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Abstract. The paper is concerned with the estimation of the long memory parameter in a conditionally
heteroskedastic model proposed by Giraitis, Robinson and Surgailis (1999). We consider methods based on the
partial sums of the squared observations which are similar in spirit to the classical R/S analysis as well as spectral
domain approximate maximum likelihood estimators. The finite sample performance of the estimators is examined
by means of a Monte Carlo study.

Keywords: long memory, ARCH models, semiparametric estimation, modified R/S , KPSS and V/S statistics,
periodogram

1. Introduction

Long memory, a term commonly used to describe persistent dependence between time series
observations as the lag increases, has been shown to be present in geophysical and, more recently,
in network traffic data. It is, however, still a matter of debate if market data also exhibit some
form of long memory. Many earlier studies, focused on the returns themselves. Long memory in
returns, or levels, as it is also commonly referred to, would, however, be a radical departure from
the random walk hypothesis and the assumption of the unpredictability of asset returns which
underlines the classical asset pricing theory. Empirical studies also suggest that the returns
are essentially uncorrelated and the presence of a weak correlation can be to a large extent
explained by factors like bid—ask spread and non-synchronous trading, see Campbell et al.
(1997). However, the presence of strong dependence between the squares or absolute values of
returns does not contradict the efficient market hypothesis and many empirical studies suggest
that such transformations of returns exhibit some form of persistent dependence. The presence
of long memory in the squares of returns may have profound implications. For example, the
volatility estimators based on historical data can be affected, which may in turn impact pricing
of derivative products.

In order to develop estimation procedures, a parametric or semiparametric model must be
postulated in which the squares of returns form a long memory stationary sequence. Even though
several attempts have been made to construct such models by modifying classical ARCH or
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2 Giraitis et al.

GARCH specifications, Giraitis, Kokoszka and Leipus (1999a) showed that some of these models
have in fact short memory, see Section 2 for more details. Recall that in the context of covariance
stationary linear time series, long memory is typically characterized by the requirement that the
autocovariance function decays at the rate k2!, 0 < d < 1/2, and hence is not absolutely
summable; a series is said to have short memory if the autocovariance function is absolutely
summable. These definitions are applicable to any stationary sequences, and we adopt them in
this paper to the sequences of squares 72, where the r; follow an ARCH type model developed
by Giraitis, Robinson and Surgailis (1999). The new model is different from the traditional
ARCH(c0) in that the parameter oy itself, not the conditional variance o7, is a linear function of
the past returns. The construction implies that the autocovariance function Cov(r?, r? ') decays
at the rate k??~! for some 0 < d < 1/2. We believe that it is not possible to modify the classical
ARCH(o0) specification in such a way that the autocovariances of the r? decay like k291, see
Proposition 2.1 and Giraitis et al. (1999a) for a more extensive discussion. The model of Giraitis
et al. (1999) is described in detail in Section 2.

The paper examines two types of estimation procedures. The first class of estimators goes
back to the pioneering work of Mandelbrot and his collaborators, see references in Section 3,
who developed the rescaled range, or R/S , method of Hurst (1951) into a widely used tool for
estimating the intensity of long memory. In addition to the R/S method, we also study estimators
based on the KPSS statistic of Kwiatkowski et al. (1992) and the V/S statistic proposed by
Giraitis et al. (1999b). In the latter two methods, the range of the partial sums appearing in
the R/S statistic is replaced, respectively, by their “second moment” and “variance”. Details
are presented in Subsection 3.1. The above three methods are based on subdividing the sample
into a number of blocks. The choice of the blocks is important as it affects the accuracy of
the estimators. There is no theoretical guidance as to how to subdivide the sample, so Monte
Carlo simulations must be employed. The second procedure is based on the spectral domain
approximate maximum likelihood estimation developed by Robinson (1995) in the setting of
linear long memory processes. In a practical implementation of this procedure, the choice of a
bandwidth of Fourier frequencies around zero is crucial. Even though some theoretical results
are available in the linear and Gaussian cases, see Subsection 3.2, Monte Carlo simulations offer
a more detailed guidance.

The paper is organized as follows: Section 2 introduces the model of Giraitis et al. (1999). In
section 3, we describe the estimators and develop the necessary theoretical background. Section
4 contains the results of an extensive simulation study and provides the technical details of the
implementation of the estimation procedures presented in Section 3.

2. The model

We describe in this section the model of Giraitis et al. (1999) and discuss its main properties.
The central feature of this model is that while the observations (returns) r; are uncorrelated,
their squares have autocovariance function which is not absolutely summable. This is in contrast
to a classical ARCH(o00) sequence whose squares have an absolutely summable autocovariance
function. To underline the differences between the two specifications, we begin by recalling some
relevant properties of the classical ARCH(co) model.

A random sequence {ry, k € Z} is said to satisfy ARCH(oo) equations if there exists a
sequence of independent identically distributed zero mean random variables {e;, k € Z} such
that

oo
TL = OpEk, 0,% =a+ ijn%,j, (2.1)
j=1
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Long memory in ARCH models 3

where a > 0, b; > 0, j = 1,2,.... As mentioned in the introduction, in this paper we focus on
the sequence of squares Xy, = ri. If the r; obey (2.1), then the X} satisfy the equations

o
Xk = pr€ks Pk =0a+ Z bj Xk—j, (2.2)
i=1

with &, = 5% and pp = 0,%. Using a Volterra-type representation

o o0
Xp=a+a) D by bibubiji oo Ermjimmi

=1 j1,..,5;1=1

Giraitis et al. (1999a) obtained a number of results which show that under mild assumptions,
sequences Xy satisfying (2.2) cannot have long memory. These assumptions require essentially
that 3 72 bj < oo, a condition imposed also in Ding and Granger (1996), Baillie et al. (1996) and
related papers which aimed at constructing ARCH type models with long memory in squares.
Kokoszka and Leipus (1999) showed that under the assumption

(EE2)\/? f:bj <1 (2.3)
j=1

there exists a unique weakly stationary solution to (2.2). Giraitis et al. (1999a), (1999b) estab-
lished the following results which show that the classical ARCH model has short memory in
squares.

PROPOSITION 2.1. If assumption (2.3) is satisfied, then for any k € Z
0< COV(Xk,Xo) < o0
and

Z Cov(Xy, Xo) < oo. (2.4)

k=—00

THEOREM 2.1. Suppose E§§ < 0 and

(BEH* Y b < 1.

7j=1
Then as N — oo v
t
N2, - EXxp) 2 oW 1), (2.5)
j=1

where {W(t),t € [0,1]} is the standard Brownian motion, D[&}] means weak convergence in the
space D[0,1] endowed with the Skorokhod topology and o* =Y po . Cov(Xy, Xo).

In the model of Giraitis et al. (1999) relations (2.4) and (2.5) no longer hold; the covariances
of the X} decay at the rate k??~! for some 0 < d < 1/2, and appropriately normalized partial
sums converge to a fractional Brownian motion. The model is defined as follows. The r; are
assumed to satisfy

[ee]
e = Okek, Ok =0+ Y Bire_j, (2.6)
=1
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4 Giraitis et al.

where {ex, k € Z} is a sequence of zero mean finite variance iid random variables, « is a real
number and the weights 3; satisfy

Bj ~ci™l 0<d<1/2, (2.7)

for some ¢ > 0.

Note that neither « nor the 3; are assumed positive and, unlike in (2.1), o, not its square, is
a linear combination of the past r, rather than their squares. Observe also that condition (2.7)
implies only > j BJQ- < oo which contrasts with the assumption ) ;bj < oo.

Giraitis et al. (1999) established the following results which show that the squares of the ry
satisfying (2.6) and (2.7) have two essential features of long memory: hyperbolically decaying
non-summable covariances and attraction to a fractional Brownian motion.

THEOREM 2.2. Suppose E&té < 0 and
o
L(Be)'?Y B2 <1, (2.8)
i=1

where L = T if the e, are Gaussian and L = 11 in other cases. Then there is a stationary
solution to equations (2.6), (2.7) given by orthogonal Volterra series

o o
TL = OkEk, Ok = O‘Z Z Bjr - - - Bj;€k—j1 - - - Ek—jr—o—jy - (2.9)
1=0 jiyerji=1
The sequence Xy = 7‘,% is covariance stationary and as k — 0o
Cov(Xy, Xg) ~ Ck*41, (2.10)
where C is a positive constant.

THEOREM 2.3. If conditions of Theorem 2.2 are satisfied then as N — o

[N1]
1 D[0,1]
Ni/2d Y (Xj— EXj) == caWijapa(t), (2.11)
=1

where cq 18 a positive constant.

In (2.11), Wy/344 is a fractional Brownian motion with parameter H = 1/2 + d. Recall that a
Gaussian process {Wg(t), t > 0} is a fractional Brownian motion with parameter H € (0,1) if
it has mean zero and covariances

W (6) Wi (12)] = 5 (87 + 57 [t — 1""). (2.12)

We conclude this section by noting that the smallest possible value of L in (2.8) is not known;
this is a complex combinatorial problem. In the Gaussian case the third order cumulants in a
diagram formula used in the proof vanish, so a smaller value of L can be taken.

In the simulations presented in Section 4 we also use coefficients 3; for which relation (2.8)
fails to hold with L = 7, so, strictly speaking, there is no theoretical justification for the results
obtained in such cases. The estimation procedures, however, continue to perform quite well,
suggesting a need for further theoretical research in this direction.
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Long memory in ARCH models 5

3. The estimators

In this section, we describe the estimation procedures and provide some theoretical background.
Throughout the present section Xi,..., Xy is the observed sample.

3.1. ESTIMATORS BASED ON THE PARTIAL SUMS

We present here a theoretical background for three estimation procedures based on Theorem 2.3.
We begin with the rescaled range, or R/S analysis introduced by Hurst (1951) and subsequently
refined by Mandelbrot and his collaborators, see Mandelbrot and Wallis (1969), Mandelbrot
(1972, 1975) and Mandelbrot and Taqqu (1979).

The R/S statistic is defined as Ry /3x where

k k
RN = lIgr}caéXNj_ (Xj - XN) - lgllclgnN a (Xj - XN) (31)
is the range and
e .
&% = ~ D (X — Xp)? (3.2)

j
is a standard variance estimator. In (3.1) and (3.2), X is the sample mean N~! E;VZI X;. The

identity
k . k N
Z(Xj—XN = (X, - EX;) NZX — EX;)
=1 j=1 j=1
and Theorem 2.3 imply that

Ry 4
Ni/2+d — Cd {012?2(1 W1/2+d( ) — 012121 W1/2+d(t)} (3.3)

where
W{)/2—|—d(t) = Wi/a4a(t) — tWia44(1)
is a fractional Brownian bridge, cf. (2.12). It is equally easy to verify that

8% L5 Varx,. (3.4)
Indeed,

N
B =~ > (X2-Bx}) + (BX? - [Xy]*). (3.5)
j=1
By the Volterra representation (2.9) X2 can be written as X] = f(ej,€j-1,...) where f is a
measurable function. Since {¢;} is an ergodlc sequence this implies (cf. Theorem 3.5.8 of Stout
(1974)) ergodicity of {X; 21. Under assumptions of Theorem 2.3 EX 2 < oo. Therefore the first
term in (3.5) tends to zero. By the same argument as above { X} is ergodic as well, and therefore
Xy = EX;. Hence the second term in (3.5) tends to VarX;.
Combining (3.3) and (3.4), we see that as N — oo

1 Ry 4 {max05t51 WY 4(t) — ming<ecs Wf/2+d(t)}
—— 5
N1/2+d 5y (VarX;)1/2

=: Ry. (3.6)
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0 Giraitis et al.

Relation (3.6) forms a theoretical foundation for the R/S method. Taking logarithms of both
sides, we obtain a heuristic identity

A 1
log (Rn/§n> S (5 + d) logn + log Ry, asn — oo

which shows that 1/2+d can be interpreted as the slope of a regression line of log(R,,/3,) on logn
with random intercept log R4. The point of the R/S analysis is to consider many subsamples of
varying size n from a given sample X1,..., Xy in order to obtain many points which are used to
estimate the slope of the regression line, see e.g. Mandelbrot and Taqqu (1979) or Beran (1994).
The technical details of the implementation of this procedure are described in Section 4.

The above discussion shows that in place of the range (3.1), any other “simple” continuous
functional of the partial sum process can form a basis for an estimation procedure of the type
just described. We focus below on the KPSS and V/S statistics used by Giraitis et al. (1999b)
to test for long memory in ARCH models.

The KPSS statistic was introduced by Kwiatkowski et al. (1992) to test trend stationarity
against a unit root alternative. Lee and Schmidt (1996) used the KPSS statistic to test for the
presence of long memory in a stationary linear time series and gave its asymptotic distribution
under long memory alternatives, but provided only heuristic outlines of the proofs.

In the context of testing for long memory in a stationary sequence the KPSS statistic takes
the form:

~

. My
with 8% given by (3.2) and
1 N k 2
iy = 53 (S0 x
k=1 \j=1

We thus see that the range has been replaced by the second moment. We retained the NV in the
denominator of the RHS if (3.7) in order to conform to the original definition of Lee and Schmidt
(1996); unlike the R/S statistic which must be divided by v/N in order to ensure convergence
for weakly dependent X, the statistic T converges in this case without any normalization.
By Theorem 2.3,
M L 2
T /O (Wlara®)] dt (3.8)

Combining relation (3.8) with (3.4), we see that that the slope of the regression line of log T), on

log n estimates 2d, whereas the regression of log(Mnl/ 2 /8n) on logn yields an estimate of d+1/2.
Giraitis et al. (1999b) considered the statistic

A

A VN

g 3.9
N é\%VNQa ( )

where
2 2

k
(X; — Xn)
=1

N k

N
A I PICEENIIEEIPY

k=1 \j=1 k=13

They called Uy the V/S$ statistic for “variance over §”. This statistic is very similar to the
KPSS statistic, the second sample moment My in (3.7) is replaced by the sample variance Vy.
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Long memory in ARCH models 7

The statistic Uy contains a correction for a mean and is more sensitive to “shifts in variance”
than Ty, see Giraitis et al. (1999b) for further background and discussion.

Arguing as above, we conclude that the regressions of log U, and log(an /2 /8n) on logn will,
respectively, yield estimates of 2d and d + 1/2.
In the context of testing for long memory, the estimator §3, defined by (3.2) is replaced by

N q
_ 1\ .
g = N E (X;—Xn)*+2) (1 - m) Yis (3.10)
j=1 =1

where 4; are the sample covariances

N=j
= L3 % ¢ ~
Vj:ﬁi:I(Xi—XN)(XiH—XN)’ 0<j<N.

The second term in (3.10) was introduced by Lo (1991) in order to construct a test for long
memory based on the R/S statistic which is robust to many forms of weak dependence. He called
the R/S statistic with §n replaced by n 4 a modified R/S statistic. The same modification can
be made in (3.7) and (3.9).

3.2. SPECTRAL DOMAIN ESTIMATION

We describe here the local Whittle estimator proposed by Kiinsch (1987) and developed by
Robinson (1995) which is used to estimate the parameters ¢ > 0 and 0 < d < 1/2 assuming that
the observed Gaussian or moving average series has spectral density f(\) which behaves at low
frequencies like

fO) ~ A2 (A= 0). (3.11)

The estimator minimizes an approximate Gaussian maximum likelihood function:

_Z {m (ox7%) + C(;‘ ,jd}

where
kA2
%) 27rN|ZXe '

is the periodogram at the Fourier frequencies \; = 27j/N,j = 0,...,m. The bandwidth m
increases more slowly than the sample size N:

L™ N -

—+ — as 00.

m N
Robinson (1995) showed that under appropriate conditions, which include the existence of a
linear moving average representation, the estimator of d is asymptotically normal and converges
at the rate /m:

5 1
Jm(d—d) NN(O,Z) |

In the case of long-memory ARCH sequences discussed in Theorem 2.2, no similar asymptotic
theory is available at present. Note however that relation (2.10) implies that the spectral density
f of the sequence X = r,% satisfies (3.11). Thus, although the local Whittle estimator was

gklt.tex; 31/05/1999; 9:39; p.7



8 Giraitis et al.

designed for Gaussian or moving average time series, we expect that it is applicable also to the
ARCH(00) series with the Volterra representation (2.9). This is because the weights (1, 3o, ...
can be conveniently factorized and are square summable. We conjecture that, similarly as for
moving averages, these properties effectively control the dependence structure of the Xj and
allow to derive not only the CLT, Theorem 2.2, but also the asymptotic distribution of the local
Whittle estimator.

In the Gaussian case, the problem of the choice of the bandwidth m is related to the smooth-
ness of the short memory component k() appearing in the following factorization of the spectral
density:

F) = |1 = exp(iN)| > h()).
Assuming that h is twice differentiable and h(0) > 0, Hurvich et al. (1998) and Delgado and
Robinson (1996) proved that

4/5
Moptimal = Coptimal™ / ) (3.12)

" —2/5
3\Y5 (h'(0) 1
Coptimal = (E) <—2h(0) + Ed . (313)

We conjecture that in the ARCH(oo) model Xj = ri with the 7, given by (2.9) the
Moptimal, Coptimal ar€ also determined by (3.12), (3.13). We evaluate this optimal bandwidth
from our data by using the iterative procedure proposed by Robinson and Henry (1996).

where

4. Simulations

We consider two sample sizes, N = 3000 and N = 6000. Once a sample of N observations
has been generated, we subdivide it in B adjacent and non-overlapping blocks of observations of
equal size [N/B]. We then obtain a grid ¢; = 1,t, = [N/B]+1,...,t; = (i—1)[n/B]+1,...,tp =
n—[N/B]+ 1. For each point of the sequence {t;}2 ; we define a sequence of K increasing nested
blocks with origin t;, i.e., {[t;, t; +k;] ]K:p such that ¢;,+k; < N, the sequence of K steps {k; }JK:1
is given by a logarithmic grid. Given the existence of transcient effects,! the minimum value of
k is set to 40. The number of blocks B is set to 40.

We calculate the R/S, V/S and KPSS statistics for each interval {{[t;, #; + k;]}2,}<, and
obtain the sequences {{R/S(t;,k;) f;l}JKzl, {V/S(ti, kj) f?:l}JK:l, and {{KPSS(t;, k) f;l}JKzl.
The denominator of these statistics is the variance the intervals [t;, ;+k&;]. We plot the logarithm
of the statistics log(R/S(t;, k;), log(V/S(t:, k), log(KPSS(%;, k;), against log(k;) and then obtain
a “pox-plot”. The estimates of cf, d R/S5 czv/ S, JKPSS, are obtained from the OLS estimator. Let
b be the estimated slope: JR/S =b—-1/2, JV/S = b/2, and dxpss = b/2.

As we cannot use the Durbin-Levinson algorithm for generating the series of r;, we generate
each series with 12000 pre-sample values, the infinite order lag polynomial 8(L) being truncated
at the order 5000.

We have considered three Data Generating Processes, which differ by the parameterization
of the infinite order lag polynomial 3(L)

— Model A: /B] = b]7 with b1 = d, b] = bjflj_;'i'd’

— Model B: 81 = b1 + ¢, 8 = Ei:l qSkbj_k. The coefficients of this DGP are those of the MA
form of a FARIMA(1,d,0) with AR coefficient equal to 1 — ¢.

! See Beran (1994).
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Long memory in ARCH models 9

— Model C: 81 = by — 0, B = bj — 0b;j 1. The coeflicients of this DGP are those of a
FARIMA(0,d,1), the MA coefficient being equal to 1 — 6.

For the Model A, condition (2.8) is satisfied if d < 0.1865. If this condition is not satisfied,
there is a systematic bias for the “pox-plot” based estimators. For that reason, we do not report
the estimates for d > 0.225. Condition (2.8) can be satisfied by multiplying all the §; by a
constant < 1. However, Monte Carlo simulation results show that this rescaling ends with a
systematic bias.

For Models B and C, the coefficients 3; depends on d, but also on the parameters ¢ and ¢.
If the first elements of the sequence of the 3; are small, there is a systematic bias.

For Models B and C, we choose # = 0.20 and ¢ = —0.20. The bias is quite large for small
values of d, and becomes smaller when d € (0.20,0.375), and increases for d > 0.375.2

For all the models, it apears that the Root Mean Squared Error of the R/S estimator is
slightly smaller than the RMSE of the other estimators. Although these estimators are biased,
they are good tools for an exploratory approach.

5. Conclusions

We have considered in this paper several methods for estimating the degree of long-memory
for the long-memory conditional heteroskedastic model developed by Giraitis, Robinson and
Surgailis (1999). Two of these estimators are similar to the “pox-plot” R/S estimator. Although
Monte Carlo simulation results show that these estimators have a similar bias and variance, these
estimators can be used as exploratory tools for detecting the presence of long-range dependence
in the conditional variance of some time series.

2 The whole set of results for d € [0.05,0.5] are available upon request.
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Table I. Estimation results for the GRS process, Model A: (Root Mean Squared Error between
parentheses)

3000 observations 6000 observations
d v/S | R/S | KPSS | Robinson | V/S | R/S | KPSS | Robinson

0.05 || 0.0092 | 0.0495 | 0.0114 | 0.0285 0.0122 | 0.0479 | 0.0137 | 0.0294
(0.0622) | (0.0362) | (0.0662) | (0.0362) | (0.0527) | (0.0284) | (0.0557) | (0.0307)

0.075 || 0.0321 | 0.0677 | 0.0363 | 0.0553 0.0371 | 0.0682 | 0.0406 | 0.0560
(0.0645) | (0.0378) | (0.0674) | (0.0378) || (0.0536) | (0.0301) | (0.0556) | (0.0324)

0.1 0.0800 | 0.1102 | 0.0835 0.0834 0.0826 | 0.1093 | 0.0848 | 0.0852
(0.0528) | (0.0391) | (0.0585) | (0.0396) || (0.0425) | (0.0317) | (0.0470) | (0.0326)

0125 || 0.0949 | 0.1190 | 0.1033 | 0.1125 0.1035 | 0.1235 | 0.1103 | 0.1145
(0.0591) | (0.0398) | (0.0620) | (0.0413) || (0.0460) | (0.0319) | (0.0487) | (0.0331)

015 || 0.1284 | 0.1470 | 0.1383 | 0.1395 0.1375 | 0.1527 | 0.1454 | 0.1432
(0.0562) | (0.0406) | (0.0604) | (0.0437) || (0.0438) | (0.0333) | (0.0480) | (0.0345)

0175 || 0.1599 | 0.1738 | 0.1708 | 0.1656 0.1689 | 0.1801 | 0.1775 | 0.1708
(0.0550) | (0.0415) | (0.0606) | (0.0471) || (0.0429) | (0.0343) | (0.0485) | (0.0370)

0.2 || o1rre | 0.1887 | 0.1894 | 0.1701 0.1872 | 0.1959 | 0.1965 | 0.1811
(0.0578) | (0.0434) | (0.0619) | (0.0579) || (0.0448) | (0.0347) | (0.0490) | (0.0439)

0.225 || 0.1668 | 0.1786 | 0.1801 | 0.1778 0.1787 | 0.1874 | 0.1898 | 0.1902
(0.0790) | (0.0625) | (0.0761) | (0.0688) | (0.0632) | (0.0510) | (0.0604) | (0.0531)
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Table II. Estimation results for the GRS process, Model B: (Root Mean Squared Error between

parentheses)
3000 observations 6000 observations

d v/S | R/S | KPSS | Robinson | V/S | R/S | KPSS | Robinson
0.05 0.0048 0.0434 0.0069 0.0138 0.0075 0.0414 0.0085 0.0153
(0.0643) | (0.0358) | (0.0678) | (0.0470) | (0.0556) | (0.0290) | (0.0584) | (0.0417)

0.075 0.0041 0.0453 0.0066 0.0069 0.0085 0.0449 0.0105 0.0078
(0.0846) | (0.0462) | (0.0865) | (0.0742) | (0.0756) | (0.0410) | (0.0767) | (0.0708)

0.1 0.0227 0.0597 0.0276 0.0213 0.0297 0.0615 0.0342 0.0244
(0.0907) | (0.0543) | (0.0907) | (0.0845) | (0.0797) | (0.0482) | (0.0788) | (0.0794)

0.125 0.0502 0.0815 0.0582 0.0446 0.0603 0.0861 0.0675 0.0516
(0.0894) | (0.0576) | (0.0875) | (0.0877) | (0.0756) | (0.0493) | (0.0731) | (0.0788)

0.15 0.0841 0.1088 0.0949 0.0764 0.0963 0.1158 0.1059 0.0873
(0.0833) | (0.0569) | (0.0804) | (0.0837) | (0.0673) | (0.0467) | (0.0644) | (0.0705)

0.175 0.1208 0.1390 0.1338 0.1133 0.1342 0.1478 0.1454 0.1268
(0.0755) | (0.0543) | (0.0731) | (0.0755) || (0.0585) | (0.0429) | (0.0566) | (0.0593)

0.2 0.1573 0.1697 0.1718 0.1512 0.1709 0.1796 0.1831 0.1662
(0.0686) | (0.0517) | (0.0680) | (0.0673) | (0.0518) | (0.0398) | (0.0520) | (0.0501)

0.225 0.1914 0.1989 0.2067 0.1875 0.2046 0.2093 0.2171 0.2032
(0.0639) | (0.0501) | (0.0653) | (0.0620) | (0.0480) | (0.0383) | (0.0503) | (0.0450)

0.25 0.2215 0.2251 0.2370 0.2204 0.2340 0.2357 0.2464 0.2364
(0.0615) | (0.0498) | (0.0642) | (0.0607) || (0.0465) | (0.0381) | (0.0501) | (0.0444)

0.275 0.2468 0.2474 0.2622 0.2490 0.2584 0.2579 0.2703 0.2647
(0.0612) | (0.0512) | (0.0640) | (0.0629) | (0.0465) | (0.0393) | (0.0500) | (0.0472)

0.3 0.2676 0.2661 0.2828 0.2728 0.2766 0.2750 0.2876 0.2892
(0.0624) | (0.0544) | (0.0641) | (0.0663) || (0.0491) | (0.0434) | (0.0510) | (0.0533)

0.325 0.2831 0.2799 0.2985 0.2909 0.2887 0.2864 0.2988 0.3048
(0.0659) | (0.0609) | (0.0648) | (0.0731) | (0.0576) | (0.0533) | (0.0575) | (0.0611)

0.35 0.2918 0.2880 0.3057 0.3038 0.2968 0.2943 0.3061 0.3176
(0.0774) | (0.0744) | (0.0742) | (0.0843) | (0.0687) | (0.0664) | (0.0664) | (0.0736)

0.375 0.2963 0.2922 0.3095 0.3115 0.2998 0.2976 0.3083 0.3238
(0.0932) | (0.0923) | (0.0879) | (0.0992) | (0.0865) | (0.0853) | (0.0827) | (0.0896)
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Table III. Estimation results for the GRS process, Model C: (Root Mean Squared Error between
parentheses)

3000 observations 6000 observations
d v/S | R/S | KPSS | Robinson | V/S | R/S | KPSS | Robinson

0.05 || -0.0064 | 0.0374 | -0.0058 | -0.0023 || -0.0053 | 0.0344 | -0.0053 | -0.0023
(0.0723) | (0.0370) | (0.0760) | (0.0600) || (0.0656) | (0.0316) | (0.0686) | (0.0568)

0.075 || -0.0001 | 0.0421 | 0.0020 | 0.0028 0.0033 | 0.0408 | 0.0049 | 0.0035
(0.0879) | (0.0482) | (0.0900) | (0.0779) || (0.0802) | (0.0441) | (0.0814) | (0.0748)

0.1 || 00160 | 0.0544 | 0.0205 | 0.0151 0.0226 | 0.0558 | 0.0269 | 0.0176
(0.0963) | (0.0581) | (0.0962) | (0.0901) | (0.0858) | (0.0527) | (0.0848) | (0.0857)

0.125 || 0.0417 | 0.0745 | 0.0494 | 0.0359 0.0517 | 0.0789 | 0.0589 | 0.0425
(0.0965) | (0.0628) | (0.0942) | (0.0952) || (0.0828) | (0.0550) | (0.0798) | (0.0870)

0.15 || 0.0748 | 0.1009 | 0.0856 | 0.0662 0.0874 | 0.1081 | 0.0972 | 0.0772
(0.0906) | (0.0626) | (0.0869) | (0.0923) || (0.0744) | (0.0524) | (0.0704) | (0.0794)

0175 || 0.1117 | 01311 | 01251 | 0.1032 0.1259 | 0.1403 | 0.1376 | 0.1174
(0.0820) | (0.0596) | (0.0783) | (0.0836) | (0.0644) | (0.0478) | (0.0609) | (0.0669)

0.2 || 01494 | 0.1625 | 0.1644 | 0.1424 0.1640 | 0.1730 | 0.1768 | 0.1583
(0.0737) | (0.0561) | (0.0714) | (0.0734) || (0.0559) | (0.0435) | (0.0543) | (0.0554)

0.225 || 0.1851 | 0.1930 | 0.2011 | 0.1803 0.1994 | 0.2041 | 0.2127 | 0.1974
(0.0675) | (0.0534) | (0.0673) | (0.0658) | (0.0505) | (0.0407) | (0.0513) | (0.0474)

025 || 02172 | 02200 | 0.2336 | 0.2153 0.2307 | 02322 | 02439 | 0.2328
(0.0638) | (0.0521) | (0.0654) | (0.0621) | (0.0478) | (0.0397) | (0.0505) | (0.0446)

0.275 || 0.2448 | 0.2455 | 0.2611 | 0.2470 0.2570 | 0.2562 | 0.2696 | 0.2636
(0.0619) | (0.0521) | (0.0642) | (0.0619) | (0.0473) | (0.0403) | (0.0504) | (0.0461)

0.30 || 0.2679 | 02660 | 0.2840 | 0.2724 0.2763 | 0.2743 | 0.2879 | 0.2893
(0.0628) | (0.0549) | (0.0645) | (0.0643) || (0.0510) | (0.0450) | (0.0526) | (0.0517)

0.325 || 0.2839 | 0.2806 | 0.2093 | 0.2937 0.2918 | 0.2888 | 0.3025 | 0.3092
(0.0673) | (0.0615) | (0.0672) | (0.0720) || (0.0555) | (0.0514) | (0.0554) | (0.0584)

035 || 0.2061 | 0.2916 | 0.3108 | 0.3083 0.3018 | 0.2085 | 0.3118 | 0.3236
(0.0746) | (0.0717) | (0.0720) | (0.0801) | (0.0650) | (0.0629) | (0.0629) | (0.0683)

0.375 || 03024 | 02975 | 03164 | 0.3181 0.3066 | 0.3035 | 0.3158 | 0.3320
(0.0883) | (0.0876) | (0.0834) | (0.0933) | (0.0806) | (0.0799) | (0.0769) | (0.0823)
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