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1 Motivation and Chapter Outline

In forecasting time series variables the information in past values of the series is used to
extract potential future developments. In other words, a forecast is a function of past values
of a time series variable. If linear functions are considered only this leads to autoregressive
(AR) models where a variable at time ¢, y; say, depends on lagged values plus the forecast
error, Yy = V + 1Y—1 + - - + apyi—p + u;. Here u; represents the forecast error term,
a; (i = 1,...,p) are autoregressive parameters and v is an intercept term. Similarly, if
more than one variable is involved, say v, ..., Yk, €ach component is viewed as a linear
function of lags of all the variables plus an error term in order to use information from all the
past variables. Using vector and matrix notation, this leads to vector autoregressive (VAR)
models of the form v, = v+ A1yi—1 + -+ + Apyr—p + us, where vy, = (Y11, ..., Yxy)', the A;
(1 =1,...,p) are (K x K) coefficient matrices, v is a (K x 1) intercept term and wu; is a
K-dimensional error term.

In small samples the precision of forecasts based on these models will be affected by
the precision of the parameter estimators. Since an adequate description of the data gen-
eration process (DGP) of a multiple time series may require a fairly large VAR order and
hence a large number of parameters, the estimation precision in such models may be low.
Consequently, forecasts based on VAR processes may suffer from the uncertainty in the pa-
rameter estimators. In such a situation it may be worth considering a larger model class
with processes which may be able to represent the DGP of interest in a more parsimonious
way. Vector autoregressive moving average (VARMA) models constitute such a class. In
this chapter the analysis of models from that class will be discussed.

One of the problems in dealing with VARMA models is that generally their parameteriza-
tion is not unique. For inference purposes it is necessary to focus on a unique representation
of a DGP. In the following a variant of the echelon form of a VARMA process will be con-
sidered. It has the advantage of providing a relatively parsimonious parameterization in
general and, following Poskitt (1992), we use the acronym ARMA for the echelon form.
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In the next section this representation of a VARMA process will be described formally.
Generally, the variables are allowed to be integrated of order one (/(1)) and they may be
cointegrated. Therefore it will be convenient to supplement the echelon form with an error
correction (EC) term. Thereby it is possible to separate the long-run cointegration relations
from the short-term dynamics. This results in an EC-ARMA ; form which turns out to be a
convenient framework for modeling and forecasting cointegrated variables. The model and
some of its pertinent properties will be discussed in Sec. 2.

In using these models for forecasting a specific candidate from the general model class
has to be chosen, its parameters have to be estimated and then point forecasts may be
computed and, if desired, forecast intervals may be established. In this procedure we have
to pass through the usual model specification, estimation and model checking cycles before
the forecasts are determined. The necessary steps and procedures will be considered in this
chapter. In Sec. 3 estimation procedures will be discussed under the assumption that a well
specified model is available. The ARMAE form of a VARMA process is characterized by a
set, of integer parameters called Kronecker indices. A procedure for consistently estimating
these quantities and also the cointegrating rank from a given multiple time series will be
discussed in Sec. 4. Moreover, some comments on model checking will be given in that
section. Thereby a complete strategy for analyzing EC-ARMAE models is provided. Once
a well specified model is available it can be used for forecasting which is considered in Sec.
5. Conclusions follow in Sec. 6.

This chapter draws heavily on material from Liitkepohl & Claessen (1997) who introduced
the error correction echelon form of a VARMA process, Poskitt & Liitkepohl (1995) who
presented consistent estimation procedures for the Kronecker indices, and Bartel & Liitkepohl
(1998) who explored the small sample properties of some such procedures. To simplify the
exposition, some important ideas and concepts will be discussed in the framework of VAR
models first which are treated as special VARMA models.

2 The VARMA Framework

2.1 Characteristics of Variables

The characteristics of the variables involved determine to some extent which model is a
suitable representation of the DGP. For instance, the trending properties of the variables
and their seasonal fluctuations are of importance in setting up a suitable model. In the
following a variable is called integrated of order d (I(d)) if stochastic trends or unit roots can
be removed by differencing the variable d times. A variable without a stochastic trend or unit
root is sometimes called I(0). In the present chapter it is assumed that all variables are at
most /(1) if not otherwise stated. In other words, for any time series variable yy; it is assumed
that Ayk; = Ykt — Yks—1 has no stochastic trend. Note, however, that in general Ay, may
still have deterministic components such as a polynomial trend and seasonal components.
For convenience it is assumed in the following that there are no deterministic terms. In other
words, polynomial trend terms, seasonal dummy variables or nonzero mean terms are not
considered. It is straightforward to include a nonzero mean term or regard the variables as
being mean-adjusted and for most procedures discussed in the following other deterministic
terms can be accommodated in a straightforward manner.

A set of I(1) variables is called cointegrated if a linear combination exists which is I(0)



(Engle & Granger (1987)). Generally it is convenient to consider systems with both I(1)
and I(0) variables. In this case the concept of cointegration is extended by calling any linear
combination which is 7(0) a cointegration relation. Clearly, this terminology is not in the
spirit of the original definition because it leads to a linear combination of 7(0) variables being
called a cointegration relation. For our purposes a distinction between genuine cointegration
and more general forms is not necessary, however.

2.2 VAR and Error Correction Models

As mentioned in the introduction, for a system of K time series variables y; = (yis, - -, Ykt)'
a VAR model is a useful forecasting tool. The basic VAR model is of the form

Y= A1y 1+ Ay p + s, (2.1)
where u; = (uyy,...,ux)’ is an unobservable zero mean independent white noise process
with time invariant positive definite covariance matrix E(uu;) = X, the A; (i = 1,...,p)

are (K x K) coefficient matrices. This model is often briefly referred to as a VAR(p) process
because the number of lags is p.
The process is said to be stable if

det(lg — Ayz — -+ —A2°) #0 for |2/ <L (2.2)

Here Ix denotes the (K x K) identity matrix. Assuming that a stable process has been
initiated in the infinite past, it generates stationary time series which have time invariant
means, variances and covariance structure. If the determinantal polynomial in (2.2) has unit
roots (i.e., roots for z = 1), then some or all of the variables are I(1) and they may also be
cointegrated. Thus, the present model accommodates variables with stochastic trends. On
the other hand, it is not the most suitable setup for analyzing cointegration relations because
these relations do not appear explicitly in (2.1). They are more easily analyzed within a
model obtained by rewriting (2.1) as

Ay =Ty, 1 +T1AYy 1+ -+ Tp 1Ay pir + uy, (2.3)

where Il = —(Ix — Ay —---—Ay) and I, = —(A4j1 +---+ A4,) for i =1,...,p— 1.
This reparameterization of the process is obtained from (2.1) by subtracting y; 1 from both
sides and rearranging terms. The model form (2.3) is the so-called vector error correction
model (VECM). Because Ay; does not contain stochastic trends by our assumption that
all variables can be at most I(1), the term Ily;,_; is the only one which may include I(1)
variables. Hence, Ily; ; must also be I(0). Thus, it contains the cointegrating relations.
These relations represent long-run or equilibrium relations and the model is written in a
form which shows how the variables respond to deviations from the long-run relations. In
other words, it can be seen how equilibrium errors are corrected which explains the name
of the model. The I'; (j = 1,...,p —1) in (2.3) are often referred to as the short-term or
short-run parameters.

To distinguish the VECM from the VAR model the latter is sometimes called the levels
version. Of course, it is also possible to determine the A; levels parameter matrices from
the coefficients of the VECM as Ay =1 + 11+ Ix, A; =1, — Ty fori =2,...,p—1,
and A, = —T'p_1. Thus, the two forms (2.1) and (2.3) are equivalent representations of a



stochastic process. Which one of the two representations is used for a specific analysis is
mainly a question of convenience with respect to model specification, estimation or analysis.

If the VAR(p) process has unit roots, that is, det(/x — A;2 —--- — A,2P) =0 for z = 1,
the matrix II is singular. Suppose it has rank r, that is, rk(II) = r. It is well-known that in
this case IT can be represented as a product I = o', where o and 3 are (K X r) matrices
with rank r. Premultiplying ITy; ; = af'y; 1 by (/) o/ shows that 8'y; 1 is I(0) because
premultiplying an I(0) vector by some matrix results again in an I(0) process. Hence,
B'y;1 contains the cointegrating relations and it is obvious that there are r = rk(II) linearly
independent such relations among the components of ;. The matrices o and 3 are not
unique, however, so that there are many possible # matrices which contain the cointegrating
relations or linear transformations of them. Consequently, those relations with economic
content, for instance as economic equilibrium relations, cannot be extracted purely from
the observed time series. In other words, nonsample information is required to identify the
economically interesting relations uniquely.

Special cases included in (2.3) are I(0) processes for which »r = K and systems that have
a stable, stationary VAR representation in first differences. In the latter case, » = 0 and
the term Ily, ; disappears in (2.3). These boundary cases do not represent cointegrated
systems in the usual sense. There are also other cases which are not in line with the original
idea of the concept of cointegration even if the cointegrating rank is strictly between zero
and K. An obvious example is obtained if all variables but one are I(0). In that case the
cointegrating rank is K —1 although the only (1) variable is not cointegrated with the other
variables. For our purposes, it is no problem to include those cases here.

So far I have not been precise about the range of the index t. If the process is I(0)
than assuming that the range consists of all integers is convenient. In that case, in each
period t the process is already in operation for an infinite time and, hence, the moments and
distributions have stabilized and are therefore time invariant. On the other hand, if there are
I(1) variables, it is usually more convenient from a theoretical point of view to assume that
the process has been initialized in some period, say int = 0 or ¢ = 1 and has a finite past only
because otherwise the variables may have infinite variances. Since I(1) variables are generally
allowed for in the following, it will be assumed that the process under consideration has been
initiated at some finite time if not otherwise stated. All variables indexed by integers smaller
than the initial period may be assumed to be zero if not otherwise specified. For instance, if
the process y; is initialized at ¢ = 1, the variables yq, y_; etc. which may appear in a VAR
model are assumed to be zero. Again this is just a convenient simplification for expository
purposes. More general assumptions are possible for the theoretical results of the following
sections to hold.

2.3 VARMA Models

As mentioned in the introduction, the VAR class of processes occasionally has the disadvan-
tage that a quite large order p is necessary for a proper representation of the DGP. In fact,
in some cases theoretical considerations lead to infinite order VAR processes (see also Sec.
2.3.4). Therefore we consider the following more general process class which includes infinite
order VAR processes as well.



2.3.1 General Form

It is assumed that the DGP of the K-dimensional multiple time series ¥, ..., yr is from the
VARMA class,

Aoyr = Ayyror + -+ Apyep + Moug + Myugy + - - - + Mpup—p,, t=1,2,..., (2.4)

or
ALy = M(Dyus,  t=1,2,..., (2.5)

where u; is again a white noise process with zero mean and nonsingular, time invariant
covariance matrix F(usu}) = X,. As mentioned previously, the initial values are assumed to
be zero for convenience, that is, u; = y; = 0 for ¢ < 0. Moreover, A(L) = Ag—A;L—---—A,L?
and M(L) = Mo+ ML+ .-+ M,L? are matrix polynomials in the lag or backshift operator
L, which is defined as usual by Ly; = y;_1. The zero order matrices Ay and M, are assumed
to be nonsingular. Later on it will be argued that Ay = My may be assumed without loss of
generality. Some of the A; and M, coeflicient matrices may be zero so that the AR or MA
order may actually be less than p. The matrix polynomials are assumed to satisfy

det A(z) £0, |2 <1,z#1, and detM(z) #0, |z] <1. (2.6)

The second part of this condition is the usual tnvertibility condition for the MA operator
which is imposed to ensure the existence of a pure (possibly infinite order) VAR representa-
tion of the type discussed below. As in the pure VAR case, the possibility that the operator
A(z) can have zeros for z = 1 implies that the components of y; may be integrated and
perhaps cointegrated variables.

Clearly, without further restrictions on the operators A(L) and M (L) the representation
(2.4)/(2.5) is not unique. This phenomenon is easily seen by writing (2.5) in AR form

t—1

Y = Z Sl + Uy, (2.7)

=1

where Ay = M is assumed and Z(z) = Ix — 3°, 52" = M(2)"'A(z). Every pair of
operators A(z), M(z) which leads to the same transfer function =(z) defines an equivalent
VARMA representation for y;. For instance, premultiplying by some nonsingular matrix
results in an equivalent representation. In fact, premultiplying by some operator D(L) =
Dy + DL + --- + D,L? satisfying det Dy # 0 and det D(z) # 0 for |z| < 1, results in an
equivalent VARMA representation of the process. In other words, cancellation of factors of
A(L) and M(L) is possible. Therefore it is usually assumed that there are no unnecessary
redundancies. This condition is imposed by assuming that the operator [A(z) : M(z)] is
left-coprime, meaning that only unimodular operators D(z) can be factored from [A(z) :
M (z)]. In other words, [A(z) : M(z)] is left-coprime if the existence of (K x K) matrix
polynomials D(z), A(z), M(z) such that [A(z) : M(z)] = D(2)[A(z) : M(z)] implies that
D(z) is unimodular.

Recall that a matrix polynomial D(z) is unimodular if det D(z) is a constant which does
not depend on z. For example,

D(z) = Dy or D(z):lé 55]



are unimodular matrix polynomials. (See Liitkepohl (1996) for definitions and properties of
matrix polynomials.) Obviously, requiring that [A(z) : M (z)] is left-coprime therefore does
not solve the nonuniqueness problem completely because the possibility of premultiplying
by some nonsingular matrix, for example, is still not excluded. Even if this possibility were
excluded by assuming Ay = M, = Ik, the nonuniqueness problem is not solved because
there are unimodular operators D(z) = I+ Dz +- - -+ D,2? with zero order matrix I (see
the foregoing example). Premultiplying with such an operator still leaves [A(z) : M (z)] left-
coprime. Clearly more restrictions are needed for uniqueness. One possible set of restrictions
is given by the echelon form which is discussed next.

2.3.2 The Echelon Form

In order to obtain a unique representation we denote the kl-th elements of A(z) and M(z)
by ag(z) and my(z), respectively, and impose the following constraints. First of all, let
[A(z) : M(z)] be left-coprime. Moreover,

P .
mik(L) = 14> mpggl?, fork=1,... K, (2.8a)
i=1
Pk .
mkl(L) = Z mkl,isz for k ?é l: (28b)
1=pr—pki+1

and o
akl(L) = akl,O — Z akl,iLi, Wlth akl,O = mkl,o fOI‘ k,l = 1, ey K (286)

=1

Here

| min(px +1,p) fork >1, -
pkl_{min(pk,pl) for k <, kl=1,.... K.

The process is said to be in echelon form or, briefly, ARMAg form if A(L) and M (L) satisty

these restrictions. The row degrees py in this representation are the Kronecker indices (see

Hannan and Deistler (1988) and Liitkepohl (1991)). In (2.4)/(2.5), p = max(ps, - - -, Pk ), that

is, p is the maximum row degree or Kronecker index. ARMAE(py, ..., px) denotes an echelon

form with Kronecker indices py,...,px. The sum of the Kronecker indices p; + - - - + pg is

said to be the McMillan degree.

As an example consider a three-dimensional process with Kronecker indices (p1, p2, p3) =
(1,2,1). In this case

e 1 1

pr]=1{1 o 1

1 2 e

Hence, an ARMAEg(1,2,1) has the following form:

1 0 0 111 G221 G131 0 0 0

0 1 0 |yr=] o101 o1 Q31 | Y1+ | Qa1 Qoo Qa3 | Y2

0 azpo 1 0311 Q321 (331 0 0 0
1 0 0 mi1,1 Mi21 s 0 0 0

+10 1 0 | us+ 0 Mma21 0 U1+ | Mo12 Moz Ma32 | Ut—2.
0 azpo 1 M3l M3zl 331 0 0 0

(2.9)



Note that in the formulation of the echelon form in (2.8) the autoregressive operator is
unrestricted except for the constraints imposed by the maximum row degrees or Kronecker
indices and the zero order matrix (4g = M;) whereas additional zero restrictions are placed
on the moving average coefficient matrices attached to low lags of the u;. For example, in
(2.9), there are two zero restrictions on M;. This representation of the echelon form was
proposed by Liitkepohl & Claessen (1997) for processes with integrated and cointegrated
variables. It differs from the ARMAE form usually found in the literature on stationary
processes where the restrictions on low order lags are imposed on the AR coefficient matrices
(e.g., Hannan & Deistler (1988), Liitkepohl (1991)). The advantage of (2.8) in the present
context is that it can be combined easily with the error correction form as will be seen
shortly.

It may be worth noting that an ARMAg form may have more zero coefficients than
those specified in (2.8). Further zero restrictions may lead to models where the AR and MA
orders are not identical. Such constraints are not excluded in an echelon form. However, the
echelon from does not need them to ensure uniqueness of the representation of the operator
Z(L). Note also that the echelon form does not exclude processes. In other words, every
VARMA process can be written in echelon form.

2.3.3 The Error Correction Echelon Form

An EC form may be obtained from (2.4) by subtracting Agy; 1 on both sides and re-arranging
terms as for the VECM representation of a VAR in Section 2.2:

AAyy = My, 1 +T1AYy 1+ - -+ Tp 1Ay pia

2.10
+Mouy + Myug—1 + -+ -+ Mpu—p (2.10)

where [l = —(4g— A1 —---—Ay)) and I, = — (A1 + -+ A4p) (1 =1,...,p—1) as before.
Again Ily; ; is the error correction term and r = rk(II) is the cointegrating rank of the
system which indicates the number of linearly independent cointegration relations.

If the operators A(L) and M(L) satisfy the echelon form restrictions, it is easily seen
that the I['; satisfy similar identifying constraints as the A;. More precisely, I'; obeys the
same zero restrictions as A;;1 for 2 = 1,...,p — 1 because a zero restriction on an element
oy, of A; implies that the corresponding elements oy ; of A; are also zero for j > . For
the same reason the zero restrictions on Il are the same as those on Ay — A;. This means
in particular that there are no echelon form zero restrictions on II if all Kronecker indices
pr>1(k=1,...,K) because in that case the echelon form does not impose zero restrictions
on A;. On the other hand, if there are zero Kronecker indices this has implications for the
integration and cointegration structure of the variables. A specific analysis of the relations
between the variables is called for in that case. Denoting by g the number of Kronecker
indices which are zero, it can be shown that

rk(IT) > o. (2.11)

This result has to be taken into account in the procedure for specifying the cointegrating
rank of a VARMA system discussed in Section 6.

If the model (2.10) satisfies the echelon from restrictions it is denoted as EC-ARMAg in



the following. As an example consider again the system (2.9). Its EC-ARMAg form is

1 0 0 711 T12 713 [ 0 0 0

0 1 0 Ayt = | M1 T22 T3 | Y—1+ | V21,2 V22,2 7232 Ayt—l

0 Q32,0 1 731 732 733 L 0 0 0
1 0 0 mi11 Mi21 Mz | 0 0 0

+10 1 0 ]u+ 0 mMo2,1 0 U1+ | Mo12 Moz Maozz | Ui_2.
0 azpo 1 m3i1 M3zl M331 | 0 0 0

As a further example consider the three-dimensional ARMAE(0,0,1) system

0 0 0 0 0 0
Yt = 0 0 0 Yt—1 -+ Uy + 0 0 0 Up—1. (212)
Q31,1 0321 (331 m31,1 M321 M331

Because two of the Kronecker indices are zero, the cointegrating rank of this system must
be at least 2. The EC-ARMA g form is easily seen to be

1 0 0 0 0 0
Ayt = 0 1 0 Yt—1 -+ Uy + 0 0 0 Up—1.
31 T332 733 m31,1 M321 M331
Obviously, the rank of
1 0 0

II = 0 1 0
731 732 733

is at least 2.

Specifying an EC-ARMA g model requires that the cointegrating rank r is determined,
the Kronecker indices py,...,px are specified and possibly further overidentifying zero re-
strictions are placed on the coefficient matrices I'; and M;. Before we discuss strategies for
this task, some useful properties of linearly transformed VARMA processes are considered
in the next section.

2.3.4 Linear Transformations

In many cases systems of linearly transformed variables are of interest. For example the
gross national product of a country is the sum of the gross products of the different regions
or the money stock variable M1 consists of currency plus sight deposits. Moreover, temporal
aggregation is often just a linear transformation. For instance, the quarterly value of a
variable may be the sum or the average of the monthly values or it may just be the value of the
last month of a quarter. Furthermore, seasonal adjustment procedures are sometimes linear
transformations such as finite moving averages of the unadjusted variables. In other words,
quite often a system of variables z; is of interest which is obtained as a linear transformation of
the original system y;, say z; = F'y;, where F'is a suitable transformation matrix. Notice that
this notation also covers temporal aggregation if the process ¥, is defined in an appropriate
way (see, e.g., Liitkepohl (1987; 1991, Chapter 6)). Also any marginal process of y; can be
written in the form F'y; by a suitable choice of F'.



An important result regarding linear transformations of VARMA processes is that they
are again VARMA processes. More precisely, if y; has a VARMA representation, the same
is true for z;. Hence, the VARMA class of processes is closed with respect to linear transfor-
mations (see Liitkepohl (1984a, 1987)). In general, the autoregressive and moving average
orders or Kronecker indices associated with z; will be different from those of y;, however.
Furthermore, if y; is a finite order VAR(p) process, z; will in general not have a finite order
VAR representation but will be of a mixed VARMA type. In particular, if the individual
component series of a VAR process ¥, are considered, they will usually not have a finite order
AR representation. Therefore, for internal consistency in the modeling process it is some-
times useful to consider the more general VARMA class of processes rather than pure VAR
models. In practice, pure VAR processes are often used because they are usually more easily
dealt with in terms of inference than mixed VARMA processes as we will see in the following
sections. More discussion of the structure of linearly transformed VARMA processes may
be found in Liitkepohl (1987).

3 Estimation

Although model specification precedes estimation I discuss the latter first because estimates
are needed in the specification procedures considered later.

3.1 Maximum Likelihood Estimation

If the distribution of u, is Gaussian the log-likelihood function of the model (2.4) for a given
multiple time series vy, ..., yr is

16) = t;lt(ﬁ), (3.1)

where 6 represents the vector of all parameters to be estimated and
1 1 1
lt(O) = —5 lOg 27 — 5 log det Eu — §U;E;1Ut

with
Uy = Mo_l(Aoyt — Ay — = ApY—p — Miuy_g — - — Myuy—p).

In general, maximization of [(f) is a nonlinear optimization problem which is complicated
by the fact that inequality constraints have to be observed to ensure invertibility of the MA
operator. Iterative optimization algorithms have to be used for the maximization. Suitable
start-up values may be obtained from one of the algorithms considered in the following.

If the DGP is stable and invertible and the parameters are identified, the ML estimators
have standard limiting properties, that is,

VT(6 —0) 5 N(0,%;),

where % signifies convergence in distribution and X, is the inverse asymptotic information
matrix. On the other hand, if the variables are cointegrated, the estimators of the long-run
and short-run parameters have different convergence rates. In special case models simplifi-
cations are possible. Some of them will be considered in the following.



3.2 VAR Models

Because estimation of some special case models is computationally particularly easy, these
cases will be considered in more detail in the following. We begin with the levels VAR
representation (2.1) under the condition that no parameter restrictions are imposed. Then
estimation of the unrestricted VECM (2.3) is treated and VECMs with parameter restrictions
are discussed.

Given a sample of size T, yi,...,yr, and p presample values, y_,.1,..., %o, it is well-
known that the K equations of the VAR model (2.1) may be estimated separately by least
squares (LS) without loosing efficiency relative to generalized LS (GLS). That is, a = vec[A; :
.-+ A,] may be estimated by a regression based on

v = (Y @ I)a+u, (3.2)

where Y, = (Yi_1,--->¥i_p)- Under standard assumptions, the resulting estimator a is
consistent and asymptotically normally distributed (see, e.g., Liitkepohl (1991)),

VT(a—a) % N(0,55)
or, written in an alternative way,
a~ N(a,Xs/T). (3.3)

Here vec denotes the column stacking operator which stacks the columns of a matrix in a
column vector. The covariance matrix of the asymptotic distribution is
-1

T
Ed = phm <T_1 Z nt_—f)y;t_—f)’) ® Eu (34)
t=1

Although these results also hold for cointegrated systems it is important to note that in
this case the covariance matrix ¥; is singular whereas it is nonsingular in the usual 7(0) case
(see Park & Phillips (1988, 1989), Sims, Stock & Watson (1990), Liitkepohl (1991, Chapter
11)). In fact, some estimated coefficients or linear combinations of coefficients converge with
a faster rate than 7/2 if there are integrated or cointegrated variables. Therefore, in this
case the usual ¢-, x?- and F-tests used for inference regarding the VAR parameters, may not
be valid as shown, e.g., by Toda & Phillips (1993).

If the cointegrating rank of y; is known and one wishes to impose the corresponding
restrictions, it is convenient to work with the VECM (2.3). Following Johansen (1995),
we denote the residuals from a regression of Ay, and y; ; on AY;t__lp ! by Ry and Ry,
respectively, and define

T
Sy =T RuRjy, i,j=0,1.
t=1
The parameter estimators under the restriction rk(II) = r are then obtained by solving the
generalized eigenvalue problem
det()\Sn — 5105&)1501) =0. (35)

Let the ordered eigenvalues be \; > .-+ > A with corresponding eigenvectors V =
[v1,...,vk] satisfying A\;S11v; = S10S5 So1vs (i = 1,...,K) and normalized such that
V'811V = Ix. Then 8 and « may be estimated as

B=lvy,...,v;] and &= SpB(3S110)7", (3.6)

10



respectively, that is, & may be viewed as the LS estimator from the model
Ro: = af' Ry, + .

An estimator of I is IT = &3’ and, using Ay, — Ily,_; = TAY; P 4Gy, T = [y : -+ : [p_y]
may be estimated as

T -1

T
P=[y:---:T, 4] = (Z(Ayt _ ﬂyt1)AY,f_f’+1'> (Z Aytt_lpﬂAYtt_lpﬂ,)
t=1 t=1
Under Gaussian assumptions these estimators are ML estimators conditional on the presam-
ple values (Johansen (1995)).

In this approach the parameter estimator B is made unique by normalizing the eigenvec-
tors from the eigenvalue problem (3.5) and & is adjusted accordingly. However, these are not
econometric identification restrictions. Without such restrictions only the product a8’ = II
can be estimated consistently. For consistent estimation of the matrices « and 3, identifying
restrictions have to be imposed. For example, in a specific model it may be reasonable to
assume that the first part of 3 is an identity matrix, so that §' = [I, : 3]], where [ is a
((K — r) x r) matrix. For » = 1, this restriction amounts to normalizing the coefficient of
the first variable. This identifying restriction has attracted some attention in the cointegra-
tion literature. If uniqueness restrictions are imposed it can be shown that T(3 — 3) and
VT (& — a) converge in distribution (Johansen (1995)). In other words, the estimator of 3
converges with the fast rate 7. It is therefore sometimes called superconsistent whereas the
estimator of o converges with the usual rate /7.

The estimators of I' and II are consistent and asymptotically normal under general as-

sumptions and converge at the usual v/T rate, vTvec(I' = I') <% N(0, ;) and /Tvec(IT —

IT) 4 N (0,%f). The asymptotic distribution of [ is nonsingular and, hence, standard infer-
ence may be used for I'. In contrast, the (K? x K?) covariance matrix Xy has rank Kr. It
is singular if » < K. This result is obtained because II involves the cointegrating relations
which are estimated superconsistently.

Interestingly, if an estimator of the levels parameters A is computed via the estimates
of IT and I' and thereby satisfies the cointegration restriction, that estimator has the same
asymptotic distribution as in (3.3) where no restrictions have been imposed in estimating
A. Important results on estimating models with integrated variables are due to Phillips and
his co-workers (e.g., Phillips & Durlauf (1986), Phillips (1987, 1991)).

In practice it is often desirable to place restrictions on the parameters to reduce the
dimensionality of the parameter space. For instance, it is quite common that different lags
of the differenced variables appear in the individual equations. In other words, there may
be zero restrictions on the short-run parameters I'. Moreover, some of the cointegrating
relations may be confined to specific equations by imposing zero constraints on the loading
matrix «. Efficient estimation of a model with parameter restrictions is more complicated
than in the unrestricted case because LS is no longer identical to GLS and ML in general.
A possible estimation procedure estimates 3 in a first stage, ignoring the restrictions on the
short-run parameters. Let the estimator be 3. Because the estimators of the cointegrating
parameters converge at a better rate than the estimators of the short-run parameters the
former may be treated as fixed in a second stage of the estimation procedure. In other words,
a systems estimation procedure may be applied to

Ay, = (y,_1 8 ® I)vec(a) + (AY P @ Ic)vec(T) + i (3.7)
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If only exclusion restrictions are imposed on the parameter vectors vec(a) and vec(I') in
this form, standard GLS or similar methods may be applied. They result in estimators of
the short-run parameters with the usual asymptotic properties. Feasible GLS estimation of
more general VARMA models is discussed next.

3.3 Feasible GLS Estimation of VARMA Models

For given Kronecker indices, an ARMA g model can be estimated even if the cointegrating
rank is unknown. The Kronecker indices are assumed to be known in the following. Strategies
for specifying them will be described in Section 4.

Let a = Spvec(Ay ... 1 Ap), A = Syvec(Ag — Ix) and m = Syvec(M; @ ... : M,) denote
the freely varying elements in the coefficient matrices. The selection matrices S,, S, and
S are defined such that they have a one in the column corresponding to the unrestricted
coefficient being chosen. Then 6 = (¢/ : @’ : X' : m')" contains the freely varying coefficients
of [A(z) : M(z)] not restricted to be zero or one and we can rewrite the system (2.4) in the
following compact regression model form:

Yy = R0 + uy, (3.8)
where .
SV ® Ik]
Ry=| Sy —u) ®Ik] |,
Sml[U;-f ® Ix]
and U/ P = (u)_,, ... ,uy_p)". Clearly, since R; involves unknown residuals, estimating the

parameters 6 directly by regression from (3.8) is not feasible. Therefore, in a first step an
unrestricted long VAR model of order hr, say, is fitted by LS as in (3.2). Denoting the
residuals by ;, we let Rt be defined as R; except that the residuals 4, are substituted for
the unknown wu,;’s. Moreover, let f?u =T Ethl 4,0y, be the corresponding estimator of the
white noise covariance matrix ¥,. Then a feasible GLS estimator of # is given by

-1 7

Here the choice of hr should be such that significant residual autocorrelation is largely
eliminated in the empirical model. Poskitt & Liitkepohl (1995) show that the estimator  is
strongly consistent under suitable conditions for y; and hr.

If the cointegrating rank is known or has been determined by some procedure and one
wishes to take it into account in the estimation procedure, it is preferable to estimate the
EC-ARMAg form (2.10). This may be done by first estimating 6 in the ARMAg form
as in (3.9). The estimator f implies, of course, estimators A; of the A;. It is natural to
consider estimating the error correction specification in (2.10) via its relation to the A;. Let
1= —(AO — A= —/ip) and I'; = —(/L-H +-- -+flp) (t=1,...,p—1). These estimators
are also strongly consistent, of course. If identifying restrictions for o and [ are available, we
may then obtain estimators for these parameters via their relation to IT = a8'. For instance,
if 3’ has the form ' = [I, : 3}, we get estimators

a=1, and f = (&[S, '] 1a) &/ [IS, ') H,), (3.10)
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where [IT; : TIy] denotes a partition of IT into submatrices of dimension (K xr) and (K x (K —

7)), respectively, and U = Ag+ M, +- +M Again these estimators are strongly consistent.
Alternatively, if no specific identifying restrictions for § are available, we may estimate this
matrix as in the Johansen procedure in (3.6) on the basis of a long VAR(hT). In the next
step this estimator may be fixed and substituted in (2.10). The remaining parameters of the
EC-ARMAE form may then be estimated by a feasible GLS procedure similar to the one
described in the foregoing.

These estimators may be used as starting values for a Gaussian maximum likelihood or
pseudo maximum likelihood procedure. Using a scoring algorithm, for example, will result
in asymptotically fully efficient estimators after one iteration. In the scoring iterations
the estimator B may be fixed or iterated together with the other parameters because this
estimator has a higher rate of convergence than the estimators of the autoregressive and
moving average parameters if identifying restrictions are available for 3. In this case, the
other parameter estimators have an asymptotic normal distribution which is the same as if
(B were known. This, of course, is analogous to the pure VAR case considered in the previous
chapter (see also Phillips (1991), Yap & Reinsel (1995) or Liitkepohl & Claessen (1997)).

As mentioned earlier, before a model can be estimated, the Kronecker indices and possibly
the cointegrating rank have to be specified. How to do that is discussed in the next section.

4 Model Specification

4.1 Specification of the Kronecker Indices

For stationary processes a number of proposals have been made for specifying the Kronecker
indices of an ARMAR model. For example, Hannan & Kavalieris (1984), Poskitt (1992),
and Nsiri & Roy (1992) are important contributions where practical specification and anal-
ysis tools for stationary processes are introduced. In Liitkepohl & Poskitt (1996) several
specification strategies are surveyed and extensions to integrated and cointegrated processes
are considered by Liitkepohl & Claessen (1997), Claessen (1995) and Poskitt & Liitkepohl
(1995). The strategies for specifying the Kronecker indices of cointegrated ARMAg pro-
cesses presented in this section are proposed in the latter paper where they are also shown
to result in consistent estimators of the Kronecker indices under suitable conditions. In a
simulation study, Bartel & Liitkepohl (1998) found that they work reasonably well in small
samples at least for the processes explored in the Monte Carlo study.

The specification procedures may be partitioned in two stages. The first stage is the same
in the procedures considered here. It consists of fitting a long VAR of order hr, say, by least
squares in order to obtain estimates of the unobservable innovations u; as in the estimation
procedure of the previous section. In a second stage the residuals are then substituted for the
unknown lagged u; in the individual equations of an ARMA g form which may be estimated
by linear LS procedures. Based on the equations estimated in this way, a choice of the
Kronecker indices is made using model selection criteria. Poskitt & Liitkepohl (1995), Guo,
Huang & Hannan (1990) and Huang & Guo (1990) show that the estimation residuals 4; are
“good” estimates of the true residuals if the VAR order Ay approaches infinity at a suitable
rate as 1" goes to infinity.

The methods differ in the way they choose the Kronecker indices in the next step. An
obvious idea is to search over all models associated with Kronecker indices which are smaller
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than some prespecified upper bound puax, {(P1,---,Px)[0 < P& < Pmaxs & = 1,..., K},
and choose the set of Kronecker indices which optimizes some model selection criterion.
Unfortunately, this procedure is extremely computer intensive for systems of moderate or
large dimension. Therefore, procedures have been proposed which are computationally more
efficient. One possibility is to use linear regressions to estimate the individual equations
separately for different lag lengths. A choice of the optimal lag length is then based on some
prespecified model selection criterion which includes the residual variance as a measure of
goodness of fit. For example, a criterion of the general form

Ar(n) =logéyp(n) +Crn/T, n=0,1,...,Pr,

may be used, where C is a suitable function of the sample size T and T’} »(n) is the residual
sum of squares from a regression of y, on (yj; — ;) (j=1,...,K, j # k) and y,_, and @,
(s =1,...,n). Here the maximum lag length Pr may depend on the sample size.

Because each equation is treated separately, restrictions from the echelon structure are
not explicitly taken into account in this procedure. Instead for each equation it is implicitly
assumed that the current index under consideration is the smallest and thus no restrictions
are imported from other equations. Still, the k-th equation will be misspecified whenever the
lag order is less than the true Kronecker index because in that case lagged values required
for a correct specification are omitted. On the other hand, if the lag order is greater than the
true Kronecker index, the k-th equation will be correctly specified but may include redundant
parameters and variables. Therefore, for an appropriate choice of Cr, the criterion function
Ag,r(n) will possess a global minimum asymptotically when n is equal to the true Kronecker
index. For practical purposes, possible choices of Cr are Cr = hylogT or Cr = h2. More
details on the procedure may be found in the aforementioned articles.

Poskitt & Liitkepohl (1995) also propose a modification of this procedure which per-
mits to take into account coefficient restrictions derived from those equations in the system
which have smaller Kronecker indices. In that modification, after specifying the Kronecker
indices with the previous procedure, the smallest Kronecker index is fixed and the procedure
is repeated for the remaining equations. In this second application of the procedure the
restrictions implied by the smallest Kronecker index found in the first round are taken into
account when the second smallest index is determined. We proceed in this way by fixing
the smallest Kronecker index found in each successive round until all the Kronecker indices
have been specified. The variables are ordered in such a way that the Kronecker indices of
the final system are ordered from largest to smallest. That is, the variable whose equation is
associated with the smallest Kronecker index is placed last in the list of variables. The one
with the second smallest Kronecker index is assigned the next to the last place and so on.

Poskitt & Liitkepohl (1995) show that for a suitable choice of Cr the procedure results in
consistent estimators of the Kronecker indices. In this version of the specification procedure
the coefficient restrictions derived from the echelon form are directly incorporated into the
identification stage. The idea is that this may result in a superior performance of the selection
procedure. Bartel & Liitkepohl (1998) found in their Monte Carlo study that this is indeed
the case. On the other hand, the computational burden is increased substantially relative
to a procedure which treats all equations independently. Therefore the procedure may be
problematic for high dimensional system:s.

It should be understood that the Kronecker indices found in such a procedure for a given
time series of finite length can only be expected to be a reasonable starting point for a
more refined analysis of the system under consideration. Based on the specified Kronecker
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indices a more efficient procedure for estimating the parameters may be applied as discussed
in the previous section and the model may be modified subsequently. Before we consider
possibilities for model checking, we will discuss procedures for specifying the cointegrating
rank.

4.2 Specification of the Cointegrating Rank

For pure VAR processes, Johansen (1995) provides LR tests for specifying the cointegrating
rank. Under Gaussian assumptions, ML estimation of unrestricted VECMs with a specific
cointegrating rank r was found to be relatively easy in Sec. 3.2. Therefore the LR statistic
for a pair of hypotheses Hy : r = ry versus H; : 7 > 1y is easily determined by evaluating the
maxima of the likelihood functions for » = ry and for r = K. In fact, it can be shown that
the LR statistic has the form

LR(ry) =-T i log(1 — Aj), (4.1)

j=ro+1

where the \; are the eigenvalues from (3.5). The asymptotic distribution of the LR statistic
is nonstandard but has been tabulated in Johansen (1995, Chapter 15), for example. It
depends on the deterministic terms in the DGP such as intercept and trend terms. Hence,
in this case it makes a difference which deterministic terms are included.

Saikkonen & Luukkonen (1997) show that Johansen’s LR tests can be justified even if a
finite order VAR process is fitted although the true underlying process has an infinite order
VAR structure, provided the VAR order goes to infinity with the sample size. Consequently,
these tests may be applied at the beginning of the specification procedure even if the true
DGP is a mixed VARMA process. Liitkepohl & Saikkonen (1999) discuss the choice of the
VAR order in this case. Alternatively, Yap & Reinsel (1995) have extended the likelihood
ratio principle to VARMA processes and develop tests for the cointegrating rank under the
assumption that the lag orders of A(z) and M(z) are known. Thus, these tests may be
applied once the Kronecker indices have been identified. Whatever approach is adopted,
for our purposes a modification is useful. It is known from (2.11) that the cointegrating
rank r > p, the number of zero Kronecker indices. Hence, only null hypotheses should be
considered where r is greater than or equal to p so that the sequence of null hypotheses
Hy:r=9,Hy:r=p0+1,...,Hy:r =K — 1, is tested. The estimator of r is chosen as the
smallest value for which Hy cannot be rejected.

4.3 Model Checking

Once a model has been specified and estimated by some efficient procedure, some checks
for model adequacy are in order and possible further model reductions or modifications may
be called for. For instance, insignificant parameter estimates may be restricted to zero.
Here it is convenient that the ¢-ratios of the short-run and loading parameters have their
usual asymptotic standard normal distributions under the null hypothesis due to the limiting
normal distribution of the ML estimators. In this way overidentifying restrictions may be
imposed.

A number of model checking tools are based on the residuals of the final model. Some
of them are applied to the residuals of individual equations and others are based on the full
residual vectors. Examples of specification checking tools are visual inspection of the plots
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of the residuals and their autocorrelations. In addition, autocorrelations of squared resid-
uals may be considered to check for possible autoregressive conditional heteroscedasticity
(ARCH). Although it may be quite insightful to inspect the autocorrelations visually, formal
statistical tests for remaining residual autocorrelation should also be applied. Such tests are
often based on LM (Lagrange Multiplier) or Portmanteau statistics. Moreover, normality
tests of the Lomnicki-Jarque-Bera type may be applied to the residuals (see, e.g., Liitkepohl
(1991), Doornik & Hendry (1997)).

There are also procedures for checking of a model for potential structural shifts during
the sample period. For example, prediction tests as discussed in Liitkepohl (1991) may be
performed or recursive residuals (Doornik & Hendry (1997)) may be inspected. In addi-
tion out-of-sample forecasts are sometimes used for model checking when new data become
available. For a more detailed discussion of model checking see Hendry (1995) or Doornik &
Hendry (1997). If model defects are detected at the checking stage efforts have to be made
to find a better representation of the DGP by adding other variables or lags to the model,
by modifying the sampling period, considering nonlinear terms etc..

5 Forecasting

In discussing forecasts based on VARMA processes it is again instructive to begin with pure
VAR models. An extension to mixed VARMA processes will then be relatively simple. I will
first consider forecasts based on known processes and then discuss the consequences of using
models with estimated rather than known parameters. Finally, in Subsection 5.4 forecasting
linearly transformed processes will be considered.

5.1 VAR Processes

The VAR form (2.1) is particularly easy to use in forecasting the variables y;. The op-
timal, minimum mean squared error (MSE) 1-step forecast in period 7" is the conditional
expectation

Yrur = E(yralyr, yr-a, ) = Adwyr + -+ Apyria—p, (5.1)

where the latter equality holds if w; is independent white noise, that is, u; and us are
independent random vectors for s # t. In that case, E(ury1|yr, yr—1,...) = 0. Forecasts for
larger horizons h > 1 may be obtained recursively as

Yrnr = Aryrin—yr + - + ApYrin—p1, (5.2)

where yr ;7 = yr4; for 7 < 0. The corresponding forecast errors are yr1 — yri1r = Ur1,
Y142 — Y1427 = Ur42 + Ajuryy and, more generally,

YT+h — Yrinr = Urrh + Pruripo1 + - + Pporury, (5.3)

where it is easy to see by successive substitution that the weight matrices in the latter
equation may be obtained as

q>3 :Z@s—jAj; s = 1,2,..., (54)
j=1
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with &y = Ix and A; = 0 for j > p (see Liitkepohl (1991, Sec. 11.3)). Obviously, the
forecasts are unbiased, that is, the forecast errors have expectation 0.

As mentioned earlier, these are the minimum MSE forecasts. The MSE matrix of an
h-step forecast is

h—1

Yy(h) = E{[yr+n — yrsnr)yrin — yT+h|T]'} = Z <I>j2u<1>;-. (5.5)
3=0

For any other h-step forecast with MSE matrix X} (h), say, the difference ¥y (h) — ¥, (h) is
a positive semidefinite matrix. This result relies on the assumption that u; is independent
white noise. If u; is just uncorrelated white noise so that u; and u, are uncorrelated for s # ¢
and not necessarily independent, the forecasts computed by the recursions in (5.2) are just
best linear forecasts (see Liitkepohl (1991, Sec. 2.2.2) for an illustrative example).

It may be worth pointing out that the forecast MSEs for integrated processes are gen-
erally unbounded as the horizon h goes to infinity. Thus the forecast uncertainty increases
without bounds for forecasts of the distant future. This contrasts with the case of stationary
I(0) variables for which the forecast MSEs are bounded by the unconditional covariance of
y:. Because cointegration relations are I(0), this means, in particular, that forecasts of coin-
tegration relations have bounded MSEs even for horizons approaching infinity. For a more
detailed discussion of forecasting cointegrated processes see Clements & Hendry (1995).

Of course, this result is also reflected in the corresponding forecast intervals. Assuming
that the process y; is Gaussian and, hence, u; ~ iid N(0,¥,), the forecast errors are also
multivariate normal. This result may be used to set up forecast intervals of the form

Wk, b1 — Cley/20k(R), Yra4hir + C1—y/20% ()] (5.6)

where ¢;_, 5 is the (1 —1)100 percentage point of the standard normal distribution, yy risr
denotes the k-th component of yr 7 and oy (h) denotes the square root of the k-th diagonal
element of X, (h), that is, i (h) is the standard deviation of the h-step forecast error for the
k-th component of ;. I will now turn to forecasts based on VARMA processes still assuming
that the parameters are known.

5.2 VARMA Processes

Forecasts of the variables of the VARMA process (2.4)/(2.5) are obtained easily from the
pure VAR form (2.7). Assuming again independent white noise, an optimal 1-step forecast
at forecast origin 7" is

T
yreur = Y EilYrii—i. (5.7)
i=1
More generally, optimal h-step forecasts may be computed recursively for h =1,2,..., as
T+h—1
Yranr = D, Silrin-ir (5.8)
i=1
Because for given ¥, ..., yr the uy, ..., ur may be computed from (2.7), the 1-step fore-

cast may be obtained alternatively as
yT—|—1|T = Aal(AlyT +---+ ApyT—I—l—p) + Aal(MluT + -+ Mp’U,T_|_1_p),
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where My = Ay is assumed as in the echelon form. Again more generally, the h-step forecasts
may be determined as

p
yrenr = Ay (Awyrsn—r + -+ Apyrinpr) + A5 Y Miurin_i, (5.9)
i=h
where, as usual, the sum vanishes if h > p.

Both ways to compute h-step forecasts from VARMA models are relatively computer
intensive especially for long time series. Moreover, they rely on our initial value assumption
which states that y;, = 0 for ¢ < 0. If such an assumption is not made the true error terms
cannot be computed and also (5.7) and (5.8) are only approximations. In that case, precise
formulas based on y,...,yr may be obtained via the so-called Multivariate Innovations
Algorithm of Brockwell & Davis (1987, §11.4).

Under our assumptions, the properties of the forecast errors are easily derived by ex-
pressing the process (2.5) as

t—1
Ye = U + Z Q;u; 4, (5.10)
i=1
where -
B(2) = I + D ®iz" = A(z) ' M(2). (5.11)

i=1
Note that in general, if there are unit roots, for A(z)~! to exist, z must be strictly within
the complex unit circle. Nevertheless, we can, of course, get the coefficient matrices ®; from
(5.11). In terms of the representation (5.10) the optimal h-step forecast may be expressed

as
T+h—1

yriwr = Y, Piurini (5.12)
i=h
Hence, the forecast errors are seen to be
YT+h — Yriur = Urrn + Pruripr + -+ Ppgur s (5.13)

just as in the pure VAR case in (5.3). Thus, the MSE or forecast error covariance matrix is
also obtained in the same way as in that section, that is, 3, (h) has precisely the form given
in (5.5). Moreover, forecast intervals etc. may be derived from these results in the familiar
way under Gaussian assumptions.

5.3 Forecasting Estimated Processes

In practice, processes with estimated parameters are usually used for forecasting. To in-
vestigate the implications for the forecast precision, we denote the h-step forecast based on
estimated parameters by §rr, that is,

P
Jrenr = Ay (ArGrsn—r + - + Aplrsn—pr) + Ay "> Mitirin—i, h=1,2,..., (5.14)
i=h
where, of course, Jrijr = yr4; for 7 < 0 and the U7 ,_; are estimation residuals. The
corresponding forecast error is

Yrow — Jrenr = [Yren — Yrenr] + Yrenr — Jrinr]
h—1
= Z Qjurin—j + [Yrenr — Yr+nT)-
j=1

18



If T marks the end of the sample period used for estimation and is at the same time the
forecast origin, then the first term on the right-hand side of the foregoing expression consists
of future residuals only whereas the second term involves present and past variables only.
Hence, assuming that u; is independent white noise, the two terms are independent. More-
over, under standard assumptions, the difference yr 1 — Jrin7 is small in probability as
T gets large. Consequently, the forecast error covariance matrix is

¥g(h) = E{lyrsn — Jrsnrllyren — Irnr]'}
= X,(h) +o(1).

Here o(1) denotes a term which approaches zero as the sample size tends to infinity. Thus, for
large samples the estimation uncertainty may be ignored in evaluating the forecast precision
and setting up forecast intervals. On the other hand, in small samples the forecast precision
will depend on the quality of the parameter estimators. Hence, if precise forecasts are
desired, good parameter estimators are needed. A more precise form of the difference between
Y3(h) and X, (h) may be found, e.g., in Liitkepohl (1991) and a more complete discussion of
forecasting estimated cointegrated processes with further references is given in Clements &
Hendry (1995).

5.4 Forecasting Linearly Transformed and Aggregated Processes

As mentioned in Sec. 2.3.4, linearly transformed VARMA processes are again VARMA
processes. Hence, if 3, has a VARMA representation, the same is true for z; = F'y;, where
F is some fixed (M x K) transformation matrix. The VAR and MA orders can change
considerably, however. Nevertheless, it can be shown that if forecasts of z; are desired, it
is generally preferable to forecast the untransformed process y; first and then transform the
forecasts rather than forecast z; directly. More precisely, it can be shown that Fyr s is
generally a better forecast of zy,j than zr ., in the sense that X,(h) — F'X,(h)F" is positive
semidefinite (see Liitkepohl (1984a, 1987)). Here F3,(h)F' is the MSE matrix associated
with Fyrpr, of course. This result implies that if forecasts of an aggregate are of interest,
then it is generally useful to consider disaggregated series, forecast them in a multivariate
model and aggregate the forecasts. Because temporal aggregation can also be viewed as
a linear transformation of a process observed at a higher frequency this result also means
that if forecasts of quarterly variables, say, are of interest forecasting monthly values and
aggregating the monthly forecasts to obtain a quarterly forecast is preferable to forecasting
the quarterly process directly (see also Liitkepohl (1984b, 1986a, 1986b) for examples).

To illustrate these issues consider the following example from Liitkepohl (1991). Suppose
Yy is a bivariate VAR(1) process,

1-05L 0660 ] [wyw | [ uw , -
0.5L 1+0.3L ] l Yor ] = l Usg ] with X, = L. (5.15)

Furthermore, suppose that we are interested in the aggregate z; = y1; + y2¢. It can be shown
that z; has the representation

(1 —-0.2L —0.48L%)z = (1 — 0.504L)v; with o2 = 2.70.

Obviously, the 1-step forecast error variance of zryq 7 is X,(1) = 02 = 2.70 whereas ¥,(1) =
Y, = I, and, hence, for F' = [1,1], FX,(1)F' = 2.
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Unfortunately, in general aggregated forecasts are not necessarily better than forecasting
the aggregate directly if the true process is unknown and the parameters have to be estimated,
for example. More details and examples illustrating this case may be found in Liitkepohl
(1984b, 1986a) and other references. Notice also that forecasting the disaggregate series
individually using univariate time series methods and then aggregating them may result in
a forecast which is inferior to a direct forecast of the aggregate.

6 Conclusions and Extensions

In this chapter the use of VARMA processes for forecasting systems of variables has been
considered. In this procedure the usual steps of model specification, estimation and diag-
nostic checking have to be done first. Once a well specified and efficiently estimated model
has been established it can be used for forecasting in a straightforward manner. Procedures
are presented that may be used in the different steps of the analysis. It is assumed that all
variables are at most I(1) so that stochastic trends can be removed by differencing once.
Possible cointegration between the variables is accommodated by including an error correc-
tion term which makes it particularly easy to analyze the cointegration relations. Moreover,
it is argued that the echelon form offers a framework for a unique parameterization of the
VARMA structure which may be combined conveniently with the error correction form.

It should be noted, however, that other possibilities exist for unique parameterizations
of VARMA models. For instance, the scalar component models of Tiao & Tsay (1989) and
Tsay (1989) have received some attention in the literature. Moreover, early attempts of
econometric VARMA modeling have focussed on so-called final equations forms (Zellner &
Palm (1974), Wallis (1977)). These approaches may be useful occasionally but have not
found wide-spread use in applications.

Throughout I have focussed on models without deterministic terms. Adding mean terms,
seasonal dummy variables or polynomial trend terms is a straightforward extension for most
of the models and procedures presented in the foregoing. Some adjustments are necessary in
some of the procedures, however. In particular, deterministic terms lead to changes in the
asymptotic distributions of the cointegration tests. More generally, there may be additional
unmodeled or exogenous variables. In that case the VARMAX class of models considered
by Hannan & Deistler (1988), for example, may offer an appropriate framework.

Another limitation of the previous analysis is the exclusion of variables with higher
order integration. In practice, some variables such as price indices may be modeled more
appropriately as I(2) variables. If variables of higher order integration are present, the
analysis and modeling of the cointegration relations becomes more difficult. Except for that
problem, forecasts can be set up as discussed in Sec. 5 on the basis of the levels version if
that is available. A proper analysis of the cointegration properties may be very important
for longer term forecasts, however.
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