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Abstract. Suppose that one observes a process Y on the unit interval, where dY (t) =
n/2 f(t)dt + dW (t) with an unknown function parameter f, given scale parameter n > 1
(“sample size”) and standard Brownian motion W. We propose two classes of tests of
qualitative nonparametric hypotheses about f such as monotonicity or concavity. These
tests are asymptotically optimal and adaptive in a certain sense. They are constructed
via a new class of multiscale statistics and an extension of Lévy’s modulus of continuity
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1 Introduction

Many nonparametric statistical models involve some unknown function f on the real line.
For instance f might be the probability density of some distribution or a regression func-
tion. In many applications qualitative assumptions about f such as monotonicity, uni-
modality or concavity are plausible, though not necessarily satisfied. A natural question
is how to test such assumptions. In the context of density estimation there exist various
proposals for testing unimodality versus multimodality of f. Silverman (1981) developed
a test based on critical bandwidths of kernel density estimators, whereas Hartigan and
Hartigan (1985) and Miiller and Sawitzki (1991) use the so-called dip or excess mass func-
tional. Further results for these procedures are given by Mammen et al. (1992) and Cheng
and Hall (1999). But the available distribution theory relies on additional smoothness
constraints on f. Statistical tests that are valid under the qualitative assumption only,
have some optimality properties and are computationally feasible are yet unknown. There
is another aspect of testing qualitative assumptions: If there is evidence that such an
assumption is violated one would often like to identify, with a certain confidence, regions

where this violation occurs.

In the present paper we study such problems in detail within the (continuous) white
noise model. Suppose that one observes a stochastic process Y on the unit interval I :=
[0, 1], where

Y1) = n1/2/ F(z) dz + W ().

[0,4]
Here f is an unknown function in L!(I), n > 1 is a given scale parameter, and W is

standard Brownian motion. We consider the following hypotheses:

Heo = {fifSO},
H, = {f : fis non—increasing},

Heone = { f:fis concave}.

Note that these are nonparametric rather than finite or finite-dimensional hypotheses.
The ideal white noise model serves as a prototype for various statistical models involv-
ing regression functions or distribution densities. The results of Brown and Low (1996),
Nussbaum (1996) and Grama and Nussbaum (1998) on asymptotic equivalence of these
models can be used to transfer the lower bounds of the present paper to other models.
The main benefit of the white noise model is the applicability of rescaling arguments as,

for instance, in Donoho and Low (1992).



There is an extensive literature on nonparametric testing of the simple hypothesis {0}.
As a starting point we recommend the survey of Ingster (1993) containing many basic
results and further references. Under the nonparametric approach it is typically assumed
that f belongs to a certain class F of smooth functions, and its distance to the null
hypothesis {0} is quantified by some semi-norm || f||. For a given level a € |0, 1] and some
number J > 0 the goal is to find a statistical test ¢ : C(I) — I whose minimal power

inf E Y
geFilgl>s ¢ ()

is as large as possible under the constraint IEg¢(Y) < a. Here and subsequently the
dependency of probabilities and expected values on the functional parameter f is indicated
by a subscript. Approximate solutions as n — oo for this testing problem are known for
various classes F and seminorms ||-||. Ingster (1986, 1993) described the case of Ly, -norm,
1 < p < o0, and Holder and Sobolev smoothness classes. Spokoiny (1997) extended the
results to the case of arbitrary Besov classes. Sharp optimal asymptotic results are known
for a few cases: Ermakov (1990) found the sharp asymptotics for Sobolev balls and Lo -
distance, while Lepski and Tsybakov (1996) treated Holder smoothness classes and the
supremum norm. The latter case is of special importance for us since the sup-norm seems
to be the most suitable for describing the alternative set for the considered qualitative null
hypothesis, see Section 3.2 for a discussion in terms of test signals. The tests of Lepski
and Tsybakov (1996) are based on a kernel estimator of f with a kernel function and
bandwidth depending on F. It is a general problem that the available optimal tests ¢
depend explicitly on the class F and may fail if the latter is altered. With this problem
in mind we review some results of Lepski and Tsybakov (1996) in Section 2 and introduce
a new class of multiscale statistics combining kernel estimators of various bandwidths.
These statistics lead to adaptive tests in the sense that they are asymptotically optimal

for many Holder classes simultaneously.

The problem of adaptive (data-driven) choice of a smoothing parameter for testing a
simple hypothesis, where deviation from the null hypothesis is measured by some integral
norm, was considered in Ledwina and Kallenberg (1995), Fan (1996), Spokoiny (1996),
Hart (1997) among others. The main message of Spokoiny (1996) is that the adaptive
approach leads necessarily to suboptimal rates by a (log log)-factor. This issue differs
drastically from what we have for the sup-norm: Adaptive testing is possible without any

loss of efficiency!

In Section 3 we introduce tests for the three nonparametric hypotheses H<o, | and

Heone- Given any of these composite hypotheses, say H,, we introduce two different func-



tionals A(f) measuring the distance of f to H, and show how to maximize approximately

inf 1B, (Y
g€ F i A(g)>5 g 9(Y)

over all tests ¢ satisfying

sup IE;p(Y) < a.
feHo

Again the proposed tests are based on the multiscale idea as introduced in Section 2 and
adaptive in a certain sense. Moreover, whenever the hypothesis H, is rejected we can
identify with confidence 1 — « one or several intervals J C [0,1] on which the qualitative
assumption about f is violated. Thus our procedures may be interpreted as multiple tests

and lead automatically to nonparametric confidence sets.

Section 4 describes some possible extensions and modifications for other, more tradi-
tional statistical models. Some numerical examples for regression with Gaussian errors
are presented in Section 5. All proofs are deferred to Section 6. There we present an

extension of Lévy’s modulus of continuity which is of independent interest.

2 Multiscale tests of the hypothesis “f = 0”

Let us first introduce some notation. For measurable functions f,g on the real line let
(f,9) :== [ f(z)g(z)dz and | f|j2 :== (f, f)/2. When the integrals are restricted to some
interval J C R we use an additional subscript J and write (f, g)s, || fll2,7. Moreover let

I f|l; denote the supremum norm sup,¢ ;s |f(z)|.
Suppose that we want to test the null hypothesis {0} versus a simple alternative {g}
with g € L2(I). Since log(dP, /dTPo)(Y) = n'/? [, gdY — n||g||?/2, the Neyman-Pearson

test rejects the null hypothesis at level « if the linear test statistic

lsllz} [ 9@ a¥ (@)

exceeds the (1 —a)-quantile of the standard Gaussian distribution. For [; gdY is normally
distributed with mean n'/2(f,g); and variance | g||%, ;- Therefore the power of this test is

an increasing function of n'/2||g||a,r-

In case of a closed and convex alternative G C L2(I)\ {0} let g, be the unique point in
G minimizing [|go|[5 ;- It is well-known from convex analysis that g, is uniquely determined
by
(9:90)21 > ||90||%,I forallg € G.



Therefore a Neyman-Pearson test of {0} versus {g,} is automatically an optimal test of

{0} versus G. Its minimal power over G is attained at the least favourable parameter g,.

For 8,L > 0 the Holder smoothness class F(f3, L) is defined as follows: In case of
0<pB<1let

F(B,L) = {f:1f(=) - f(y)] < Llw —y|’ for all z,y}.

For k < 8 < k + 1 with an integer k£ > 0 let F(0, L) be the set of functions that are k
times differentiable and whose k—th derivative belongs to F (8 — k, L). Suppose that we

want to test {0} versus

{9€7B,L0): |glls > 6}

for some § > 0 and some interval J C I. This alternative is not convex but the union of

the closed convex sets

{9€7(B,L): gt) >0} and {g€F(B,L): —g(t) > 5}

over all ¢ € J. Thus we look first for the least favourable points within these sets.

Let 9 = (-, B) be the unique solution of the following optimization problem:
(2.1) Minimize |||z over all ¥ € F(3,1) with 1(0) > 1.

It is known that 1 is an even function with compact support, say [—R, R], and 9(0) =

1> |9(z)| for z # 0. For instance, in case of 0 < 8 < 1 one can easily show that

p(z) = Yz <0} —[a]).

For the case of § > 1, an explicit solution is known only for 5 = 2, see e.g. Leonov (1999).
Donoho (1994a) and Leonov (1999) contain some useful properties of ¢ and advice how
this function can be constructed numerically. For any scale parameter A > 0 and any

location parameter ¢ € R let
(2.2) Yip(@) = w(“t)
. t,h : h .

A simple rescaling argument shows that for § > 0 the function {/; := £d1); ,, belongs to
F(B8,6h=?) and minimizes ||1)||s under the additional constraint +(¢) > 8. In case of
Rh <t <1 — Rh this function is supported by I and thus minimizes ||¢ ll2,r as well. Then
with

(2.3) B(t.h) = Pl [ dale)av (@)




the test statistic £U(¢, k) is optimal for testing {0} versus {g € F(B,6hP) : £g(t) > (5}.
Note that

Var(¥(t,h)) = 1 and EI(t,h) = (n/h)"|[gllz" (f, $rn)-

The following theorem implies that all these test statistics U(¢, k) can be combined in a

certain way.

Theorem 2.1 Let 1 be any function in L?(R)) with bounded total variation and compact
support [—R, R|. For real numbers h > 0 and t € [Rh,1 — Rh] let 1) and T(t, h) be
defined as in (2.2) and (2.3). Then

sup sup (\@(t, h) —Ed(t, h)\ — C(2Rh)) /D@2Rh) < oo
h€l0,1/(2R)] t€[Rh,1—RA]

almost surely, where C(r) := (2log(1/r))'/? and D(r) := (log(e/r)) /2 log log(e¢/r).

Remarks. The rationale behind the additive correction term C(2Rh) is that the
random variables ¥((2j — 1)Rh,h) — IEU((2j — 1)Rh,h), j = 1,2,...,[(2Rh)™!], are
independent with standard normal distribution. The maximum of these variables is known
to be C(2Rh) + 0,(1) as h — 0. Note further that D(-) is bounded and strictly positive
on ]0,1] with limj,_,o D(h) = 0.

Multiscale test. For any function % as in Theorem 2.1 we define the global test

statistic

(2.4) T(Y)=T(Y,y) = sup sup (\\Tl(t,h)| - C(2Rh)).
h€]0,1/(2R)] t€[Rh,1—Rh)

In case of f = 0, this test statistic equals T'(W) and is finite, by Theorem 2.1. Therefore

the critical value
(2.5) Ko = Ka(®) = min{r € R: P{T(W) <1} >1-af

is well defined for any a € ]0,1[. Then 1{7(:) > Ko} defines a test of {0} at level @ which

is asymptotically optimal in the following sense:



Theorem 2.2 Let the test statistic T(Y') be defined as in (2.4) with the solution ¢ =
(-, B) of (2.1). We define

logn ) B/(2p+1)

2L1/8 )ﬁ/(2ﬁ+1)
n

28+ D)lI¥l3

Then for arbitrary numbers €, > 0 with lim,_, ¢, = 0 and lim,,_, (log n)l/ 2¢, = 00 the

pn = pn(B) = ( and ¢, =c.(B,L) = (

following two conclusions hold:

(a) For any fixed nondegenerate interval J C I and arbitrary tests ¢, with IEq ¢,(Y) < «a,

limsu

inf E Y) < a.
nosoo. geF(BL):|lglly>(1—en)eapn g9alY) <

(b) Let J = Jy(8, L) := [R(cepn/L)/?,1 = R(cupn/L)"/?]. Then

Mo e (6,0) ol bentenpn ) 2 Fad = 1

Remark 1 The result of Theorem 2.2 can be treated in the following way. If a function
f deviates from the null with a distance greater L'/3p, then the test rejects the null
with probability close to one. This deviation bound cannot be significantly improved in
the sense that for every test ¢, of level a, there exists an alternative function g with
deviation (1 — €,)L3p, which will not be rejected with probability 1 — a — 0,(1) or

larger.

Adaptivity. Part (a) of Theorem 2.2 is a modification of Lepski and Tsybakov’s (1996)
lower bound. Part (b) is novel in that one test, 1{T'(-) > kq}, is asymptotically optimal for
all Holder smoothness classes F(3, L), L > 0. In other words, it is adaptive with respect
to the second parameter of F(3, L).

Adaptivity with respect to both parameters, 8 and L, is yet an open problem. However,
suppose that we use the test statistic 7' corresponding to the triangular kernel (-, 1). Then
it follows from Ingster (1986) that for arbitrary 8 > 0 there is a constant ¢(8, L) > ¢.(5, L)
such that

lim inf P {T(Y) >k = 1.
n—00 geF(B,L): |lgll1>c(8,L)pn AT(Y) 2 fa}

Thus our test with the triangular kernel 1 is rate optimal over arbitrary Holder classes

with respect to supremum norm over the whole unit interval 1.

Kernel estimators of f. If ¢ is viewed as a kernel function it leads to the kernel

estimator

f[ 1/’75,11 dy

St
W20, gy B

Fant) =

7



of f(t), where ¢, := (nh)~'/2||9p|l2/(1,%) is the standard deviation of fn(t). Then our
test statistic 7(Y) may be written as

T(Y) = sup (cph|Fusl
h€]0,1/(2R)]

[Rh,1—Rh] C(2Rh)) '

Thus we combine kernel estimators with arbitrary bandwidths in a specific way.

Boundary effects. For the sake of simplicity we restricted our attention to the
supremum norm on compact subintervals of ]0, 1] instead of the whole interval I. This
restriction can be avoided by using suitable boundary kernels similarly as Lepski and
Tsybakov (1996).

3 Testing the qualitative assumptions

We propose two classes of tests corresponding to different notions of distance from the

composite null hypothesis H<g, H| or Heonc-

3.1 Lipschitz alternatives and sup-norm distance

In this subsection let H, be either H<g or H ;. We assume that under the alternative f

belongs to the class F(1, L) for some unknown parameter L > 0 and measure its distance
to H, by
A = inf —
1(f) folgHo 1f = folls

for some interval J C I. Elementary calculus shows that in case of f & H,,

sup f(t) if H, = H<o,
teJ -
A = _
1) sup M if Hy =H,.
s,teJ 1s<t 2

A natural test statistic might be A j( f ), where f is some estimator of f. Specifically let
Fun() = n12h1 / PndY = (3nh/2)"Y20(th)

for some h € ]0,1/2], where 1 is the triangular kernel given by 9 (z) := 1{|z| < 1}(1 — |z|)
with ||[4||2 = 2/3. If we had one specific Lipschitz class F(1, L) in mind, it would be indeed
sufficient to use the test statistic A j( fn,h) with a suitable bandwidth A = h,(L). But in

order to achieve adaptivity with respect to L we combine all bandwidths and use the test



statistic

T,(Y) = sup (Api_n(T(,h)—C(2h))
h€0,1/2]
= sup ((3nh/2)' /2 Ap_n(fap) — C(2h)).
helo,1/2]

One can show that
(3.1) T,(Y) < T,(W) if feH,

with equality if f = 0. Moreover, T,(W) is finite, according to Theorem 2.1. Thus the

critical value
Koo = min{r eR:P{T,(W)<r}>1- a}

is well defined, and we reject the null hypothesis #, at level o if To(Y') > k4. This test
is asymptotically optimal for any Lipschitz class F(1,L), L > 0:

Theorem 3.1 Let

oo = (B,

and let (ep)n>1 be as described in Theorem 2.2.

(a) For any fixed nondegenerate interval J C I and arbitrary tests ¢, with IEg ¢,(Y) < «,

lim sup inf E;¢,(Y) < a.
n—oo gEF(B,L): As(9)=(1—€n) L 3py

(b) Let J = Ju (L) := [L=%3p,,1 — L=2/3p,]. Then

lim inf P {To(Y) > kou} = 1.
"0 geF(B,L): As(9)>(1+€n) L 3pn

3.2 Test signals and derivatives

In this subsection we consider the null hypotheses H | and Hconc and describe a second class
of tests in terms of test signals. Let us first illustrate this approach for the hypothesis
H,: Figure 1 shows a smooth function g ¢ H together with the the unique function
fo € H, minimizing ||g — fo|l2,;- The shaded region shows the difference g — f,. This
difference is similar to the sum of two functions with disjoint support but similar shape.
More precisely, for a suitable odd function ¢ with compact support [—R, R}, e.g. ¥(z) =
1{|z| <1} z(1 — |z|), the difference g — f, is similar to ayp;, + a’thy p/, where 0 < a < o/,
h > h'> 0and t+ Rh < t' — Rh'. Therefore a suitably weighted maximum of all statistics



W(t,h) with 0 < b < 1/(2R) and Rh < t < 1 — Rh might be an appropriate test statistic
for the null hypothesis H.

Figure 1 around here.

Generally let H, = H | or H, = Hconc, and let ¢ be a test signal in L?(R) with compact
support [—R, R] and bounded total variation such that

(3.2) (f,4) < 0 forall f € Ho.

Lemma 6.2 in Section 6 provides sufficient conditions for this requirement. Then we

propose the test statistic

(3.3) T(Y)=T(,) = sup sup  (W(t,h) — C(2Rh))
h€)0,1/(2R)] t€[Rh,1—Rh]

which is just a onesided version of (2.4). Requirement (3.2) on % implies that

T(Y) < T(W) whenever f € H,.
Equality holds if

[ is constant and H, = H,
f is linear and H, = Hcone-

Thus with the (1 — a)—quantile &y = Fq (1)) of T(W),

max PH{T(Y) >Ry} = P{T(W)>FRa} <
Multiple tests. Our method can be viewed as a multiple test procedure. Let D, be

the random family of intervals defined as
Dy = {[t — Rh,t+ Rh]: Rh <t <1— Rhand U(t,h) > C(2Rh) + %a}.

Then T(Y) > Fq if, and only if, D, is nonempty. One may claim with confidence 1—q that
the unknown regression function f violates the qualitative assumption, i.e. antitonicity or
concavity, on every interval J € D,. Consequently, when the null hypothesis H,, is rejected,
we do have some information about where this violation occurs. Analogous considerations

apply to the other multiscale tests of this paper.

Optimal test signals. In order to identify a “good” test signal ¢ satisfying (3.2),

note that for smooth functions g antitonicity is equivalent to g*) < 0 while concavity is

10



equivalent to ¢g(® < 0. Here g¢) denotes the j—th derivative of g. Now we want to find an
optimal test signal v for testing H, versus all alternatives of the form {g € F(k+1,L):
As(g) > 6}, where

1 ifH, =H,,

— (k) =
AJ(Q) . sup g (t) and £ : { 2 ifHOZHconc-

teJ

This leads to the following optimization problem:
(3.4) Minimize ||g — f||2 over all pairs (g, f) € F(k+ 1,1) x H, with g*¥)(0) > 1.

Note that the set {g € Flk+1,1) : ¢®(0) > 1} is convex, while H, is even a convex
cone. Thus a pair (g,, f,) solves problem (3.4) if, and only if, the difference

P = go— fo
satisfies
(3.5) (fs) < (forb) = 0 forall feH,
and
(3.6) (9:9) > Ill3 for all g € F(k+1,1) with g™ (0) > 1.

These inequalities imply that ||(g — f) — (13 < |lg — fII3 — ||¥||3 for any pair (g, f) as in
(3.4). Therefore the difference v is unique and satisfies (3.2).

Lemma 3.2 (a) In case of H, = H, a solution (g,, f,) of problem (3.4) is given by
Golw) 1= (1 —[2l/2) and fo(z) = 1{jal > 2} go(c).
For the corresponding test signal 1| := g, — f,,
I3 = 8/15 = 0.533.
(b) In case of H, = Heone a solution (g,, f,) of problem (3.4) is given by
go(z) = —32/81 +22/2—|z>/6 and f,(z) := 1{|z|] > 8/3} go(z).
For the corresponding test signal ¥eone := go — fo,

[eoncll3 = 2'6/(3%-5-7) =~ 0.2854.

11



The optimal test signals | and t)¢onc are depicted in Figure 2.

Figure 2 around here.

Theorem 3.3 Let T be defined with Y = go — fo, where (go, fo) solves the optimization
problem (3.4). For L > 0 let

pn = (log”)l/(2k+3)

2k+1 1/(2k+3
and ¢, =ci(L) = ( 2L ) /(2k+3)
n (

2k + 3) 14113

With J = J,(L) = [Rewpn/L, 1 — Rewpn/ L,

lim inf P {T(Y) > Ro} = 1,
MO0 geF(k+1,L): As(g)>(1ten)cupn

provided that lim,_,(logn)'/%¢, = co.

Kernel estimators of f(*). Another interpretation of our test is in terms of the

kernel estimator

f] "/)t,h (x) dY ('T)
W72 [z — )y (a) da

FB@) = = cun¥(t,h)

of f()(t), where ¢, := n*1/2h*k*1/2||1,b||2/(f zFap(z) d:c). Then the test statistic 7(Y)
may be written as

_ k
TY) = sup (cn,}l sup f,(l )(t) - C(2Rh)).
he]0,1/(2R)] t€[Rh,1— Rh]

Therefore our test identifies pairs (¢, k) such that f,(lk) (t) is significantly greater than zero.
This shows that our methods are related and have potential applications to Chaudhuri
and Marron’s (1997) method. Translated into the present set-up, the latter authors use

test statistics such as

sup  sup  (nh)Y2|f0 ()]
hé€la,b] te[Rh,1—Rh]

with fixed [a,b] C ]0,1[ in order to identify a set of pairs (¢,h) such that IE]?,(Ll)(t) #0
(with a certain confidence).

Rate optimality. The rate p, shown in Theorem 3.3 coincides with the optimal
rates for estimating the k—th derivative of functions in F(k + 1, L) in the sup-norm, see

Ibragimov and Khasminskii (1980). Moreover, our optimization problem (3.4) is closely

12



related (but does not coincide) with the optimal recovery problem from Donoho (1994a,
1994b) arising in estimation of the function and its derivatives in sup-norm. Similarly to
the estimation problem, the case of a smoothness degree which differs from k£ + 1 would
require different test signals. At the same time, one can easily see that the application of
the proposed test leads to the optimal rate of testing for an arbitrary Holder class F(3, L)
with 8> k.

4 Modifications and further developments

Gaussian regression. Suppose that instead of the process Y on I we observe a random

vector Y € R™ with components
(4.1) Yi = flz))+e¢ fori=1,2,...,n,

where z; := (i — 1/2)/n, and the random errors ¢; are independent with Gaussian distri-
bution N(0,0?). One can show that Theorems 2.2, 3.1 and 3.3 remain valid with oc, in

place of c,, provided that we replace \Tl(t, h) with

-1/2 2

(42) Un(th) = o (3 tunlaa)?) D thnlmi)Yi
i=1 i=1

Moreover it suffices to consider pairs (¢, h) such that ¢ = j/d and h = d/(Rn) for integers
de€[1,n/2] and j € [d,n — d].

Suppose that ¢ is unknown and replaced with an estimator &,. Then our tests are

asymptotically valid and keep their optimality properties provided that
(4.3) ‘En/a - 1‘ = op((logn)l/Q).

For instance, if 52 equals

@~ 1) =Y or (6ln—2) L (2% - Vit~ Yia)?

see Rice (1984) for the first and Gasser et al. (1986) for the second proposal, then (4.3)
holds whenever f has bounded total variation TV(f). Indeed, elementary calculations
show that

E((62/0? —1)%) < const.(1+TV(f)?)/n

for all n > 3.

13



General regression models. If one observes Y; = f(z;) + E; for i« = 1,2,...,n with
arbitrary fixed numbers z; and independent, identically distributed random errors F;, one
can modify the multiscale tests of 7| in Section 3.2 using linear rank statistics instead of
linear statistics such as Y, 9 5 (i/n)Y;; see Diimbgen (1998). There the aspect of localizing

interesting features such as modes is discussed in more detail.

Other testing problems. If a qualitative property of f is plausible one can construct
a confidence set for f under this assumption only. There are asymptotically optimal
and adaptive confidence bands for monotone or concave functions f based on appropriate

multiscale statistics; see Diimbgen (1999).

5 Numerical examples

In this section we illustrate the tests of Section 3.2 for | and Hcone within the Gaussian
regression model (4.1) with sample size n = 700 and standard deviation ¢ = 1. For
notational convenience the test signals 1| and tconc are rescaled to have support [—1,1],
namely v (z) := 1{|z] <1} 2(1 — |z|) and teonc := 1{|z| < 1}(—1/8 + 92?/8 — |z|*).

As for H |, Figure 3 shows a Monte Carlo estimator of the distribution function of

T,(Y) = max To(Y,h) with T,(Y,h) := tergsa)(@n(t,h)—C(Zh))

in case of f = 0. Here S, denotes {d/n : d = 1,2,...,|n/2|}, L,(d/n) stands for
{j/n:j=d,d+1,...,n—d}, and U, (t, h) is the linear filter defined in (4.2) with the test
signal 1. The Monte-Carlo estimator is based upon 9999 simulations, and the vertical
lines indicate the (estimated) critical values K, o for a € {0.50,0.10,0.05}.

Figure 3 around here.

Figure 4 shows four realizations of the random function T}, (17, -) on Sy, again in case of
f = 0. The lower dashed line depicts the additive correction term —C'(2h), while the

upper horizontal line shows the critical value &y, g.95 = 2.018.
Figure 4 around here.

The process f’n(?, -) behaves differently if, for example, f is the function depicted in
Figure 1. Figure 5 shows observations Y; together with this regression function f (left

plot) and the corresponding process Ty, (Y, -) (right plot).

Figure 5 around here.
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We see that the critical value & is exceeded for bandwidths h in two disjoint regions. For
two of these bandwidths Figure 6 shows the process W, (t,-) on Ly, (k) (upper row). In
addition, for both bandwidths a location parameter ¢ with ‘in(t, h) > C(2h) + Ry 0.05 Was
picked. Each plot in the lower row shows the data vector Y together with its orthogonal

projection onto the linear span of

(1{|x,~ -t < h})j:1 and <¢t,h(wi))

Note that the smaller bandwidth is appropriate for detecting and localizing a sharp in-

n
1=

%

creasing trend of f over a small interval on the right hand side, while the larger bandwidth
enables us to find a moderate increasing trend over a larger interval on the left hand side.

These pictures illustrate the benefits of using several bandwidths simultaneously.

Figure 6 around here.

Now we show analogous plots for a function f & Hcone and the multiscale statistic T,

based on the test signal 1heone. More precisely, we define U, (¢, h) as in (4.2) with
$lanh) = | < 1}(=a(nh) + (1 +a(mh)a® — o)

in place of ¥(z), where a(d) := (1 +d=2/2)/(8 + d~2). For then IE, T(t,h) < 0 for all
g € Heonc, @ consequence of Lemma 6.2. Figure 7 shows simulated data and the process
To(Y,-). Figure 8 shows the process Uy, (-, k) for two different bandwidths together with
“convex features” of the data. The latter are orthogonal projections of Y onto the linear
span of

(1l =t <n}) (o=t <hhai—1)"  and (ip(zi,nh))

n

i=1
6 Proofs

6.1 An extension of Lévy’s modulus of continuity

Theorem 2.1 may be seen as a generalization of Lévy’s modulus of continuity for Brownian
motion (cf. Shorack and Wellner 1986, Theorem 14.1.1). For if we apply Theorem 2.1 to
P(z) := I{|z| <1}, then

U(t,h) ~BU(t,h) = (2h)V2(W(t+h) - W(E—h),

so that

wp (WO=W0)

sterzs<ts  (t—s)/2 ot - 3))/D(t —5) < oo almost surely.
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Theorem 2.1 itself follows from a general theorem about stochastic processes with sub-
Gaussian increments on some pseudometric space (7, p). For any subset 7/ of 7 and € > 0
the capacity number (covering number) N (e, 7') is defined as the supremum of #7" over
all 7" C T' such that p(a,b) > € for arbitrary different points a,b € T".

Theorem 6.1 Let X be a stochastic process on a pseudometric space (T, p) with contin-

uous sample paths. Suppose that the following three conditions hold:

(i) There is a function o : T — ]0,1] and a constant K > 1 such that
IP{|X(a)| > a(a)n} < Kexp(—n?/2) forally>0andacT.

Moreover,
o(b)? < o(a)> + p(a,b)® foralla,beT.

(ii) For some constants L, M > 1,
]P{\X(a) - X(b)| > p(a, b)n} < Lexp(—n?/M) for alln >0 and a,b€ T.
(iii) For some constants A, B,V > 0,
N((&u)l/z, {aeT:0(a)?< 6}) < AuBs7V  for allu €]0,1].

Then the random variable

_ X(a)*/o(a)? -2V log(1/0(a)?)
S = T ogloglerfo(a))

is finite almost surely. More precisely, IP{S(X) > r} < p(r) for some function p depending
only on the constants K, L, M, A, B,V such that lim,_,, p(r) = 0.

Remark 1. By definition, X (a)?/c(a)? < 2V log(1/0(a)?) + S(X)loglog(ef/o(a)?)
for arbitrary a € 7. Since (z + y)'/? < 22 + 71/2y/2 for arbitrary positive numbers z
and y, Theorem 6.1 implies that

2161?(|X(a)|/0(a) — C(a(a)Q))/D(a(a)Z) < oo almost surely

with C(-) and D(-) as defined in Theorem 2.1.

Remark 2. Theorem 6.1 can be applied, for instance, to stochastic processes whose

index set is the family of all quadrangles in [0, 1]% or the family of all Euclidean balls on
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the unit sphere in R¢. Thus it has potential applications to multiscale tests for image

analysis and for directional data.

Proof of Theorem 6.1. For positive numbers v let

w(X,v) = sup | X (a) — X (b)]-
abET p(ab)<v

It follows from assumptions (ii) and (iii) with 6 = 1, Theorem 2.2.4 of van der Vaart and

Wellner (1996) and elementary calculations that

2
Ui
Here and throughout the sequel C' denotes a generic positive constant depending only on

K,L,M, A, B,V. Its value may differ from place to place.

For 0 <6 <1llet T(6) :={a €T :6/2 < oc(a)? <d}. Now fix some u < 1/2, and
let 7(d,u) be a maximal subset of 7(§) such that p(a,b)? > ud for arbitrary different
a,b € T(6,u). For each a € T(J) there exists a point @ € T (6, ) such that p(a,a))? < ud.

In particular,
(@)t > o(@)? —ué > o(@)?(1 —2u)

by assumption (ii) and the definition of 7(§). For 0 < A < 1 and r > 0, the inequality
X(a)? > o(a)’r
implies that either
w(X, wd)?)? > |X(a) — X@)> > NX(a)? > \or/2
or
X@)?% > (1-2)%X(a)? > (1—XN2%0(a)’r > (1—X2)2(1—2u)o(a)?r
Thus for any nonincreasing function r : ]0,1] — ]0, oc],
M) = P{X(a)?/o(a)? > r(a) for some a € T(5)}
< ]P{w(X, (u6)2)? > X261 (6) /2}
+ 3 113{)((12)2 > (1= N)2(1 = 2u)o(b)*r(6) }

bET (b,u)
7(d —_Bo_ 1—X2)2(1 —2u)r(6
< C’exp( Culog zud )—i—Cu Bs Vexp(—( )(2 )())
5)
= Cexp( Culog( e/(ué)))

+ Cexp(Blog(1/u) + V log(1/8) + ur(9) — (1/2 = Nr(9))

17



according to assumptions (i) and (iii) and inequality (6.1). Specifically let
r(0) = 2V'1og(1/6) + Sloglog(e®/d)

for some constant S > 1. If we set

A=A0) = (5/4)loglog(e/5)/r(d),
then (1/2 — \)r(d8) = Vlog(1/8) + (S/4) log log(e®/d), whence II(4) is not greater than

52 (log log(e®/4))?

Cexp(~ Cur () log(e/ (ud))

) + Cexp(Blog(1/u) +ur(s) — (S/4) loglog(e*/0) ).

Finally let
-1
u=u(0) = (r(9)log(e/s))
which is less than 1/2 if § > 2. Then 1/u < C(log(e/6))?, so that

() < Cexp((C — 8/C)loglog(e?/d)).
Now we apply this bound to § = 2%, k¥ > 0. This yields
P{ X(a)?/o(a)? > 2V log(1/0(a)?) + Slog log(e*/r(a)?) for some a € T }
< iﬂ(f’“)
k=0

< C i exp(—(S/C —C)log log(ee2k))
k=0

= O (e+klog2) (5/67¢)
k=0
— 0 as S — oo. O

Proof of Theorem 2.1. Without loss of generality let f =0, R =1 and |[¢]]2 = 1.
Let 7 be the set of all pairs (¢,h) with 0 <h < 1/2, h <t <1— h, and define

p((t: ), (¢, h'))2 i= Leb([t—h,t + B A[Y — B, + 1),
o(t,h)> := Leb([t — h,t+ h]) = 2h.

Then o(b)? < 0(a)? + p(a,b)? for all a,b € T, and

X(t,h) = (20)/2%(t,h) = 21/° / Yo W
I
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defines a centered Gaussian process on T with Var(X (¢,h)) = o(t, h)2. It suffices to show
that this process X and the triple (7, p, o) satisfies the assumptions of Theorem 6.1 with

V =1; see also Remark 1 on Theorem 6.1.

Since PP{|Z| > n} < exp(—n?/2) for standard Gaussian random variables Z, our
process X satisfies condition (i) with K = 1. As for the continuity of its sample paths,

the assumptions about v imply that
W@ = [ gap
[—1,1‘}

for all but at most countably many numbers z € [—1,1], where P is some probability
measure on [—1,1], and ¢ is some measurable function with |g| < TV(¢), [gdP = 0.
Integration by parts shows that

X(th) = ~2'72 [ g()W (¢ + ho) P(da),
which is continuous in (¢, h) by continuity of W and dominated convergence. Moreover,
Var(X(t,h) = X (¢, 1)) = 2Var( / 9(@) (Wt + ha) — W (i’ + W) P(dz))
2

< 2(/ 9(@)||¢ + ha — ' — K| P(dz))

2 1 )2
< 2V()*p((8,h), (1))
Hence condition (ii) of Theorem 6.1 holds with L = 1 and M = 4TV (¢)2. Finally,

N((u6)1/2, {aeT:0(a)?< 5}) < 12u™267" forall u,6 €]0,1].

For let 7" be any maximal subset of {a € T : o(a)? < §} such that p(a,b)? > ud for
arbitrary different points a,b € T7". With m := [2/(ud)| define M; := [(j — 1)ud/2, jud/2]
for j = 1,2,...,m and Mp,11 := [mud/2,1]. For any (t,h) € T" let t —h € M; and
t+ h € M. The inequalities 0 < 2h < ¢ imply that

0 < k—j < 1+2/u,

and there are at most (1 + 2/(ud))(2 + 2/u) pairs (4, k) with these properties. Moreover,
since all sets M have length at most ud/2, for any pair (4, k) of integers there is at most
one point (¢,h) € 7" such that ¢ — h € M; and ¢ + h € Mj,. Thus the cardinality of 7" is
not greater than (1 + 2/(ud))(2 + 2/u) < 12u~257L. O
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6.2 Basic properties of the tests and test signals

Proof of inequality (3.1). Since U(t,h) = U(t,h,Y) can be written as U(¢, h, W) +
n'2(f, 4y 1), it suffices to show that for h € 10,1/2] and h < s <t < 1 — h the following

inequalities hold:

<,(/)t,ha f) < for f € HSOa
(Yep — Ysp, f) < for f € H,.

The assertion about H<¢ is obvious, because 1); > 0. The assertion about H follows
from Lemma 6.2 below, because [ (1 — %) (z) dz = 0 and

0
0

Bin— >0 on [(s+1)/2,00[,
Bh TSk Y <0 on ]—o0, (s +1)/2]. O
Lemma 6.2 Let yu be some measure on the line, and let 1 € L*(p).

(a) Suppose that [1(z) p(dz) =0 and

. { <0 on |—-o0,q

>0 on Ja,o0f
for some real number a. Then [ )(z)f(z)pu(dx) <0 for all f € H,.
(b) Suppose that [ (z) p(dz) = [(z)z p(dz) = 0 and

>0 on |—o0,b
P ¢ <0 on b
>0 on |c,o0]

for some real numbers b,c with b < c. Then [ 1(z)f(z) u(dz) <0 for all f € Heonc-

Proof of Lemma 6.2. As for part (a), let f € H; and fi=f—f(a). Then f € Hy,
and our assumptions on 1 imply that [ fdy = fzpfdu < 0, because zpfg 0.

Part (b) follows similarly, this time with the auxiliary function

c—b

If f € Heonc, then f belongs to Heone, t00, and [f du = [ f du < 0, because 9 f < 0.
O

Proof of Lemma 3.2. The functions 1, and tconc are constructed such that they
satisfy the conditions of Lemma 6.2 (a) and (b), respectively, where u is Lebesgue measure
on the line. Moreover, in both cases, f,% = 0. Thus condition (3.5) is satisfied. It remains

to verify condition (3.6).
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For g € F(2,1) with ¢(!)(0) > 1 the inner product (g,4,) equals (g, ), where g(z) :=
(g9(x) — g(—x))/2, because 9, is an odd function. Since g is an odd function in F(2,1)
with g1 (0) = g™ (0) > 1,

g(z) = /Owg(l)(s)ds > /Ow(l—s)ds = Y (z) > 0 forze[0,2],

so that
@) = 2G%) 02 > 2¥l3pg = I¥l3.

Let b = 8/3, and let a be the unique point in ]0,b[ with tconc(a) = 0 = teonc(b).
For g € F(3,1) with ¢®(0) > 1 the inner product (g,%conc) equals (§,%conc), Where
g9(z) = (9(z) + g(—x))/2 — (g(a) + g(—a))/2, because Peonc is an even function with
(1,%conc) = 0. Since § is an even function in F(3,1) with §® (0) = ¢®(0) > 1,

§(1)(:1:) = /w §(2)(3) ds > /w(l —s)ds = @bg(l)zlc(a:) for z € [0, ]
0 0

This, together with g(a) = 1conc(a) = 0, implies that

g "pconc < 0 on [O,a],
g > Yeonc = 0 on [a,b].

IN

Consequently

Y

<§7¢conc> = 2<§awconc)[0,b} 2||"pconc||§,[0,b] = ||"/)conc||§- O

6.3 Minimax optimality

The proofs of Theorems 2.2 (a) and 3.1 (a) rely on the following result about Gaussian
likelihood ratios (cf. Ingster 1993 or Lepski and Tsybakov 1996).

Lemma 6.3 Let I'y,I'9,1'3,... be independent random variables with standard Gaussian
distribution. Then

m—o0

m
lim IE/m™! Zexp(wmfi — w2, /2) — 1‘ = 0,
i=1

provided that w,, = (2log m)1/2(1 —€m) With limy, , €, = 0 and lim,_, «(log m)l/Qem =

Q.
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For the reader’s convenience a proof is given here.
Proof of Lemma 6.3. Let Z,, := exp(w,,['1 —w?2,/2). Since IE Z,,, = 1, the assertion

follows from the weak law of large numbers for triangular arrays, provided that

lim E1{|Z, —1| >nm}|Z,—1] = 0 for any n > 0.

m—r00

But for m > 1/7, the expectation of 1{|Z,, — 1| > nm}|Z,, — 1| is not greater than

E1{Z, >nm}Z, < EZ-nm)~° (for any § > 0),
= exp(0(1 + 0w, /2 — dlog(nm))
= exp(0*w?, /2 — d(log(nm) — w2, /2))
< exp (52w$n /2 — 5(logn + 26, log m))

for any 6 > 0. If § = (logn + 2€,, logm)/w2,, then the latter bound equals

1 26, 1 2
exp(_(ogn—l- €m logm) )

2w2, = eXp<—6$n logm + o(l)) — 0 asm — oo. m

Proof of Theorem 3.1 (a). Let ¢ be the triangular kernel with (z) = 1{|z| <
1}(1 — |z|). For a given bandwidth h € ]0,1/2] and any integer j let
gi = Lhpo;_1yppn-

All these functions g; belong to F(1,L). Now let [a,a + 2b] C J C ]0,1] for some b > 0.
For £ = 1,2 define

TJo = {integers j:(2j—1h€la+ (£ —1)ba —i—ﬁb]}.
These sets Jp contain at least b/(2h) — 1 indices, and

{gk 1k e jQ} if 'HO = 'Hgo,
{9r —gj: (4, k) € i x o} if Ho =H,y.
Let G, denote the finite set on the right hand side, depending on #H,. Then for any test
¢ :C[0,1] — [0,1] with IEg¢(Y) < a,

{g € F(1,L) : Ay(g) > Lh} S {

(6.2) e F(L,L) Ay (g)>Lh g oY) —a e g #(Y) 09(Y)

(#Go) ™" Y Eg(Y) —Eg $(Y)

gego

Eo((#6,)" 3

gego

By | (#G,) ™" S

gego

AN

IN

P,
dIP,
P,
dIPg

IN

(Y)—1)¢(Y)

IN

(Y)—l‘.
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Now we want to determine h = h,, such that the right hand side tends to zero as n — oco.

Recall that log(dIP, /dTPo)(Y) = n'/? [,gdY — nl|g|3/2. If g = Lhap(2j—1)n,n, the
stochastic integral n'/2 [ gdY is equal to n'/2Lh3/2||9|20((25 — 1)k, h). With T; =
(=1)£T((2i — 1)h, h) for i € Jy, the random variables T';, i € J; U Jo, are independent and
standard normally distributed under IP. If we define the constant w := n'/2Lh3/2||¢)||,

and the random variable Z; := exp(wI'; — w?/2), then one can write

Cﬁl];gk(y)_l = Zp—1,
0
dPy, _,.

0

for j € J1,k € Jo. Consequently, (#G,) ™" > geg, (AP, /dIPo)(Y) — 1 equals

S if H, = H<o,
S1Sy+ 81+ 8y ifH, = Hi’

where Sy = (#J1) ' Yic 7, Zi — 1. Therefore, since Sy and S; are independent, the left
hand side of (6.2) tends to zero if

o |Se| — 0 for£=1,2.

According to Lemma 6.3, the latter condition holds as n — oo, provided that h,, — 0 and

the corresponding w = w, satisfies

w2 L?nh3 /3 )

Gog )" (1~ Sioeremy = 1) = 18" ("~ iogaann -1

— 0Q.

If hy, = L™2/3(1 — €,)pn, where p, = (log(n)/n)'/?, then
2

~ 2log(6/(2hn) 1)

(logn)1/2(1 ) = (logn)?(1 — (1 — €,)%) +o(1) — oo.

The corresponding lower bound Lk, for A;(g) equals (1 — €,)L'/3p,, as desired. |

Proof of Theorem 2.2 (b). Let § = 8y, := c.pn, h = hy = (§/L)"/% and J = [Rh,1—
Rh). For any t € J, the probability of rejecting the null hypothesis, IP({T(Y) > Ko}, is
bounded from below by

P {[¥(t,h)| > C(2h) + ko }

Po{|T(t,h) + (n/h) 2]l (g, 1,0)| > C(2h) + ko }
Po{ - sign({g, Yen))U(t, h) < (n/h)?[ll5 (g, rn)] — C(2h) = ko }
®((n/h)" 219113 g, pe)| — C(2h) — o),

v
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where ® denotes the standard Gaussian distribution function. Thus it suffices to show
that

inf max (n/h)Y?||||;* , —C(2h) — o0.
9EF(B,L): liglls>(1+en)s nax (n/h)"=[[llz "[{g, )| — C(2h)

By construction of 1 and definition of h, the function d1);; belongs to F(3, L), and for
g € F(B, L) with |g(¢)| > 6,

g el = 07 (g, 64en)| > 67 |ovunlls = hdlllf3-

Thus

inf 1/2 -1 —C(2
s B s T (/R) 2 (g, )] — C(2h)

> . 1/20,1—1 _
> (1+6n)gem’gf”g”25 lglean(n/h) l9¥ll5 g, ¥e.n)| — C(2h)
> (1+ en)||9p]lan'/?h'/25 — C(2h)

= €,(2/(28 + 1)) (ogn)/? + 0(1) — o. O
Proof of Theorem 3.1 (b). In case of H, = H<¢ the proof is almost identical to the
proof of Theorem 2.2 (b). Thus we focus on H, = H|. Let § = 6, = LY3p, h = h, = d/L
and J = [h,1 —h]. For h <s <t <1— h, the probability IP;{7T,(Y) > K4} is not greater
than
Py{ (U(t,h) — T(s,h)) /2 > C(2h) + Ko}
= Po{(U(s,h) = B(t, 1) /2 < (n/B)" 2 [4pll3 (g, tp — s0)/2 = C(2h) = Fioa )
> & ((n/h) 2117 (9, %1h — $s.0)/2 = C(2h) = Foa),

provided that the argument of ®(-) is positive, because the variance of (U (s, h)— (¢, h))/2

is not greater than one. Thus it suffices to show that

: 1/2 —1 o .
gef(l,L);Aijg)z(1+en)5 pemax  (n/h)EIll (g e = pan)/2 = C(2h) = co.

For g € F(1,L) with A;(g) > 6 let h < s <t <1— h such that g(t) — g(s) > 24. Letting
7= (9(s) +9(1))/2,

(gt —bun)/2 = 27 [(9@) = N(ben = b)) do
> 27 [((6 = Lio ~ thoen(a) — (-8 +Liz - s)u(@) do

— h/ll(d — Lhla))(1 — |«|) dz

LE23]|]l3-
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Thus

inf 1/2 —1 o 92 _ 9
sern A s e ne 22, (/R lblla (g e — Pan) /2 = C(2R)

: 1/2 -1 _ _
> (he) b max (/) IS (0, — ) /2~ C(20

> (L4 €n)Lllllan'Ph%? — O(2h)
= (2/3)2(logn)?en + 0(1) — oo. O

Proof of Theorem 3.3. Let h = h, € ]0,1/(2R)] and § = 4, > 0 such that
lim,, o0 Ay, = limy, o0 6, = 0, and set J = [Rh,1 — Rh]. For any t € J, the probability
P,{T(Y) > Rq} is not smaller than

Py {W(t,h) > C(2Rh) + o |
= Po{(t, h) + (n/h) /[l (g, ¥rn) > C(2RA) + o }
> ®((n/h)2|[¢ll; " (g, un) — C(2RA) — o).
Now the question is how to choose h = h,, and § = §,, such that

inf max (n/h)"2||9|5 (g, %tn) — C(2RR) — oo.
9EF(k+1,L): Ay(g)>(1+en)s €S

If g€ F(k+1,L) and t € J with g(¥)(t) > 4, then
<ga @bt,h> = h<g(t + h):"p) = ha_1<a'g(t + h')a ¢>
for any a > 0. Note that

ag(t+h) € F(k+1,ahFL),
(ag(t + )P (0) = ahkfg® () > dah*.

If h:=6/L and a := L¥6~(+1) then ah*+t'L = §ah* = 1. Consequently, by (3.2)

(9. %tn) > ha U|gl3 = LTV |5,

so that
inf max (n/h)'?|¢)l3 " (g, %) — C(2Rh)
9EF(k+1,L): Ay (g)>(1+e)d €7
> (1+en) inf max (n/h)?|[ll; " (g, 1,) — C(2Rh)

geF(k+1,L): Ay(g)>5 1€
> (14 e,) L™ @+D2) |01 /25k+3)/2 _ (2R6/L).
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The right hand side equals €, (2/(2k+3))"/2(logn)'/24 0(1) and tends to infinity, provided
that § = 6, (L) as stated in the theorem. O

for
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Figure 1: A function g ¢ H| and its projection f, onto H

Figure 2: The test signals 1) and conc
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Figure 3: Estimated distribution function of 7},(Y) under f = 0.
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Figure 4: Four realizations of T,,(Y,-) in case

of f=0
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Figure 5: Simulated data
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Figure 6: The process U, (-, h) for h = 0.029 and h = 0.170
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Figure 7: Simulated data with f & Hconc
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Figure 8:

The processes U, (-, h) for h = 0.136
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