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Abstract

Applying nonparametric variable selection criteria in nonlinear regression

models generally requires a substantial computational e�ort if the data set

is large� In this paper we present a selection technique that is computation�

ally much less demanding and performs well in comparison with methods

currently available� It is based on a Taylor expansion of the nonlinear model

around a given point in the sample space� Performing the selection only

requires repeated least squares estimation of models that are linear in pa�

rameters� The main limitation of the method is that the number of variables

among which to select cannot be very large if the sample is small and an

adequate Taylor expansion is of high order� Large samples can be handled

without problems�
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�� Introduction

Selecting a subset of variables is a problem that has been extensively considered
in linear models� The problem often occurs in connection with autoregressive
models� In that case� the variables have an ordering� and sequential tests may
be applied to choosing the maximum lag if it is �nite� If one is also interested in
�nding the relevant lags� model selection criteria such as FPE �Akaike ��������
AIC �Akaike ����	��� SBIC �Rissanen ����
�� Schwarz ����
�� and many others
may be applied�

The variable selection problem also occurs in nonlinear models� In some sit�
uations� the functional form of the model may be unknown� The problem of
�nding the right subset of variables if it exists is then very important� This is
because selecting too small a subset leads to misspeci�cation whereas choosing
too many variables aggravates the curse of dimensionality� One way of solving
the problem has been to use nonparametric methods based on local estimators�
For kernel estimators� Vieu ������ and Yao and Tong ����	� considered variable
selection based on cross�validation� On the other hand� Auestad and Tj�stheim
������ and Tj�stheim and Auestad ����	� suggested nonparametric FPE criteria�
Their technique was further re�ned by Tschernig and Yang ����
� who� among
other things� also showed the consistency of the FPE�

Even when the nonlinear model is parametric� a nonparametric variable se�
lection technique could still be useful in many situations� For instance� if the
researcher intends to �t a neural network model to the data� then reducing the
dimension of the observation vector before actually �tting any model to data is
advisable if possible� Nonparametric variable selection would save the researcher
from the e�ort of estimating a possibly large number of neural network models
with di�erent combinations of variables before choosing the �nal one�

In this paper we propose a simple variable selection procedure that instead
of local estimation uses global parametric least squares estimation� It can never�
theless be viewed as a nonparametric procedure as the number of parameters in
the global regression is assumed to grow with the number of observations� This
approach saves plenty of computational resources compared to nonparametric
techniques based on local estimation� It can therefore be easily used even when
the number of observations in the time series is large� The plan of the paper
is as follows� Section � presents the idea and gives the theoretical motivation�
Section � outlines the model selection procedure� Section 	 reports results from
a small�sample simulation study� and Section � concludes�

�� Asymptotic motivation

Consider the nonlinear model

yt � f�ut��� � �t� t � �� ���� T �����

�



where ut � �xt�� ���� xtp� zt�� ���� ztq�
� � �x�t� z

�
t�
� such that E��t j Ft� � �� where

Ft � fut�ut��� ���g is the information set available at time t� Furthermore� we
assume that f�ut���� � � �� is a function of ut such that it is at least k times
continuously di�erentiable everywhere in the sample space U � fut j ut � Ug for
all values of � � �� Our problem is to �nd the correct variables �elements of ut�
for the model� Assume that those are xt�� ���� xtp� p � �� whereas the remaining
elements of ut are redundant�

We assume that the functional form of f is unknown even if the true function
may be parametric� To �nd the relevant variables� we start by linearizing f�ut����
This is done by expanding the function into a Taylor series around an arbitrary
point u�t � U � After merging terms� the k�th order Taylor expansion can be
written as�
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where q � k �for notational reasons� this is not a restriction�� Rk�ut� is the
remainder� and the � �s� ��s� and ��s are parameters� Expansion ����� contains
all possible combinations of xti and zti up to order k� The assumption that the
true data�generating process is only a function of xt � �xt�� ���� xtp�

� means that
all the terms involving functions of elements of zt in ����� have zero coe�cients�
The remainder term will be a function of xt only� Rk�ut� � Rk�xt�� � t� Thus
the true kth�order expansion is

f�xt��� � ���
pX

j��
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Equation ����� may be written in matrix notation as

y � X� � Zx� �Rk �X�Zx� �� ���	�

where X is a T �m�k� matrix whose t�th row involves products of elements of xt
only� t � �� ���� T� and Zx is a T�n�k� matrix whose t�th row consists of elements

involving at least one element of zt� t � �� ���� T � Setting W �
h
X Zx

i
and

� �
�
���� �

��
and rewriting ����� yields

y �W� � �� �����
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where �� � Rk�X� � � and W is of full column rank�
We shall now make additional assumptions about ������Assume that �White

���
	�� p� ����

�i� �wt� �
�
t�
� is a stationary ergodic sequence�

�ii� �a� E fw��� j F�mg � � in quadratic mean as m � 	 where Ft is the
information set containing all information about wt and �t up until t�

�b� E j �twti j��	� i � �� ����m�k� � n�k��

�c� VT � var
�
T����W

�

�
�
is uniformly positive de�nite�

�d�
�P
j��

var �Roij�
��� � 	� i � �� ����m�k� � n�k�� where Roij

� E �w�i�� j F�j��E
�
w�i�� j F��j���

�
� i � �� ����m�k� � n�k�

�iii� �a� E j wti j��	� i � �� ����m�k� � n�k��

�b� M � Ewtw
�
t is positive de�nite�

Consider the case where k� T �	 such that �m�k� � n�k�� �T � � as k �	�
Furthermore� Rk�xt� � � as k � 	� for any k � �� The OLS estimator of � in
����� has the form

b� �
�
W�W

���
W�y � ��

�
W�W

���
W��Rk�X� � �� �����

where � �
�
�
�

���
��
� Note that the Taylor approximation becomes arbitrarily ac�

curate as k �	� thus Rkt � � in probability for every t while �m�k��n�k���T �
�� As k �	� we have

p lim
T��
k��

�m�k��n�k���T��

�b� � �� � p lim
T��
k���

�m�k��n�k���T��

�� b�b�
�
�
�
�

�n�k�

��

� p lim
T��
k��

�m�k��n�k���T��

�
X�X�T X�Zx�T
Zx

�X�T Zx
�Zx�T

���

�p lim
T��
k��

�m�k��n�k���T��

��
X�Rk�X��T
Zx

�Rk�X��T

�
�

�
X���T
Zx

���T

��

�M��
� � p lim

T��
k��

�m�k��n�k���T��

�
X���T
Zx

���T

�
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where the subscript 	 indicates an in�nite�dimensional matrix� Thus� asymp�
totically� we are able to select the correct set of variables X with probability

	



one� Furthermore� Theorem ���� �White ���
	�� p� ���� gives the asymptotic
normality of

p
T �b� � ��� The assumptions we need for these results are rather

restrictive in the sense that all moments of ut have to exist� However� if ut has a
multinormal distribution� say� then this assumption is satis�ed� We shall discuss
the practical implications of our asymptotic theory in Section ��

The above theory is valid for ordinary regression models� but we would also
like to select the appropriate lags in a nonlinear autoregressive model� We can
expect our ideas to work in that framework only if we tighten the assumptions
about the error structure of the model� Assume that the data�generating process
is a nonlinear autoregressive model ��� where ut � �yt��� ���� yt�p�

�� It is not
su�cient to require that is yt is stationary� In addition� we also have to assume
that at least �k moments of yt exist if we want to use the kth order Taylor
expansion� For asymptotic results similar to those in the previous section� we
have to assume that all moments exist� This is the case if f�tg is a sequence
of zero�mean independent identically distributed stochastic variables such that
all moments of their distribution are �nite� This can be seen from the Volterra
expansion of the autoregressive process� for a de�nition see Priestley ���
��� pp�

���
���

�� The model selection procedure

The results of Section � show that� asymptotically� the combinations containing
redundant variables will be discovered as their coe�cients that equal zero in the
Taylor expansion are estimated consistently as are the other �nonzero� coe�cients�
The same may not be true for the univariate case� but we have argued that
even the factors involving correct variables �lags� contribute more to the Taylor
expansion than the other factors� This forms the starting�point of our model
selection strategy� It can be described as follows� For a given sample size T �
choose k� the order of the Taylor expansion� The asymptotic results suggest that
the choice of k is important� k has to be in the right proportion with respect to
T� Then regress yt on all variables �product of original variables� in the Taylor
expansion and compute the value of an appropriate model selection criterion� We
use SBIC which is a relatively parsimonious criterion that Rissanen ����
� and
Schwarz ����
� independently proposed� see� for example� Judge� Gri�ths� Hill�
L�utkepohl� and Lee ���
	�� pp� 
���
�	� or Ter�asvirta and Mellin ���
�� for other
alternatives� Next omit one regressor from the original model� regress yt on all
products of variables remaining in the Taylor expansion and compute the value of
SBIC� Repeat this by omitting each regressor in turn� Continue by simultaneously
omitting two regressors from the original model� Proceed until the regression only
consists of a Taylor expansion of a function with a single regressor� Leave this out
as well to check for white noise� This amounts to estimating

Pp�q
i��

�p�q
i

�
�� � �p�q

linear models by ordinary least squares� The combination of variables that yields
the lowest value of SBIC is selected� If the number of observations is su�ciently
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high and k is selected in an appropriate way� then one should be able to select
the correct set of regressors with a high probability�

Sometimes the unknown function in ����� may be at least approximately lin�
ear� Therefore it may be a good idea to begin the variable selection procedure by
testing linearity� This can be done by testing the null hypothesis that the coe��
cients of all the terms of order higher than one equal zero in the Taylor expansion
������ Ter�asvirta� Lin� and Granger ������ arrived at this hypothesis when they
derived a test of linearity against a single hidden layer feedforward arti�cial neu�
ral network model� If this hypothesis is not rejected� then the model selection
simpli�es to variable selection in linear regression using subset regressions� This
means saving computer time and making the selection procedure more e�cient�
As before� a suitable model selection criterion such as SBIC may be applied to
the problem� As we assume that the number of variables in f is �xed� SBIC
asymptotically yields the correct model with probability one� if the true model is
linear�

In the next section we shall apply our procedure to demonstrate how its
performs� We compare it with the FPE procedure by Tschernig and Yang ����
�
that builds on the work by Tj�stheim and Auestad ����	�� That procedure was
chosen since it is also consistent while requiring weaker moment assumptions�
e�g� the function f��� only needs to be di�erentiable up to order four� This is
achieved by using local estimation techniques� Instead of increasing the order of
the Taylor expansion with increasing sample size as for the global estimator ������
the order of the Taylor expansion is �xed while the expansion is estimated only
locally� One thus estimates the function value f�u� at u by estimating a �rst order
expansion with observations lying in a neighbourhood of u� Clearly� the smaller
the neighbourhood determined by a so�called bandwidth parameter� the smaller
the bias but the larger the estimation variance� With increasing sample size�
the approximation error is reduced by decreasing the size of the neighbourhood
instead of increasing the order k of the Taylor expansion�

The trade�o� between bias and variance allows one to derive an asymptotically
optimal bandwidth� Using recent results of Tschernig and Yang ����
�� it can
be estimated by plug�in methods� A corresponding estimate of k is beyond the
scope of this paper� The nonparametric CAFPE proposed by Tschernig and Yang
and used in the Monte Carlo analysis is given in equation �A��� in the Appendix�
We shall only report results for univariate models� The results for multivariate
models are similar to those for univariate ones and are therefore omitted�

�� A simulation study

To �nd out how the selection procedure functions in practice� we conducted a
simulation study� We simulated both nonlinear autoregressive models and models
with exogenous regressors� The autoregressive data�generating processes �DGP�
are de�ned as follows�

�



�i� Arti�cial Neural Network model with two lags and a single hidden unit
�ANN��

Yt � ��� �
�

� � expf���Yt�� � �Yt�� � �����g � �t� �t 
 N
�
�� ����

�
�	���

�ii� Nonlinear Additive AR��� process �NLAR��

Yt � ���	 � �� Y �
t��

� � Y �
t��

� ��� � �� �Yt�� � �����

� � �Yt�� � �����
� ����t� �t 
 N��� �� �	���

�iii� Nonlinear Additive AR�	� process�NLAR� ���

Yt � ���	 � �� Y �
t��

� � Y �
t��

� ��� � �� �Yt�� � �����

� � �Yt�� � �����
� ����t� �t 
 N��� �� �	���

�iv� Nonlinear AR��� process �NLAR��

Yt � ��� � �

� � Y �
t�� � Y �

t��

� ��� � ����t �	�	�

�t 
 Triangular density� positive for j�tj � ���
p
�

�v� Logistic smooth transition autoregressive process �LSTAR�

Yt � ��
Yt�� � ����Yt�� � ����� � ����Yt�� � �����Yt���

� �

� � expf�����Yt�� � �����g � �t� �t 
 N
�
�� ����

�
�	���

�vi� Periodic� �SIN��

Yt �
sin�	Yt��� � sin�		Yt���

�
� �t� �t 
 N

�
�� ����

�
�	���
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Simulating these processes did not indicate that any of them would be ex�
plosive� The random numbers were generated by the random number generator
in GAUSS� version ���� The �rst ��� observations of each series were discarded�
Models �	���� �	��� and �	��� are additive� models �	��� � �	�	� � �	��� are not� This
seems to make a di�erence if we apply the nonparametric FPE procedure of Tsch�
ernig and Yang ����
�� The LSTAR model �	��� is the same as that in Ter�asvirta
����	�� p� ��� except for the error variance� which is greater� The periodic model
�	��� may be expected to be a problematic one as it is not well approximated by a
combination of low�order polynomials of its variables� We also simulated models
with exogenous regressors with the same functional form as the univariate ones�
the lags being replaced by normally distributed exogenous regressors generated
by a stationary �rst�order vector autoregression� The results from both cases are
rather similar� and we therefore only report those based on univariate models�
The remaining results are available from the authors upon request�

We used three sample sizes� T � ���� ���� ����� in this study� To compare
our procedure with the nonparametric approach� we also simulated the CAFPE
procedure for the two smallest sample sizes� For T � ����� the computing times
for that technique turned out to be prohibitive� The idea with the smallest sample
size is precisely to see how our procedure works when the available information
set is not very large� The other two sample sizes are chosen �i� to show how much
things improve compared to the smallest sample size and �ii� to demonstrate that
the choice of k is important� that is� the ratio �m�k� � n�k���T has to approach
zero at a right rate as T increases�

Table � contains the results for T � ���� Most realizations from the nonlinear
model �	�	� seem linear� and selecting the correct lags is more di�cult than in
other models� Note� however� that the ranking of the models in this respect may
easily be changed by changing the error variance� Results also indicate that the
nonparametric approach works better when the DGP is additive� In that case�
CAFPE and our Taylor expansion strategy produce similar results� In other
cases� our procedure compares quite favourably with the nonparametric one�

Tables � and 	 are based on ���� observations� A comparison between them
and Table � shows that the choice of k is important� If k � � as in Table
� then� for the additive models� the performance of the procedure deteriorates
compared to the smaller sample size� If T � ���� but we choose a �fth�order
Taylor expansion� results are uniformly at least as good as for T � ���� An
overall conclusion from this� admittedly limited� simulation experiment� is that
the simple Taylor�expansion based model selection strategy works quite well� But
this requires �nding the right balance between the sample size� the number of
variables under consideration� and the order of the Taylor expansion� Note in
particular that for the periodic model �	���� our technique performs adequately
only for T � ���� if� at the same time� k � �� In small samples it is solidly beaten
by the CAFPE�






The order of the autoregression p is restricted by the procedure because the
number of regressors in the auxiliary regression grows exponentially with p and
k� We can alleviate the problem as follows� If we disregard the cross terms in the
Taylor expansion� we are able to reduce the number of regressors substantially�
This means implicitly assuming that the underlying model is additive� The lags
selected this way normally encompass the set we would have selected with the
complete expansion� if using that had been possible� Repeating the procedure
with the complete Taylor expansion for the selected subset may then weed out
the remaining redundant variables�

�� Conclusions

We have developed a variable selection technique that can be applied to nonlinear
models and provided an asymptotic justi�cation for it� Time series with a couple
of hundred observations at most do not allow the set of variables to choose from
to be large� On the other hand� the other techniques available for nonlinear model
selection share this disadvantage� One of the main advantages of our technique
is that it is simple and computationally feasible because it is based on ordinary
least squares� It is applicable already in small samples and the computational
burden remains tolerable even when the series are long� The standard subset
selection procedure for linear models constitutes a special case of our technique�
In small samples the performance of our variable selection procedure compares
favourably with currently available techniques based on nonparametric methods�
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Appendix

Denote by w a �m��� subvector of u� m � p�q� A local linear estimate bf�w� h�
of the function at w using the bandwidth h is given by the estimated constant �c�
of a linear Taylor expansion �tted locally around w

fbc�� bcg � arg minfc��cg

TX
t��

�
yt � c� � �wt �w��c

	�
K h�wt �w� �A���

where K��� denotes a standard kernel function and K h�wt � w� � h�m
Qm

i��

K ��wt�i � wi��h�� The integrated mean squared error can then be estimated by

bA�h� � T��
TX
t��

n
yt � bf�wt� h�

o�
w�ut� �A���

where the integration is restricted to the domain of the weight function w��� which
is de�ned for the full vector u� Furthermore� de�ne the term

bB�bhB� � T��
TX
t��

n
yt � bf�wt� bhB�o�w�ut��b
�wt� bhB� �A���

where b
��� is a Gaussian kernel estimator of the density 
 using Silverman�s
�Silverman ���
��� rule�of�thumb bandwidth bhB � h�m� �� ��� T � and

h�k� �� n� � �f	�kg���k���n����k����

Moreover� b� �
�Qm

j��

q
V ar�wj�

���m
denotes the geometric mean of the standard

deviation of the regressors�
The local linear estimate of the FPE is then given by

AFPE � bA�bhopt� � �K���mT��bh�mopt bB�bhB� �A�	�

where the plug�in bandwidth is computed from

bhopt � n
mjjKjj�m� bB�bhB�T�� bC�bhC������K o���m���

with jjKjj�� �
R
K��u�du� ��K �

R
K�u�u�du� Note that the second term in �A�	�

serves as a penalty term to punish over�tting�
The estimation of C involves second derivatives which are estimated with a

local quadratic estimator that excludes all cross derivatives� It is a simpli�cation
of the partial local cubic estimator of Tschernig and Yang ����
�� The bandwidth
estimate bhC is given by h�m� 	� �b�� T ��

Based on theoretical reasons and Monte Carlo evidence provided in Tschernig
and Yang ����
�� the authors suggest to use the corrected FPE

CAFPE � AFPE
n
� �mT����m���

o
�A���

where the correction increases the probability of correct �tting� One then chooses
that variable vector w� for which AFPE or CAFPE are minimized�
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