environment generated by
random fluctuations in the behavioural characteristics of agents. These fluctuations
will typically not be in equilibrium, and therefore it does not seem to be appropri-
ate to assume that the process {p;};en evolves in a stationary environment. If the
“mood” of the market admits a unique invariant measure, the assumption that the
asset price process evolves in a stationary environment may be regarded as merely
a simplification to circumvent deeper problems related to a non-stationary random
environment.

In this subsection we shall consider a slight perturbation of our original model.
We show how to obtain for any ¢ > 0 a suitable “e-approximation” of the process Z
describing the dynamics of the environment under the assumption that {m;}ey is a
non-stationary sequence of random variables. Furthermore, we shall verify that the
induced sequence {Z™},cn of semimartingales is indeed “good”. This results may
be viewed as a justification for the approach taken in the previous subsection.

To motivate our considerations recall that an invariance principle holds true for a
strictly stationary and p-mixing sequence {&;}ien of real valued random variables if,
for example, the mixing coefficients satisfy the relation ¢(t) = La! for some a < 1;
see, e.g. Billingsley (1968), Chapter 20. Furthermore, the functional central limit
theorem remains valid if the original probability measure P governing the sequence
{&}ien is replaced by an absolutely continuous probability Py. However, under P,
the process {&; }1en need no longer be stationary. Techniques related to those used in
the proof of Theorem 20.2 in Billingsley (1968) can be applied to establish Theorem
6.3 below.

Let us now consider a slight perturbation of our original model. For notational
simplicity we restrict ourselves to almost surely constant external fields. Let € > 0 be
given and let {n/,n?}1en be independent and N(0,€?) distributed random variables
defined on a common probability space (2, F,P¢ ) with the sequence {m;}ien and
independent of this process. As usual, we we put Pj. = J P, pu*(dm), where p*
denotes the unique invariant probability of the macroscopic process. We replace

f(my) and g(my) by
fE=f(m) +n and gf:=g(m)+nf (teN)

respectively and set ¢f := (ff, g5).
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Let us start with some preliminaries about the sequence ¢ = {¢{ };cn. For any
pair (I,n) € N* we denote by K]'(m;-) the common distribution of the random
variables (v5, ., --,%5,;) under the measure P,

Using the fact that the function f and g are Lipschitz continuous and that the
random variables 77?{c ,ni (t € N) are normally distributed, one can easily verify the
existence of a constant C° < oo such that
IR (ms 4) — K7 (' 4)

sup ,
mtm’ im — m/|

< (49)

uniformly in /;n € N and in A € B(R¥); see, e.g., Horst (1999b), Lemma 5.1. Using
the Lipschitz continuity of the mappings m — K(m, A) (n,l € N, A € B(R*), (39)
and a monotone class argument as in Horst (1999b), it is easy to show that there
exists a constant L < oo and a constant o < 1 such that

[Pr(A) = P (A)] < Lo (50)

forall A € o({¢f : i > t}). Now we are able to establish some basic mixing properties
of the sequence °.

Definition 6.2 Let (X, X) be a measurable space and ¢ = {(i}iez is a doubly infinite
sequence of X-valued random variables defined on some probability space (2, F,P).
(The usual case of an infinite sequence {(;}ien is obtained by taking (x = 0 for
k < 0.) The sequence ( is called p-mixing, if p(n) — 0 as n — oo, where the
mizing coefficients p(n) are defined by

¢(n) = supsup [B(B|4) ~ B(B)|.

Here the second supremum is taken over all B € o({( : i < l}) and over all A €
o({G:1>1+n}).

Proposition 6.2 The sequence ¢° is p-mizing both under Py, and under P.. The
mixing coefficients satisfy the relation

p(n) < 2L°a™.

Proof: Let us first show that the sequence ¥¢ is p—mixing in the non-stationary
situation, i.e., under the measure P¢,. Let 7,1,n € N and 5" := (¢5,...,9f). We
have that

Py ((Vinsts - - Ylmar) € AWE’U)]
= Py [Pl insts- - s Yrmer) € Alpo0, eW][go0)]
P KT (u(m, e); A) |3
K (u(m, e"); A)
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by the law of iterated conditional expectations. Therefore we get

|]P’fn[(1/)l€+n+1’ T ¢;—|—n+r) € A] - P:n[(wle—i-n—kl’ T ’wle—l—n—l—r) € AWJE’U)H
UKD (5 A) = i (K7 (5 A))| + [UTHER (5 A) — o (K7 (5 4))|

<
< 2L%™ P;, —a.s.

for some constant L¢ < co. Here, the last but one inequality follows from (49) and
(50). From this it is easily seen that
B, (BJA) — B, (B)| < 2La" (51)

for all B € o({¢)§ : i > I+ n}) and all A € o({¢§ : i < 1}) satisfying P¢,(A) > 0.
This establishes p(n) < 2La™ in the non-stationary situation. The mixing property
under the measure P« follows immediately from (51) and from the definition of P,..

|

Corollary 6.2 The sequences { ff }ien, {95 Hen, and { ff+9f }1en are p—mizing under
both P, and P5.. The respective n—th mizing coefficient ¢! (n), ©9(n) and ©/*9(n)
are bounded above by 2La"™.

Proof: The assertion follows immediately from Proposition 6.1 and from the defini-
tion of the mixing coefficients. O

Before we state and prove the main result of this subsection we introduce some
notation. We let X™¢ = {X;"“};>¢ and Y™ = {¥;"};> be defined by

[nt] [nt]
e 1 1 m.€ 1 Hg
X, = — € _ — Y, = — P~
t \/ﬁg{f G \/ﬁ;{g G
and put
Hy = ]Eu* f(mO) = /j’*(f), Mg = Ly g(mo) = IU’*(g)’

1 [nt] 1 [nt]
fi=— (fm) —py), g :=—= (g(my) — pg).
The proof of the following theorem is based on the mixing properties of the process

¢, which allows us to apply an invariance principle for ¢-mixing sequences.

Theorem 6.3 Suppose that the macroscopic process is reqular and that the func-
tions f and g are Lipschitz continuous. For each ¢ > 0 the sequence of processes
{Z™}pen = {(X™,Y™) }en converges in distribution to a continuous diffusion
process with deterministic drift vector B = (uy, ptg) and with volatility matriz C*,

where
o \JoF+ € Tt '
o o2+ €

Here, of,04 and oy, are defined as in the previous subsection.
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Proof: Let € > 0 be given. First, we consider the case iy = g = 0. According to
Corollary 6.2 we have that

Y Veln) <o, Y pi(n) <oo, D VpIH(n) < oo

Step 1: Let us first analyse the stationary situation. Due to the above mixing
properties we can use a functional limit theorem for strictly stationary and ¢-mixing
sequences. By Corollary VIII 3.106 in Jacod and Shiryayev (1987), the respective
sequences in (38), (39) and (40) with f(m,) and g(m,) replaced by f(m;) +n! and
g(my) + nf respectively, are absolutely convergent. Therefore

Law(X™,P.) — Law(o§Wy,P.) and  Law (Y™, P5.) = Law(ciW,, P.)
where Wy, W, are standard Brownian motions and

(09)” = E.[f(mo) + €] +2 ZE; [(f () + &) (f(mo) + €0)] = 0} + €,

>0
(06)2 = 0§+62.

Using the same arguments as in the proof of Theorem 6.1 it is easily seen that
Law(Z™*,P5.) — Law(Z,P;.) asn — co. Here Z¢ := C*W and Z™¢ = (X™¢, V™).

Step 2: In a second step we will now show that the sequence {Z™}, cn satisfies
an invariance principle under the original measure P, and that

Law(Z™,P;,) — Law(Z, P;.).

To this end, let {5,}.en be a sequence of real numbers such that £, 1 oo and
Bn/v/n — 0 as n — oco. For a given “time horizon” T and for each n € N we
introduce the two-dimensional process

~ € € - ﬂn
7re = v 5n(z~,gz-) if g <t<T
otherwise.

We denote by dy the Skorohod metric? on the space Dg[0,T]. Note that

Bn
(5 2o tm 133wt )|
n n i—o

1=0

Bn
\/_

As f and g are bounded and because 77{ and n¢ (i € N) are independent and normally
distributed random variables, the terms

do(Zn’e, Zn,e)

Bn Bn
1 1
- E |f(mi) +nf| and G E lg(mi) + 7|
" =0 " =0

2For the definition of dy see, e.g.,Billingsley (1968),p. 113.
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are P7 - and P}. — almost surely convergent, due to the strong law of large numbers.

Since % — 0 as n — oo we obtain

lim do(Z™, Z™) =0 P — and P, — almost surely. (52)

n—oo

Observe now that the event {Z™ € A}, A € B(Dg:[0,T]), belongs to the o—algebra
o ({¥§:1> B,}). Thus from (50) we deduce that

P [{Z™ € AY] - PL.[{Z™F € A}] < Lo (53)

Let us denote by P* the law of Z¢ under the measure P}.. By Step 1 above we know
that

lim P7.[{Z™° € A}] = P*(A) for any P*-continuous set A.

n—oo

Thus, by (52) and by Theorem 4.2 in Billingsley (1968) we have that
lim P, [{Z™ € A} = P*(A) for any P* — continuous set A.

n—oQ

Using (53) and Theorem 4.2 in Billingsley (1968) again, we get
lim P, [{Z7 € 4)] = P*(4)
for any P*-continuous set A. Therefore (52) implies that
Law(Z™,P,) — Law(Z,P.) (n — co).
The general case fif, uy € R follows immediately as in Corollary 6.1. O

In the previous subsection we assumed that the sequence {Z"},cn was good. Due
to the mixing properties of the sequence ¥¢ we can now verify that for any given
€ > 0 the sequence {Z™}, ¢y is in fact “good”.

Theorem 6.4 For any € > 0 the sequence {Z™},en of semimartingales is “good”in
the sense of Duffie and Protter (1992).

Proof: Let us first consider the case uy = 1y = 0. Recall that the sequence 3¢ =
{(ff, 95) }1er is p-mixing under the measure P¢, and that the mixing coefficients satisfy

o(n) < L@ for some o < 1, L < oo. (54)

We put F; = o ({ff,9{} : i <t) In order to show that the sequence {Z™*} is good,
we have to find a suitable semimartingale decomposition of Z™¢. Following Ethier
and Kurtz (1986) and Duffie and Protter (1992), we define

t o0

MY = ) EL[fflF, (55)
k=0 k=0
t o0

MPS =) gf+ > E (g5l R (56)
k=0 k=0
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The series on the right hand side in (55) and in (56) are convergent as a result of
the mixing property (54), see, e.g., Ethier and Kurtz (1986), p. 351. Furthermore,
M™ = (Hn’e, M™*) is a vector of square integrable martingales. With

1 [ 2% B [ff. | )
A — [ A€ ’ A™E — lo€<>—0 le‘ I§+t
{ [’I’Lt]}teN t \/ﬁ < Zk:() ]Eu* [gk+t|ft]

we consider the fOHOWiIlg deCOHlpOSitiOIll
1 1
Ztn,e = —M?l’te] + —TLA?,G'

v

According to Theorem 4.3 in Duffie and Protter (1992) the sequence {Z™},cn is
good as soon as the following condition is satisfied (“Condition B”):

sup{Eﬁmh [sup |[AM}|]} < oo  and sup{Eﬁnyh[|A"’€|T]} < 00.
neN t<T neN
Obviously, the martingale M™ has uniformly bounded expected jumps. Using stan-

dard estimates provided in Duffie and Protter (1992) it follows that

An,e Anae

sup K. [ 7] <00, supEL.] 7] < 0.
n n

Thus “Condition B” is satisfied and the sequence {Z™¢} is good. The general case
iy, g € R follows easily from the above calculations. O

Corollary 6.3 Theorem 6.2 holds true in the non-stationary setting and with our
ortginal model replaced by a “perturbed one”.

Remark 6.3 [t is not clear to us which conditions would ensure goodness of the
sequence {Z™°}. The estimate provided in Duffie and Protter (1992) we used to
verify that the process {A™¢} has finite variation on compact time intervals for each
fizxed € > 0 leads to

lim E, ,[|4"|;] = oo,
as the constant L¢ in the proof of Theorem 6.3 tends to infinity as e — 0. A condition
like

sup Ef, | A" 1] < oo

would imply goodness.

7 Numerical Simulations

This section is devoted to some numerical simulations of the model developed in
Section 2. According to Theorem 3.1 we have sufficient conditions for the distributions
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of the empirical average to converge weakly to a unique equilibrium p. Nevertheless,
our simulations show that this process may exhibit large and sudden fluctuations
(“phase transitions”), and that these fluctuations do not reflect rational adjustments
to new economic fundamentals. They are due to a distinct herd behaviour. Small
changes in the external conditions lead to large and sudden price overreactions, i.e.,
to bubbles or crashes. Let us consider the mean variance setting as in Example 2.2.

gl AT T N e
0.5 M\N\
500 1000 1500 2000
-0.5 J
",
1l

Figure 1: Evolution of the empirical average; less volatile external field

Suppose that only optimistic and pessimistic information trader are active on the
market and that for a proposed stock price p the individual expectations are of the
form

pf=p+cF+zf—p), c>0.

Here F' denotes some fixed, say long run, fundamental value of the asset. Thus, the
equilibrium price p; at time ¢ is given by

_ 1
_r—i-c

v (F + my).

The signal sequence {e;};—1 o . is defined by
€yl = My + €

where {€;}4en is an i.i.d. sequence of normally distributed random variables with zero
mean and volatility o.. We specify the conditional choice probabilities as

exp{(£B(Jep1 + T + Khy))}
@ =41 h =
(24 let1, e, 22) 2cosh{(£8(Jet1 +Txf + Khy))}

where J = 1,7 = K = {, = 3. The (stochastic) external field field {h}sen is
modelled by a random walk:
hti1 = hi + ne
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Here {n; }1en are independent and normally distributed with volatility o,. It is easily
seen that the dynamics of the empirical average is given by

M1 = U(mt, Ct+1, ht)

mt—i—l

]_ —
= 5 tanh(ﬂ(J€t+1 =+ T + Kht)) + o

tanh(B(Je 1 — T + Khy)).

One can easily show that u satisfies a contraction condition for the above parameters.
Figure 1 shows the evolution of the empirical average if o}, is small. Figure 4 shows

0.5¢

W 50
0.5

e

1000 1500 2000

Figure 2: Economic fundamentals

the dynamics for a higher value of oy,.

These simulations suggest that the equilibrium distribution p is concentrated
around the points +0.9. To clarify this point let us assume for the moment that
err1 = my and hy = h a.s. The mapping

m +— u(m, m, h)

has either one or two stable fixed points, depending on the value h. There exist
constants h™, ht € R such that for h € (h~,h™) it has two fixed points; otherwise it
has just one. Suppose it has two: m~ < 0 < m™. Depending on the initial condition
m; either tends to m ™~ or to m™, say to m*. Suppose now that h; becomes stochastic.
Then m; fluctuates around m™ as long as h; > h~. For hy < h™ m; converges to m™
and fluctuates around this point as long as h; < h™ etc..

The economic interpretation is rather clear. If the market is sufficiently enthusias-
tic, negative economic fundamentals are neglected. If the external conditions become
too negative, a sudden price overreaction occurs.

In case of a stochastic signal process investors may get a “wrong” signal about the
aggregate behaviour which forces them to change their individual expectations. As a
result, m; may belong to the attractor of the fixed point m™ whereas m;,; belongs
to the one of m~. Hence, a crash may occur without any changes in the economic
fundamentals.
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Figure 3: Evolution of the empirical average for J=0
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Figure 4: Evolution of the empirical average, highly volatile external field

8 Conclusion

We analysed a simple financial market model where the process of temporary equi-
librium prices evolves in a random environment generated by interaction of agents.
We have seen how distinct herd behaviour may generate large fluctuations of tempo-
rary equilibrium prices. Small changes in economic fundamentals may lead to sudden
price overreactions. This may be viewed as the appearance of bubbles and crashes
in the context of a financial market model whose overall behaviour is ergodic. In our
mean field model, the macroscopic process has a u-shaped rather than a bell-shaped
equilibrium distribution. The empirical average would converge to one of possibly
several fixed points if the signals are deterministic and external conditions are con-
stant. In case of stochastic signals, from time to time the process is “thrown” into
the basin of attraction of different fixed points . Such “phase-transitions” will also
appear in more general models, see (Horst 1999).
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