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Abstract

We consider chi�squared type tests for testing the hypothesis H� that a density f of
observations X�� ���� Xn lies in a parametric class of densities F � We consider a version of
chi�squared type test using kernel estimates for the density� The main result is� following
Liero� L�auter and Konakov ������� the derivation of the asymptotic behavior of the power
of the test under Pitman and 	sharp peak	 type alternatives� The connection of the
rate of convergence of these local alternatives� the bandwidth of the kernel estimator� the
parametric estimator� the power of the test are studied�
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�� Introduction

Let X��X�� � � � �Xn be a sample of i�i�d� random variables with density f �
We wish to test whether f belongs to some parametric family F of density
functions

F � ff � f��� � f��� ��� � � � � Rkg ���

against the nonparametric alternative

f �� F �

We consider the kernel estimator �fn of the density function f �

�fn�t� �
�

n

nX
i��

�

hn
K

�
t�Xi

hn

�
� �	�

where the kernel function K��� is bounded� of bounded variation� has a
bounded support and Z

K�x� dx � ��

The random function �fn�t� may be represented in the form

�fn�t� � f �n��t� �� 

�p
n

Z
�

hn
K

�
t� u

hn

�
dWn�u�� ���

where we denote for a function � �may be vector function�

��n��t� �

Z
�

hn
K

�
t� u

hn

�
��u� du� ���

Wn�t� �
p
n �Fn�t�� F �t� ��� �

Here F is the distribution function of the random variables Xi and Fn is its
empirical version�

Fn�t� �
�

n

nX
j��

�I����t��Xj��

We suppose also that

hn � 
 and nhn ��� when n���

	



It is well�known that in this case

E�
�fn�t�� f�t� ���

i�e� �fn�t� is asympotically unbiased for f�t� �� at any point of continuity of
f � and since

nhnVar� �fn�t� � Var�
�

hn
K

�
t�Xn�

hn

�
�

�

hn

Z �

�

K�

�
t� x

hn

�
f�x� �� dx� �

hn

�Z �

�

K

�
t� x

hn

�
f�x� �� dx

��
�

we have

lim
n��

nhnVar� �fn�t� � f�t� ��

Z �

�

K��x� dx � kf�t� ���

i�e� �fn�t� is mean squared consistent for f�t� ��� More about the properties
of �fn and its applications see� for example� in Silverman ������� Bickel �
Rosenblatt ������� H�ardle � Marron ����
�� H�ardle � Mammen �������
For a function ��x� �� and a random point �� � ��n � where ��n is the maximum
likelihood estimator for �� we introduce the notation

���x� � ��x� ���� r� �x� �� �
�

�

���
��x� ��� � � � � �

��k
��x� ��

�T

�

r�� �x� �

�
�

���
��x� ���� � � � � �

��k
��x� ���

�T

�

Further for simplicity of notation we will write f instead of f��� �� and f� in�
stead of f��� ��n�� For a nonnegative function � we denote by L�

� the L
��space

generated by the measure with density �� Let I��� be the information matrix�

I��� � jjIi�jjji�j�������k �

Z
�

��i
f�x� ��

�

��j
f�x� �� f���x� �� dx�

We denote by �j�x� �� for j � �� � � � � k the coordinates of the vector�

function � � ���� � � � � �k�
T �

��x� �� � I�������f���x� ��rf�x� ���

�



So we have
��i��� ��� �j��� ���f�� � �i�j

where
��� ��f�� � ��� �� �

f

is the inner product in the space L�
f�� � The same relation is true for the

coordinates ��j �x� �j � �� � � � � k� of the vector�function �� � ��x� ��n�� For a
function h � L�

f���
we put

�h�L �x� �
kX

j��

�
h���� ��j ���

�
f���

��j �x�� �h�L � h � �h�L � ���

It is clear that �h�L is the projection of h in the space L�
f���

on the linear space

L � Ln spanned by a set f��j �x� � j � �� � � � � kg�
As test statistic we suggest a function� which is measuring the normalized
deviation of the kernel estimator �fn�x� from a modi�ed parametric estimator
f �n��x� ��n�� We will consider these estimators as elements of L�

�� However
we measure the distance between functions from L�

� with the help of two
seminorms k � k� and k � k��

khk� � k �h�L kf��� � khk� � k �h�L k��

The process

	�n��t� �
p
n
h
�fn�t� � f �n��t� ��n�

i
���

further will be called the observable empirical process� We de�ne

T
�n�
� � k �	�n�����

L
k�
f���

and T
�n�
� � k �	�n�����L k��� ���

For nonnegative functions � and h we put


�h� � k

Z
h�x���x� dx� ���h� � k�

Z
h��x����x� dx� ���

where

k �

Z
K��x� dx� k� �

Z
�K �K�� �x� dx�

�



As test statistic we suggest the statistic T�n�

T�n� � T
�n�
� 


�	


h
����
n

h
hnT

�n�
� � 
�f��

i
��f��

��



�

� ���

Now we introduce the assumption under which we plan to investigate the
asymptotic behavior of the statistic T�n��

A�� For the kernel holds K � L� and
R
K�x� dx � ��

A�� The least even decreasing majorant K��x� of jK�x�j belongs to the L��
space�
A�� The density function f�x� �� as function� � � L�

f��� is continuously
di�erentiable on the open kernel of �� That is there exists such vector
function

rf �

�
�

���
f� � � � � �

��k
f

�
that

f��� �� � f��� ��� � hrf ��� ���� � � ��i 
 r����� ���
where h�� �i is the inner product in Rk�

k � kf�� � 
� when �� ���

A�� The Fisher information matrix I��� is positive de�nite�

�� The kernel smoothing

Assuming A� and let K��x� be the least even decreasing majorant of jK�x�j�

K��x� � sup
jtj�x

jK�t�j� x � 
�

We consider the operators

�
Ahf

�
�x� �

Z
�

h
K

�
x� t

h

�
f�t� dt � fh�x�� h � 
�

�Mf � �x� � sup
h��

Z
�

h
K

�
x� t

h

�
f�t� dt�

�



Suppose that the nonnegative function 
�t� satis�es the condition

sup
I

�

jIj
Z
I


�x� dx � �

jIj
Z
I

�


�x�
dx � �� ��
�

where I is an interval� jIj is the length of I�

Theorem ��� �see J�B�Garnett �������� If K� � L� and weight function 

satis�es the condition ��
�� then
�� M is a bounded operator on L�

��
	� Ah are uniformly bounded �for h � 
� operators on L�

��
�� if f � L�

�� then fh � f in the metric of the space L�
�� when h� 
�

�� Maximum likelihood estimator

Consider a sample X � �X��X�� � � � �Xn� of i�i�d� random variables Xi with
density function f��� � f��� ��� � � � � IRm� The maximum likelihood esti�
mator ��n is a measurable solution of the likelihood equation

r� Ln�X� �� �
nX

j��

r� log f �Xj � �� � �� ����

It is well�known �see� for example� Witting � N�olle ����
�� Konakov �������
Greenwood � Nikulin �������� that under H� and some smoothness condi�
tions on function f�x� �� we have

p
n
�
��n � �

�
�

�p
n

nX
j��

I�����r� log f �Xj � �� 
 rn� ��	�

where r is a random vector such that rn
P� � �we shall write rn � oP��I���

Thus�

p
n
�
��n � �

�
� I�����

Z
r� log f �x� �� dWn�x� 
 oP ��I� � ����

It is clear that under smoothness conditions on the functions f�x� ��Z
j �r� log f �

h �x� �� � r� log f �x� �� j�f�x� �� dx � 
�

�



when h� 
� Therefore we deduce from ���� that

p
n
�
��n � �

�
� I�����

Z
�r� log f �

K
n �x� �� dWn�x� 
 oP ��I� � ����

A similar representation holds under the set Kn of nonparametric local al�
ternatives

Kn � ff � f��� � f��� �n� 
Nn�

�� � c

bn

�
� n � �� 	� � � �g� ����

where
�n � � 
 n����

� is a given vector� � � 
� � is a given function� Nn� bn are sequences of
positive numbers tending to 
� c is a constant �see e�g� Liero et al� ��������

�� The modi�ed empirical process

We consider the smoothed empirical process

��n��t� �

Z
�

hn
K

�
t� x

hn

�
dWn�x�� ����

where
Wn�x� �

p
n �Fn�x�� F �x� ��� �

and investigate the limiting behavior of the L��norm of the projection ��n�L �t�
of the process ��n��t� on some �nite�dimensional subspace L� For a nonneg�
ative function � we put� using ����

k�k�� �

Z
j��x�j���x� dx�


�f� � k

Z
f�x���x� dx� ���f� � k�

Z
f��x����x� dx�

It is well�known that under some appropriate conditions �see Bickel and
Rosenblatt ������ and Hall �������

P

�
h
����
n

�
hnk��n�k�� � 
�f�

�
��f�

� x

�
� ��x�� ����

�



Let � be a function such that

� � L�
�� k�k� � ��

and ��n�� be the projection of ��n� on the one�dimensional subspace generated
by ��

�
�n�
� �t� �

Z
��n��x���x� dx � ��t��

So ��n�� � a�� where the random coe�cient a is de�ned by

a �

Z
��n��x���x� dx �

Z
��n��x� dWn�x��

��n��x� �

Z
�

hn
K

�
x� t

hn

�
��t� dt�

Since

Ea � 
 and Var �a� �
Z �

�Kn
��
�x� dx�

we obtain from Theorem 	�� the following proposition�

Proposition ���� Suppose that weight function � satis�es the condition
��
� and for some C � C��� ��

f�x� �� � C��x�� for all x� ����

Then there exists such C�� which depends only on C� the weight � and kernel
K �and does not depend on ��� that

Ek��n�� k�� � C�� ����

It is easily deduced from Proposition ��� that

Proposition ���� Suppose that the weight function � satis�es the condition
��
� and L is a �nite dimensional subspace of the space L�

�� Then under
condition ���� such C� exists� which depends only on C� weight �� kernel K
and dimL� that

Ek��n�L k�� � C�� �	
�

where �
�n�
L is the projection of ��n� on L�

Now we denote by Ln a �nite dimensional subspace� dimLn � m� Let L�n

�



denote the orthogonal complement of Ln in the space L�
� and �

�n�

L�n
be the

projection of ��n� on L�n �

Theorem ���� Suppose that the weight function � satis�es the condition
��
�� Ln is a subspace of the space L�

�� dimLn is �xed� hn � O� when n���
Then under condition ����

P

�	


h
����
n

h
hnk�Kn

L�n
k�� � 
�f�

i
��f�

� x

��

 � ��x�� �	��

Proof� Since
k��n�

L�n
k�� � k��n�k�� � k��n�Ln

k���
and from Proposition 	 we can conclude that

sup
n

P
n
k��n�Ln

k�� � y
o
� 
� when y���

therefore from ���� we obtain �	���

Now we consider a case� when

L � Ln � spanf��j �x� � j � �� � � � � kg�

It must be remind that �see����

T
�n�
� � k �	�n�n ����L k���

From the Theorem ���� we obtain the next

Theorem ���� Suppose that weight function � satis�es the condition ��
��
the density function f�x� �� and kernel K�x� satis�es the conditions A� �
A�� Then under ����

P

�	


h
����
n

h
hnkT�n�

� � 
�f��
i

��f��
� x

��

 � ��x�� �		�

�



�� The observable empirical process

Really we deal with the observable empirical process

	�n��t� �
p
n
h
�fn�t� � f �n��t� ��n�

i

�
p
n
h
�fn�t� � f �n��t� ��

i


p
n
h
f �n��t� �� � f �n��t� ��n�

i
� �	��

It is clear �see ��	�� ����� ����� that under smoothness conditions on the
function f�x� ��

	�n��t� � ��n� 
 ��n��t� 
 Rn�t� ��� �	��

where the process Rn�t� �� weakly converge to zero� when n��� and

��n��t� �
�r�f

�n��t� ��
�T

I�����

Z
�r� log f �

�n� �x� �� dWn�x�� �	��

Let PLn be the orthoprojector in the space L�
f�� on the subspace

Ln � spanf �

��j
f �n� �x� ��� j � �� � � � � kg�

We introduce the matrix Rn��� � jjri�jjji�j�������k� where

ri�j �

Z
�

��i
f �n��x� ��

�

��j
f �n��x� �� f���x� �� dx� i� j � �� � � � � k�

and denote by R������� its square root� Let

��n��x� �� �
�
�
�n�
� �x� ��� � � � � ��n�

k �x� ��
�
� R�������rf �n��x� ���

It is obvious that �
�
�n�
i ��� ��� ��n�

j ��� ��
�
f��

� �i�j�

where ��� ��f�� is the inner product in the space L�
f��� So the system f��n�

i ��� ��� i �
�� � � � � kg forms the orthonormal basis �in the metric of the space L�

f��� of
the subspace Ln� Therefore

�PLnh� �t� �
kX
i��

Z
h�x���n�

i �x� ��f���x� �� dx � ��n�
i �t� ��� h � L�

f���

�




Now we denote by L�n the subspace

L�n � spanf �

��j
f �n� �x� ��n�� j � �� � � � � kg�

and put

�
PL�nh

�
�t� �

kX
i��

Z
h�x���n�

i �x� ��n�f
��
� dx � ��n�

i �t� ��n�� h � L�
f���x���n�

�

It seems to be reasonable to expect that operators PLn and PL�n weakly
converge �on an appropriate sense� when n � � to the orthoprojector PL
in the space L�

f�� on the subspace L�

L � spanf �

��j
f �x� ��� j � �� � � � � kg�

For our needs it is su�ciently to prove that the asymptotic distribution of the
process

�
PL�n	

�n�
�
�t� is the same as the asymptotic distribution of the process�

PL	
�n�
�
�t�� It may be prooved by the usual weak convergence technique�

One can verify that the limiting distribution of the statistic T
�n�
� is the ��

k�
distribution�
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