~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Hafner, Christian M.; Herwartz, Helmut

Working Paper
Option pricing under linear autoregressive dynamics,
heteroskedasticity, and conditional leptokurtosis

SFB 373 Discussion Paper, No. 1999,58

Provided in Cooperation with:

Collaborative Research Center 373: Quantification and Simulation of Economic Processes,
Humboldt University Berlin

Suggested Citation: Hafner, Christian M.; Herwartz, Helmut (1999) : Option pricing under linear
autoregressive dynamics, heteroskedasticity, and conditional leptokurtosis, SFB 373 Discussion
Paper, No. 1999,58, Humboldt University of Berlin, Interdisciplinary Research Project 373:
Quantification and Simulation of Economic Processes, Berlin,
https://nbn-resolving.de/urn:nbn:de:kobv:11-10046489

This Version is available at:
https://hdl.handle.net/10419/61730

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:kobv:11-10046489%0A
https://hdl.handle.net/10419/61730
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Option Pricing under Linear Autoregressive Dynamics,
Heteroskedasticity, and Conditional Leptokurtosis

Christian M. Hafner, Helmut Herwartz *
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Abstract

Daily returns of financial assets are frequently found to exhibit positive autocor-
relation at lag 1. When specifying a linear AR(1) conditional mean, one may ask
how this predictability affects option prices. We investigate the dependence of option
prices on autoregressive dynamics under stylized facts of stock returns, i.e., conditional
heteroskedasticity, leverage effect, and conditional leptokurtosis. Our analysis covers
both a continuous and discrete time framework. The results suggest that a non-zero
autoregression coefficient tends to increase the deviation of option prices from Black &
Scholes prices caused by stochastic volatility.
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1 Introduction

Recent empirical studies of financial markets suggest that there is a substantial body of
evidence that documents the predictability of financial asset returns. This was stated by Lo
& Wang (1995), who cite a collection of 30 papers to support the hypothesis of predictability.
The term predictability is used as having non-zero autocorrelation of returns. Chapter 2
of Campbell, Lo and MacKinlay (1997) gives a summary of recent empirical evidence for
positive autocorrelation at daily and monthly frequency.

A possible economic explanation for such positive autocorrelation could be risk premia
that are linked to time-varying second moments. For example, the ARCH-M model of
Engle, Lilien and Robins (1987) lets the risk premium be a function of volatility, which is
modeled by the ARCH model class. It turned out, however, that autoregressive processes
often provide superior results in terms of log-likelihood estimates, as was shown by Hafner
and Herwartz (1999) for the German stock market.

Even though the conditional mean does not enter into closed form option pricing so-
lutions such as Black-Scholes, its particular specification may affect the estimates of other
relevant parameters such as volatility. This is why it is pertinent to analyse the effects of
autoregressive components for option pricing. Since option prices may react sensitively to
changes in volatility, a proper specification of the conditional variance and the conditional
mean plays a crucial role. In particular, out-of-the-money options with short times to ma-
turity react strongly to volatility changes when measuring this sensitivity in relative terms,
i.e., regarding the elasticity of the option price with respect to volatility.

Being the most popular approaches to model volatility clustering, GARCH models as
introduced by Engle (1982) and Bollerslev (1986) soon showed their deficiencies: First, stock
market volatility is often more affected by negative news than by positive news. This effect,
first noted by Black (1976), is known as leverage effect. Many extensions of the standard
GARCH model have been suggested that allow for asymmetric impacts of positive and
negative news on volatility. Second, in most studies of daily stock returns using GARCH
models and conditional normality for the innovations, the rescaled residuals showed excess
kurtosis which violates the normality assumption.

In this paper, we analyse the impact of autoregressive dynamics on volatility estimates
and on option prices. We separate our analysis to a continuous time and discrete time
framework. In continuous time, we derive results for the case of a trend reverting log price
and stationary stochastic volatility. Under the assumption that volatility is not priced and
log price and volatility are not correlated, one can in the spirit of Hull and White (1987)
derive a Taylor expansion of the option price around the expected mean volatility until
time to maturity. We analyse the change of the first order term in case of an underlying
autoregressive component. We show that under autoregressive dynamics far in- and out-of-
the-money options are valued higher and at-the-money options lower than when neglecting
autoregressive dynamics.

Evaluation of analytic formulae in a continuous time framework becomes tedious in case
of a negative correlation between the innovations of log price and volatility (i.e., the leverage
effect) or leptokurtic innovations. Therefore, we make use of results for discrete time models.
In particular, our discrete time framework builds on the work of Duan (1995), whose GARCH
option pricing model can be easily extended without losing its interpretation as an economic
equilibrium model. We employ the threshold GARCH model of Glosten, Jagannathan and
Runkle (1993) and conditional Student-t distributed innovations to model the leverage effect
and conditional leptokurtosis, respectively.

In line with our results in the continuous time framework, the results in discrete time
suggest that autoregressive dynamics of returns increase the effects caused by stochastic
volatility or GARCH. In particular, viewing the deviation of GARCH option prices from
Black & Scholes prices as a function of the moneyness, one obtains the typical U-shape,



that is, far in- and out-of-the-money options are priced higher and at-the-money options
lower. This U-shape becomes more distinct under additional autoregressive dynamics: at-
the-money options become even less, far in- and out-of-the-money options even more valu-
able. This holds for a positive and negative AR(1) coefficient. In relative terms we find the
highest impact of autocorrelation for options out-of-the-money. Conditional leptokurtosis
is found to impose an additional smile compared to volatility processes generated under
conditional normality. This additional smile appears to be symmetric even in the TGARCH
case and is much more pronounced under autoregressive dynamics.

The accordance of our results for the trend reverting stochastic volatility in continuous
time and AR/GARCH in discrete time may not be surprising when considering that the
diffusion limit of GARCH models is precisely the stochastic volatility process that we assume,
see Nelson (1990). Duan (1996) shows that his discrete time option pricing model converges
to the Hull and White (1987) stochastic volatility option pricing model if the time interval
between observations is decreasing and volatility parameters are appropriately rescaled.
However, there is an important difference: Modelling autoregressive dynamics in continuous
time with a linear trend reversion process, one can only model negative correlation of returns.
To model positive correlation, one has to resort to multivariate processes. Along these
lines in a constant volatility framework, Lo and Wang (1995) show that the effects of the
autoregression parameter are contrary: negative correlation increases, positive correlation
decreases option prices. In discrete time, however, there is no such asymmetry: the sign of
the autoregressive parameter is irrelevant, all that matters is its size.

The empirical relevance of our results is illustrated for a set of German stock price series.
Specifying an autoregressive model additional to GARCH changed the volatility estimates
slightly. This change implied in many cases a substantial deviation of option prices.

The remainder of the paper is organized as follows: Section 2 provides an empirical
assessment of the differences of volatility path estimates obtained from alternative modeling
assumptions. In Section 3 we first review option pricing under autoregressive dynamics and
constant volatility in continuous time, i.e., a trending Ornstein-Uhlenbeck process. Then,
we allow for stochastic volatility and develop results for option pricing in a continuous-time
framework with a trend reverting log price process. The GARCH option pricing model
under linear dynamics is discussed in Sections 4 and 5. The distribution of the independent
innovations is assumed to be normal in Section 4 and leptokurtic in Section 5. Section 6
provides a brief summary and concludes. Proofs are provided in Appendix A.

2 Volatility estimates for alternative models

The linear AR(1) model with conditionally heteroskedastic errors writes as

Y =v+ oy 1+ \/h_t&; (1)

where v and ¢ are constant parameters, the innovations & are i.i.d. with mean zero and
variance one and the volatility h; is a measurable function of lagged innovations and lagged
h¢. Denoting by F; the information set up to time ¢, we have the conditional mean p; =
Ely; | Ft—1] = v + ¢y;—1 and the conditional variance h; = Var[y; | F;_1]-

Specifically, we assume the asymmetric threshold GARCH model

ht =w+ ((a + a71(§t—1<0))£t2—1 + ﬂ) h'tfla (2)

where the common symmetric GARCH model results as a special case for o~ = 0. Dealing
with stock returns, one typically obtains positive estimates for o, indicating a stronger
impact of negative news on volatility than positive news. Model (2) was proposed by Glosten,
Jagannathan and Runkle (1993). A similar threshold model for the conditional standard
deviation is due to Zakoian (1994).



We investigate the daily closing prices S; of 26 German stocks traded at the Frank-
furt stock exchange during the period 02/01/1990 to 30/12/1996, providing n = 1753
observations for each stock. Returns y; are defined as relative price changes, i.e. y; =
(St—S¢—1)/S¢—1. All return series exhibit strong conditional heteroskedasticity. The ARCH-
LM test of Engle (1982) rejects the hypothesis of homoskedasticity at all common levels,
both for returns and residuals of a linear AR(1) regression.

We estimate GARCH-type models, each with and without an AR(1) conditional mean
component. To incorporate an explicit risk premium into the specification, we also estimated
models of the GARCH-M type, see Engle, Lilien and Robins (1987). It turned out, however,
that unlike for the AR parameter the inclusion of a risk premium did not significantly
improve the model fit measured in terms of the log-likelihood for the majority of investigated
series. We will thus restrict our considerations to models without risk premium.

QML-inference against the significance of ¢ clearly supports the presence of autoregres-
sive dynamics for most return series under study. In seven cases, QML rejects the hypothesis
¢ = 0 when it is accepted by the heteroskedasticity consistent t-ratio of White (1980) and
the bootstrapped version of a pseudo likelihood ratio statistic, see Herwartz (1998) and
Hafner and Herwartz (1999). For the majority of stocks, all test procedures rejected the null
hypothesis of no autoregressive dynamics.

& ~ N(0,1) | & ~tu(0,1)

Stock AR(0) AR(1) AR(0) AR(1)

GARCH GARCH TGARCH | GARCH GARCH TGARCH 3]
ALLI 5198.8 5210.0 5215.9 5260.6 5265.9 5270.3 6.6
BASF 5210.1 5211.7 5212.2 5244.6 5245.8 5245.8 7.2
BAYE 5238.7 5243.0 5243.0 5304.9 5306.2 5306.3 6.6
BAYH 5299.1 5303.1 5307.2 5412.7 5412.8 5414.8 4.9
BAYV 5218.2 5218.2 5222.1 5310.4 5310.9 5313.6 5.1
BMW 5153.0 5153.1 5162.6 5256.1 5259.0 5262.7 5.1
COMM 5256.9 5259.7 5259.9 5402.5 5402.8 5402.9 4.8
DAIM 5093.3 5096.7 5098.1 5156.7 5159.3 5159.5 6.7
DEUT 5376.4 5380.4 5380.9 5468.1 5471.4 5471.6 6.4
DEGU 4954.6 4954.8 4955.9 5024.1 5024.1 5024.6 4.9
DRES 5397.1 5397.8 5401.9 5542.6 5542.7 5545.0 4.9
HENK 5304.0 5309.1 5309.1 5425.0 5425.3 5425.4 5.1
HOEC 5074.2 5078.4 5083.2 5147.2 5150.6 5153.4 6.0
KARS 5138.7 5138.9 5140.3 5199.2 5205.3 5206.2 6.0
LIND 5437.8 5442.0 5447.8 5567.0 5568.5 5572.1 4.9
MAN 4884.1 4891.0 4896.7 5013.0 5015.3 5020.7 5.9
MANN 4867.4 4878.4 4879.5 5008.6 5009.0 5010.7 5.3
MUEN 5158.8 5163.2 5184.7 5293.8 5295.6 5312.3 3.2
PREU 5046.2 5047.9 5055.7 5144.4 5146.0 5149.2 5.6
RWE H385.7 5397.0 5400.6 5499.4 5501.6 5503.3 5.6
SCHE 5272.0 5272.1 5274.9 5341.9 5342.0 5343.7 4.9
SIEM 5461.4 5467.1 5468.1 5565.8 5567.0 5568.6 7.2
THYS 4898.9 4903.8 4904.0 4961.6 4962.6 4962.7 6.7
VEBA 5371.5 5371.9 5372.3 5464.6 5465.2 5465.6 6.0
VIAG 5241.4 5243.1 5244.0 5375.5 5377.8 5380.3 5.2
VOLK 4773.1 4781.3 4781.6 4839.9 4844.2 4844.4 8.3

Table 1: Log-likelihood estimates of alternative model specifications under conditional nor-
mality and conditional leptokurtosis. Estimated degrees of freedom (0) for AR(1)-TGARCH
specification.



Assuming conditional normality, estimation and diagnostic results can be interpreted in
a similar fashion for all investigated return series. First, we find significant ARCH-effects
indicated by significant estimates for a using a symmetric GARCH(1,1) process or a~ within
its asymmetric counterpart, the TGARCH(1,1) model. With respect to the absolute value of
parameter estimates we find for the vast majority of investigated return series estimates of 3
close to 0.9 and of a + 3 between 0.960 and 0.999, indicating the typical high persistence of
shocks in volatility. The estimation results obtained for the parameters governing variance
dynamics were similar for alternative specifications of the conditional mean equation, i.e.
for the AR(0) versus the AR(1) model. For all series the GARCH(1,1) process turns out
to remove conditional heteroskedasticity. Applying the ARCH-LM test of order 1 or 5
to the standardized return series the assumption of homoskedasticity is not rejected for
all estimated models. Testing standardized innovations against unconditional normality,
however, we find that all standardized residual series exhibit excess kurtosis. We refrain
from providing all model diagnostics to economize on space. Instead, we refer to Hafner
and Herwartz (1999) for further discussion of estimation results obtained under conditional
normality. Table 2 reports the estimation results for Allianz.

& ~ N(0,1) & ~1,(0,1)
GARCH TGARCH GARCH TGARCH
AR(0) AR(1) AR(0) AR(1) | AR(0) AR(1) AR(0) AR(1)
7 | 5.0E-04 4.5E-04 32E-04 27E-04 | 29E-04 26E-04 19E04 1.5E-04
(1.88) (1.71)  (1.21)  (1.01) (1.11) (1.04) (0.74)  (0.60)
é 097 .087 073 .071
(3.72) (3.45) (2.85) (2.59)
& | 3.2E-06 3.2E-06 2.6E-06 2.7E-06 | 3.1E-06 3.3E-06 3.1E-06 3.3E-06
(1.91) (1.90)  (1.84)  (1.81) (1.88) (1.90) (1.96) (1.86)
& .070 075 .029 .031 .066 070 .037 .039
(4.52) (4.49)  (2.48) (2.41) (3.85) (3.96) (3.04) (2.79)
& .070 072 .061 .065
(2.85)  (3.06) (2.64) (2.35)
8 914 .909 .923 .920 916 911 917 912
(49.4) (46.6)  (56.1)  (53.6) (39.2) (37.4) (41.9)  (34.3)
o 6.18 6.38 6.48 6.66
(6.52) (6.20) (6.30) (6.11)

Table 2: Estimation results for Allianz returns. QML t—ratios in parantheses.

Taking conditional leptokurtosis into account we estimated all processes considered as-
suming the innovations & to be generated by a standardized Student-t distribution. For the
GARCH model specified with and without an autoregressive component and for the AR(1)-
TGARCH processes Table 1 displays the obtained maximum values of the log-likelihood
function obtained under normality and Student-t innovations, respectively. In addition,
the estimated degrees of freedom obtained for the AR(1)-TGARCH Student-t model are
reported. Obviously, the assumption of leptokurtic innovations provides considerable im-
provements of the empirical models specified under normality in terms of the log-likelihood
values. For the AR(0)-GARCH we obtain log-likelihood improvements between 34.5 for
BASF and 145.6 for Commerzbank. The significance of these improvements can also be
inferred from the estimated degrees of freedom ¢ for the Student-t model being in most
cases close to 6. Regarding the corresponding standard deviations it would become obvious
that for all investigated series the estimated Student-t distributions differ significantly from
a normal approximation v & 30.

Given a specific return series it turned out that with respect to the estimation of param-



AR(0) GARCH TGARCH
TGARCH vs GARCH AR(1) vs AR(0) AR(1) vs AR(0)
Stock MAD Min Max MAD Min Max | MAD Min Max
ALLI 11.8 -38.4 41.4 2.58 -8.01 9.78 2.37 -8.03 10.4
BASF 4.26 -15.7 16.6 0.61 -2.41 3.84 0.64 -2.39  4.02
BAYE 7.05 -24.6 36.6 0.23 -1.15 0.86 0.26 -0.66 1.03
BAYH 7.00 -34.0 25.8 141 -5.63 5.87 1.36 -4.70 5.47
BAYV 0.23 -0.89 1.36 1.50 -6.33 6.38 1.55 -7.08 6.92
BMW 0.91 -2.92 4.31 2.74 -9.52 12.6 2.73 -10.1 12.7
COMM 5.50 -20.3 21.7 0.33 -1.09 1.59 0.35 -1.22 1.73
DAIM 6.74 -20.6 31.2 0.66 -2.62 1.96 0.65 -3.19 2.23
DEUT 791 -37.0 34.7 0.54 -2.24 3.01 1.09 -6.15 5.01
DEGU 1.60 -7.39 6.24 0.88 -2.90 5.73 0.98 -3.01 5.77
DRES 2.87 -10.2 15.5 1.82 -6.34 7.65 1.70 -6.34 7.13
HENK 749  -30.6 18.5 0.31 -0.69 0.59 0.14 -0.45 1.10
HOEC 742 -32.5 34.6 1.69 -9.27 10.1 1.78 -9.290 9.04
KARS 1.99 -11.0 7.26 0.66 -4.39 3.23 0.62 -4.47 3.46
LIND 6.58 -35.2 42.8 1.85 -15.6  9.06 1.62 -15.1 8.13
MAN 8.78  -46.0 54.1 1.43 -10.5 18.0 141 -8.09 14.6
MANN 10.3 -40.2 53.1 1.91 -13.0 13.5 1.40 -8.29 10.6
MUEN 6.98 -27.2 25.1 5.78 -290.9 29.8 4.03 -27.7 16.3
PREU 6.07 -17.6 314 1.44 -5.10 4.98 1.51 -5.87 6.61
RWE 11.7  -33.9 71.4 2.52  -9.74 15.3 1.80 -6.07 8.89
SCHE 0.83 -2.42 3.50 1.59 -804 8.58 1.60 -7.96 8.80
SIEM 9.15 -34.9 36.8 0.36 -1.83 1.93 0.47 -2.45 217
THYS 8.11 -39.5 25.7 0.28 -1.35 1.17 0.28 -0.92 1.44
VEBA 1.88 -8.24 7.33 0.84 -3.29 4.71 0.87 -3.48 4.83
VIAG 446  -19.3 24.2 1.07 -3.65 3.79 0.93 -3.55 4.23
VOLK 9.53 -484 31.0 040 -1.83 2.35 0.39 -1.80 1.74

Table 3: Mean absolute deviation (MAD), minimum and mazimum of the percentage differ-
ences between volatility estimates obtained under conditional normality.

eters governing conditional variances only negligible differences are obtained for alternative
specifications of the conditional mean equation. Obviously this result mirrors the typically
low degree of explanation provided by an autoregressive model of order one applied to return
series. For almost all data sets under study the estimated AR(1) coefficients are positive and
less than 0.1. The latter result is invariant with respect to the choice of a normal compared
to a leptokurtic distribution of innovations &. For most series, however, estimated AR(1)
parameters are somewhat smaller assuming Student-t compared to normally distributed in-
novations. The evidence in favour of autoregressive dynamics is mitigated to some extent
assuming Student-t innovations. As a possible device to test for autoregressive dynam-
ics convenient likelihood ratio statistics can also be obtained from Table 1. For example,
assuming a GARCH(1,1) variance process with normally distributed innovations, we find
significant autoregressive dynamics with significance level 5% for 16 of 26 return series. Tak-
ing the same formal test criterion for the GARCH(1,1) model under Student-t distributed
innovations we obtain autoregressive dynamics for only 9 return series investigated.
Regarding estimated parameters a, o~ and (3 governing variance dynamics we neither
obtain major differences for the two alternative assumptions made for the distribution gen-
erating &, nor for the specification of AR(1) or AR(0). Still, the estimated volatility paths
may differ substantially. Volatility depends on excess returns in the AR(0) model and on
errors in the AR(1) model. Under conditional normality, the innovations in volatility are



AR(0) GARCH TGARCH
TGARCH vs GARCH AR(1) vs AR(0) AR(1) vs AR(0)
Stock MAD Min Max MAD Min Max | MAD Min Max
ALLI 10.1  -31.6 40.9 2.05 -6.39 7.59 2.03 -6.80 895
BASF 441  -15.0 18.8 0.12 -046 0.67 0.10 -0.45 0.56
BAYE 5.05 -14.2 27.7 0.42 -2.39 1.34 0.37 -2.00 1.31
BAYH 1.82 -7.37 8.12 1.06 -4.20 4.86 1.18 -5.03 6.23
BAYV 3.35 -11.8 15.6 1.10 -4.20 5.68 1.11 -3.61 4.15
BMW 7.94  -23.8 33.6 1.96 -6.65 7.25 1.87 -6.45 4.93
COMM 2.70 -8.04 14.2 0.25 -1.08 1.13 0.26 -1.00 1.24
DAIM 6.57 -22.4 24.2 0.36 -1.561  0.92 0.33 -1.51 0.88
DEUT 8.06 -26.7 35.7 0.28 -0.99 1.32 0.33 -1.15 1.46
DEGU 0.49 -1.64 2.12 0.57 -2.11  2.78 0.61 -2.59 2091
DRES 1.57 -4.55 8.90 1.42 -4.98 5.18 1.39 -4.84 5.23
HENK 3.24 -9.35 23.0 0.07 -0.31 0.40 0.11  -0.43 0.63
HOEC 8.39 -28.3 45.9 1.23  -6.41 5.55 1.31  -7.04 5.32
KARS 10.9 -44.5 85.5 2.71 -25.1 234 0.92 -5.63 8.27
LIND 5.30 -20.1 23.5 2.01 -12.1 7.40 1.93 -11.8 6.71
MAN 7.08 -24.0 28.1 2.11 -9.24 121 2.23 -8.93 115
MANN 3.10 -9.89 15.7 0.79 -3.02 4.18 0.86 -3.81 4.36
MUEN 6.65 -25.5 15.6 4.77 -22.3 124 5.10 -26.6 12.8
PREU 5.58 -19.6 21.6 1.23  -4.58 2.94 1.30 -5.06 3.22
RWE 6.94 -18.2 39.0 1.05 -4.03 4.43 1.14 -4.53 5.15
SCHE 1.23  -4.27 3.97 1.32  -6.05 5.72 1.34 -6.27 5.92
SIEM 5.04 -18.4 174 0.75 -4.12 2.88 0.83 -3.92 3.80
THYS 4.41 -18.8 13.9 0.17 -0.91 0.52 0.16 -0.94 0.50
VEBA 3.48 -11.9 18.0 0.58 -1.89 3.32 0.67 -2.04 3.63
VIAG 7.35  -34.5 36.8 1.33 -4.75 7.94 1.48 -5.53 7.98
VOLK 8.32 -36.5 29.6 0.28 -1.21  1.33 0.27 -1.12  1.09

Table 4: Mean absolute deviation (MAD), minimum and mazimum of the percentage differ-
ences between volatility estimates obtained under conditional leptokurtosis.

chi-square, in the Student-t model F-distributed after appropriate rescaling.

To shed some light on the dependence of volatility estimates obtained from alternative
model specifications we generated series of the form V; /V5,—1, where V; and V5 are volatility
processes estimated under specific assumptions. In particular, we provide a comparison of
GARCH(1,1) volatility estimates with TGARCH(1,1) counterparts in order to report on
the empirical magnitude of the prominent leverage effect. Similarly, we also provide a
comparison for volatility processes derived from the AR(0) and AR(1) model. The latter
comparison is performed assuming both a GARCH(1,1) and TGARCH(1,1) specification.
Tables 3 and 4 provide analogous measures obtained from the normal model and the Student-
t model, respectively. In particular, for relative differences V; /Va — 1 we provide the mean
absolute deviation (MAD) and the observed maximum and minimum values.

Obviously, generalizing the symmetric GARCH(1,1) variance towards an asymmetric
impact of lagged innovations on current volatility substantially affects the estimated volatil-
ity path. Assuming normally distributed innovations, relative differences as described above
show for 17 of 26 series mean average deviations of at least 5%. A similar result is obtained for
processes specified with Student-t distributed innovations. Specific observed differences vary
between -46.0% and +71.4% for the volatility paths estimated under normality. Compared
to the empirical importance of the leverage effect, inclusion and exclusion of autoregres-
sive dynamics is of less importance. Under normality we obtain mean absolute differences



Vegaof Call

(85.00,0.32,0.084) P 7 (115.00,0.02,0.084)
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Figure 1: The Black and Scholes Vega of o Call option as given in (4)
with time to maturity (left axis) from 0.02 to 0.32 and stock price (right
aris) from 85 to 115. The exercise price was fized at 100, the volatility
parameter ot 0.4 and the interest rate at zero.

between volatility estimates obtained from the AR(1) and AR(0) model alternatively to
differ more than 1% on average for 14 series considered. The latter result holds for the
GARCH(1,1) and TGARCH(1,1) and also for the GARCH(1,1) model estimated under the
assumption of Student-t distributed innovations. In specific periods, however, relative differ-
ences of volatility measures may differ substantially with respect to the specification of the
conditional mean equation. The estimated minimum and maximum statistics for relative
volatility differences between the AR(0) and AR(1) model vary between -29.9% and 29.8%
percent.

The average impact of autoregressive dynamics on volatility estimates might seem negli-
gible, but considering financial derivatives, a small percent difference in volatility may imply
a large percent difference in the option price. This occurs if the elasticity of the option price
C with respect to volatility o, i.e.

oC o o
“%c=C @)

is large, where V is sometimes referred to as the option’s Vega. Here, ¢ may be either
a constant parameter as in the Black and Scholes model, or the time-varying conditional
volatility v/h; in the GARCH framework.
To have an idea how Vega and 7 look like in the Black and Scholes world, they are
plotted in Figures 1 and 2 as a function of the stock price S and time to maturity 7 = T —t¢.
The formula for the Vega of a call option is

V = SiV/T(dr) (4)
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Figure 2: The Black and Scholes elasticity of a Call option with respect
to volatility as given in (8) with time to maturity (left axis) from 0.02 to
0.32 and stock price (right azxis) from 85 to 115. The exercise price was
fixed at 100, the volatility parameter at 0.4 and the interest rate at zero.

with

_ 1og(S¢/K) + (r+02/2)T 5)
N o\T ’

where K is the exercise price, r the constant risk-free interest rate and ¢ the standard

normal density function. The Black and Scholes (1973) formula for the price of a call option
is

d1 (02)

CBS(St,t, 0'2) = St‘l)(dl) - Ke‘”@(dz) (6)

with ® denoting the standard normal distribution function and dy = di — o+/7. Unlike for
the constant parameters K, T and r, the dependence of C'gg on ¢ is made explicit since we
will consider time-varying volatility in the following sections.

The plot of Vega in Figure 1 suggests that in absolute terms options at the money with
long maturities react most sensitively to changes in volatility. On the other hand, measuring
the effects of changes in volatility in relative terms, one realizes from Figure 2 that options
reacting most sensitively are out-of-the-money with short maturities. For our choice of the
parameters in this example, n attains a level of 10 at a moneyness of 0.85 and time to
maturity of 0.02 years, approximately one week. In other words, a one percent change of
volatility over a small time interval implies a ten percent change of the Black and Scholes
option price.



3 Linear dynamics in continuous time

In a continuous time framework, Lo and Wang (1995) considered the case of a trending
Ornstein Uhlenbeck (OU) process for the logarithm of the stock price process S(t), i.e.

dlog S; = (—v(log Sy — ut) + w) dt + odWy,

where Wy is the standard Wiener process, p and o the trend and volatility parameters,
respectively, and v the rate at which the stock price is pulled back to its deterministic trend.
Returns over time intervals of length A can be defined as

yi(A) =1log Sy —log S;_a

for which the second order moments can be calculated as

Var(u(a)) = £ (1 - exp(—)

with v > 0, and

p1(A) = Core(yi(A), yer 2 (8)) = (1~ exp(~7A)). 7)

Even though the returns exhibit time dependence and may be predicted using the nega-
tive first order autocorrelations given by (7), the Black and Scholes (1973) formula remains
valid since we are in a complete market framework and the Black and Scholes (BS) formula
does not depend on the drift.

However, the difference here to the standard BS model is that the parameter estimates
used to plug into the BS formula change. In particular, the volatility parameter is adjusted
to a higher level. To see this, note that the empirical variance of a return process observed
over n time intervals of length A is

PHA) = -3 ((a) ~5(A))’

t=1
with §(A) = L 3% | 4(A), and that empirical moments should match theoretical moments,

%(1 —exp(—7y4)) = s*(y(A)).

From this follows that N
52 = 5 (W(A)) log(1 +2p.(A)) (8)
A 2p1(A) 7

where the first term would be used to estimate the volatility parameter in a BS framework.
The second term, which is larger than one, adjusts this standard BS volatility to a higher
level. The option price is then obtained from the BS formula (6) by plugging in the adjusted
volatility o2 given in (8). Since option prices depend positively on volatility, negative au-
tocorrelation implies an increase of option prices in this continuous-time, complete market
framework. It should be emphasized that we deal with the consequences of model mis-
specification: Erroneously neglecting autoregressive dynamics underestimates the volatility
parameter and, thus, option prices.

Lo and Wang (1995) also consider more general, multivariate processes that allow for
positive return autocorrelation. They find that option prices decrease when there is positive
autocorrelation. This, however, is a peculiarity of the trending OU-process and does not
hold in general.
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In this complete market framework, the only difference between the Black & Scholes
and Lo & Wang models is the different estimation of the diffusion parameter . Thus,
once linear dynamics are identified for a given return series, estimation of the diffusion
coefficient should be adjusted accordingly. All that matters here is the correct estimation of
the diffusion coefficient.

The diffusion coefficient here is a constant parameter which remains unchanged under
risk neutralization. In a more general framework where volatility is stochastic, the volatility
dynamics will in general change after risk neutralizing the process. In particular, parameters
that determine the drift function may appear in the volatility process. In the following we
discuss situations where autoregressive dynamics have non-trivial effects on option prices. By
non-trivial we mean that even when the agent correctly employs the unconditional volatility
of the risk neutralized process, the change of the option price caused by autoregressive
dynamics depends on the moneyness and on the time to maturity.

Consider the following model:

leg St = (—’Y(lOg St - ,ut) + M) dt + UtdWI,t (9)
do} = (w—00})dt+ 607dWa, (10)

where W1 ; and W4 are two independent Wiener processes and w, § and ¢ are constant pa-
rameters. Volatility oy now is the solution of a stochastic differential equation. By Theorem
2.3 of Nelson (1990), there is a strictly stationary solution to (10) with an inverse Gamma
stationary distribution if 260 + 62 > 0 and w > 0, which we will assume in the following.
Furthermore, we assume 62 < 26, which ensures the existence of fourth order moments of
log S;, see Drost and Werker (1996).

Hull and White (1987) only consider the case w = 0, which implies a less appealing non-
stationary volatility process. The empirical support for nonstationarity of volatility, however,
is rather weak. For example, volatility of financial return series estimated using GARCH
or discrete time stochastic volatility typically satisfies the condition for strict stationarity.
Also, a nice property of the diffusion system (9)—(10) is that standard time series models in
discrete time such as GARCH have the diffusion limit (10) and may serve as approximations.

Because there is no traded asset which is perfectly correlated with volatility, the market is
incomplete. Option valuation is no longer preference-free and one has to make assumptions
concerning the pricing of volatility risk. Since the two sources of risk in our model are
uncorrelated, we assume that volatility risk is not priced. This corresponds to the choice
of the minimal martingale measure of Follmer and Sondermann (1986) and Follmer and
Schweizer (1991), a consequence of which is that every nontradable asset is not priced, see
also Theorem 3.1 of Hofmann, Platen and Schweizer (1992). Under this assumption, the
option price is

C(St,t) = E[CBS(St,t,VT) | .7:15] (11)
/R CBS(St,t, V-,—)dH(VT | O't)

with V, denoting the mean volatility over time to maturity,

_ 1 T
V= —/ o2ds,
t

T

with conditional distribution function H. In words, the option price is the expected option
price of the Black-Scholes model, where the expectation is taken with respect to the mean
volatility until time of maturity. No analytic expression is known for H, but following the
approach of Hull and White (1987) the moments of V, can be given, allowing a Taylor series
approximation of C' around the mean of V. To simplify the analytic expressions, we assume
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that o7 is drawn from its stationary distribution, allowing to consider the unconditional
moments of V,. It can be justified by a sufficiently long time to maturity, so that by the
stationarity of volatility the law of V, will be less affected by the starting value oZ. The first
two moments of V, are provided in the following proposition.

Proposition 1

BV, = % =:v
_ 20282 Or+e 7 -1
12
valVrl = oeR e 12)
O
A Taylor series approximation of (11) around v, the mean of V;, yields
B 10%Cpgs — 103Cps _

C(St,t) = Cs(St,t,v) + 3 v (v)Var[V;] + 6 v (v)Skew(V;) +...  (13)

with )
92Cgs _ Stlb(dl)(dldg — 1)\/7_' (14)

gz )= 1372

where d; = d; (v) is given in (5) and dy = d;y (v) — J/vT.
Plugging (14) and (12) into (13) and ignoring terms of third and higher order!, we obtain

C(Si,t) = Cps(Si,t,v) + A(Sy, K, 7,v)B(6%,0,7)

with
A(St, K, T, ’U) = St’(b(dl)(dldg — l)ﬁ
and
52 Or +e 7 -1
0—922) 1

Note that B > 0. The term A, viewed as a function of the moneyness S;/K, produces
the typical U-shape of option prices under stochastic volatility compared with BS prices.

In the following we perform a comparative statics analysis of the terms A and B with
respect to the volatility parameters w, 6 and §. These parameters are affected when au-
toregressive dynamics are present. As in the Lo and Wang model, erroneously neglecting
autoregressive dynamics leads to different parameter estimates. First, we need the signs of
the partial derivatives of A and B.

B@,0,7) = (15)

Proposition 2

op 9B
062 T 00

04 <0 at-the-money,if r7 < 1/2\/1)7' +4(1 4+ /2 4 v7)
Vv >0 far in- and out-of-the-money.

0

Note that the condition r7 < 1/ 2\/ v7 4+ 4(1 + v/2 + v7) will hold unless the interest rate
is unusually high.

To evaluate how the parameters change we make use of the fact that discrete time
GARCH models may serve as diffusion approximations. In Appendix B, we show that

1Hull and White (1987) note that the Taylor series approximation converges fast if 427 is not too large.
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GARCH parameter estimates, ignoring the underlying AR(1) dynamics, imply an increase of
the diffusion parameters § and w, whereas 6 remains relatively stable. The total differential
dB = (0B/84?)dd? + (0B/80)d6 is shown to be positive for various parameter constellations.

The conclusion is that the U-shape caused by stochastic volatility becomes more pro-
nounced in the presence of a trend reversion process. That is, at-the-money options become
even less, far-in- and out-of-the-money options even more valuable than without linear dy-
namics.

4 Linear dynamics and GARCH volatility

In this section, we investigate the implications of AR(1) dynamics in discrete time with con-
ditional heteroskedasticity for option pricing. As option pricing under stochastic volatility
has been a main issue of finance theory at least since Hull and White (1987), the combination
of option pricing theory with econometrics and in particular the ARCH literature is much
younger. The theoretical difficulty arises from the fact that under stochastic volatility the
market is in general incomplete. This implies a multitude of equivalent martingale measures
and, thus, there is a multitude of no-arbitrage prices.

Recently, Duan (1995) introduced the GARCH option pricing model by generalizing the
traditional risk neutral valuation methodology to the case of conditional heteroskedasticity.
This so-called locally risk-neutral valuation relationship (LRNVR) has as its essential feature
the equivalence of the conditional variances under the data generating probability measure
P and the equivalent martingale measure (). The definition further requires that under )
returns are conditionally normally distributed with conditional expectation equal to the risk-
free interest rate. For some commonly used assumptions concerning utility functions and
distributions of changes of consumption, Duan shows that a representative agent maximizes
his expected utility using the LRNVR measure ). This theory holds for general specifications
of the conditional mean p; and the conditional variance h;. Hence, we may employ this
approach to investigate the joint effects of autoregressive dynamics and GARCH volatility
on option prices. In particular, it will be of interest to compare the impact of positive and
negative autoregression parameters on option prices.

A further appealing property of Duan’s approach is that the weak limit of his martingale
measure is the minimal martingale measure of Féllmer and Sondermann (1986) and Follmer
and Schweizer (1991), see Duan (1996). Many bivariate diffusion models, such as the Hull
and White (1987) model, may be recovered from Duan’s model. A general result is that
volatility risk is not priced unless volatility and stock price changes are correlated, as in the
TGARCH case.

Letting the conditional mean u; and conditional variance h; be measurable functions
with respect to the information set, the general model under the data generating probability
measure P is

Yy = et \/h_t'ft (16)
& ~ i4.d.N(0,1) (17)
hy = f(hs,&s;—00 < s < t;0). (18)

where f is a parametric function with parameter vector . Under the LRNVR measure @),
the P—innovation & is shifted by some JF;_j—measurable function A; such that the resulting
conditional expectation of returns is equal to the risk—free interest rate, which is assumed to
be constant. A slightly more general definition was proposed by Duan (1999), who defines
returns to be a Box-Cox transformation of S;/S;_1, including logarithmic returns. Since
we will extend the distributional assumption in (17) to fat-tailed distributions such as the
Student-t, we refrain from using the definition of logarithmic returns, because in that case
no moments of Sy/S;_1 exist.

13



Under the equivalent martingale measure ), the model writes as

v = e+ Vh(Z— ) (19)

Z, ~ ii.d N(0,1) (20)

hy = f(hs,&;—00 <5 <t;0) (21)

& = Zi—M (22)
_ M=

N o= T (23)

Obviously, we have Var® (y, | Fie1) = Var® (y, | Fi—1) and EY [ys | Ft—1] = r. Note that
the system (19) to (23) is general in the sense that neither the conditional mean u; nor the
conditional variance h; are specified. For h;, Duan (1995) used the GARCH(1,1) model. To
incorporate the leverage effect, we employ the threshold GARCH model as in Hardle and
Hafner (1999).

For the conditional mean g, Duan (1995) and Hardle and Hafner (1999) used the
GARCH-M model, i.e., g = v+A/hs. A theoretical justification for such a choice may come
from the finance literature, where intertemporal versions of the capital asset pricing model
(CAPM) have been established that provide a link between the CAPM and a multivariate
GARCH-M model, see Bollerslev, Engle and Wooldridge (1988) and Hafner and Herwartz
(1998). However, there are important differences: First, the CAPM suggests a linear depen-
dence of the stock index risk premium on the variance instead of the standard deviation,
and second, the risk premia of individual stocks depend linearly on their covariances with
the market portfolio.

In a bivariate framework, Hafner and Herwartz (1998) show that additional to the CAPM
risk premium a vector autoregressive component of order one, VAR(1), substantially im-
proves the model fit for most German stocks. As mentioned above, Hafner and Herwartz
(1999) show in a univariate framework that for most German stocks models with AR(1) com-
ponent provide a better model fit than models with a risk premium of the type p; = v+Av/hs.

Thus, we refrain from applying the model of Duan (1995) and Héardle and Hafner (1999)
directly, but rather modify the conditional mean to an AR(1) process. That is, under
the data generating probability measure P we assume the following AR(1)-TGARCH(1,1)
model

g = v+ oy + Vi (24)
& ~ iid.N(0,1) (25)
he = w+ ((a@+a Lg_<0)& 1 +B) he-1. (26)

Under the measure (), the model takes the following form:

Y~ (27)

Z ~ iid N(0,1) (28)

he = w+ ((@+a Iz —xn_1<0)(Z—1 — M—1)> + B) he—1 (29)
vVt @Y1 —T

N = ——————. 30

t \/h_t ( )

Note that unlike in the standard GARCH model, h; in (29) is not governed by central chi—
square distributed innovations. This has an effect on the stationary variance of y;, which is
a determining factor for the global level of option prices. The following proposition provides
the unconditional variance under @) for the GARCH case.
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Proposition 3 For the system (27)—(30) with o~ = 0, the unconditional variance of y;
under stationarity is finite if a(1 + ¢?) + 3 < 1, and

w+a(u—r(1—¢))2'

Var®[y,) = —a(lt ) -3

GARCH and AR-GARCH vs. BS

Moneyness

Figure 3: Upper panel: Difference between simulated GARCH option
prices to Black and Scholes prices. GARCH parameters were set to
a =0.09, 8 = 0.9. The z-axis represents the moneyness of the option.
The dashed line incorporates AR(1) dynamics (¢ = 0.2), the solid one
does not. Lower panel: the corresponding differences divided by the Black
and Scholes price.

For the TGARCH case (o # 0), Var@[y,] is not tractable analytically but can be evalu-
ated numerically. In the following, the unconditional variances are used for the computation
of Black and Scholes option prices.

Since from (27) the discounted asset price process (1 + r)~¢S; is a martingale, we can
apply the no-arbitrage valuation methodology and obtain for the price of a European call
option at time ¢,

Cy = (14 1) "E®max(St — K,0) | 4. (31)

The mean of the pay-off function in (31) is obtained via Monte Carlo simulation. The
system (27) to (30) is generated 500,000 times. For the parameters in (29) we used typical
parameter estimates obtained for the German stock return data: for the GARCH model
w =1E-06, a = 0.09, 8 = 0.9, and for the TGARCH model w =1E-06, a = 0.03, a— = 0.12
and 8 = 0.9. The AR(1) coefficient ¢ was set to 0.2. Since the estimates 7 were found to
be insignificant at the 5% level we set r = v = 0 to evaluate (31).
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TGARCH and AR-TGARCH vs. BS

Moneyness

Figure 4: Upper panel: Difference between simulated TGARCH option
prices to Black and Scholes prices. TGARCH parameters were set to
a =0.03, o= =0.12, 8 = 0.9. The z-axis represents the moneyness of
the option. The dashed line incorporates AR(1) dynamics (¢ = 0.2), the
solid one does not. Lower panel: the corresponding differences divided by
the Black and Scholes price.

Further, we used values for the time to maturity (7 = 30 days) and moneyness (S/K €
[0.8,1.2]) that resemble the parameters of traded options.

Since the standard benchmark model in option pricing is Black and Scholes (BS), we
compare the simulated GARCH and TGARCH prices to BS prices. Our main focus is the
difference between the impact of the existence and non-existence of a linear AR—component
on option prices. We therefore estimated four models: AR(0)-GARCH, AR(1)-GARCH,
AR(0)-TGARCH, AR(1)-TGARCH, and compare the resulting option prices to BS prices.

Figure 3 displays in the upper plot the difference between AR(0)-GARCH prices (solid
line) to BS prices as a function of moneyness. The dashed line is the corresponding difference
for AR(1)-GARCH. The lower plot shows these differences divided by the BS price, thus
giving some indication of the relative significance of the price differences.

Note first that for the GARCH differences to BS, we obtain the typical U-shape with
out- and in-the-money options valued higher than BS and at-the-money options less.

Secondly (Figure 3), we investigate the difference between option prices with and without
AR(1) dynamics. For options in a neighbourhood of at-the-money, prices are lower in the
presence of AR(1) dynamics than without. The reverse is true for options sufficiently far in-
or out-of-the-money. Put differently, the U-shape and the deviation from Black & Scholes
prices become more pronounced under linear dynamics. Thus, for ¢ > 0, our results are in
line with the results for continuous time models in Section 3 and Proposition 1.

Next, we are interested in the effects of the sign of ¢. Note from Proposition 2 with
v = r = 0 that the unconditional variance of y; does not depend on the sign of ¢. In
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fact, when replacing the positive value of ¢ by a negative one, one obtains the same picture
as in Figure 3. Recall from Section 3 that in the Lo and Wang (1995) model negative
autocorrelation induced by a univariate trending OU-process and positive autocorrelation
obtained for a bivariate one have inverse implications for the estimated level of volatility
and, hence, for option prices. Thus, concerning the sign of the autoregression parameter,
the implications for option prices in discrete time differ from the Lo and Wang continuous
time model.

Note from the lower part of Figure 3 that the relative significance of the option price
differences is highest for far out-of-the-money options. This corresponds to the high elasticity
of far out-of-the-money options to changes in volatility, which was shown in Figure 2 for the
Black & Scholes model.

Qualitatively similar results are obtained for the TGARCH model, see Figure 4. The
main difference is that the curves are shifted to the left, reflecting the leverage effect. For
example, options out-of-the-money do not benefit from the leverage effect. This is because
for the out-of-the-money option to be of positive value at maturity, a sequence of positive
innovations is required. Positive innovations, however, do not have an increasing effect
on volatility in the presence of a leverage effect. So there is a negative effect of positive
innovations by reducing volatility. Of course, when considering the less realistic case o~ < 0,
which may be called an inverted leverage effect, the skew of the curves in Figure 4 is mirrored:
out-of-the-money options become more, in-the-money options less expensive.

5 Linear dynamics, GARCH, and conditional leptokur-
tosis

Conditional leptokurtosis is a well-documented empirical effect for various financial time
series. In most cases, the inclusion of an ARCH-type volatility does not fully account for
the observed leptokurtosis of returns. QML estimation remains consistent if the innovation
distribution is not normal, as was shown by Bollerslev and Wooldridge (1992). The efficiency
loss was studied by Engle and Gonzalez-Rivera (1991). Their results suggest that e.g. for a
Student-t distribution with 5 degrees of freedom and a GARCH(1,1) process the asymptotic
variance of QML estimates may be more than double the variance of ML estimates with
correct specification.

There have been many approaches to model a fat-tailed innovation distribution directly,
the most popular being the Student-t first used by Bollerslev (1987). Recently, Platen
(1999) has established a general economic model which motivates the prevalence of Student-
t distributions for stock returns. Duan (1999) does not consider Student-t distributions,
because he needs a well-defined moment generating function, which the Student-t fails to
have. Rather, as Nelson (1991) he employs the generalized error distribution (GED) that
also exhibits fat tails and includes the normal distribution as a special case. However, in his
study of stock returns Nelson concluded that the tail-thickness of the GED may not suffice
to adequately model extremal returns. In our case, we are able to use the Student-t since
we defined returns as y; = (S; — S¢—1)/S¢—1 rather than y; = log(S;/S;—1).

The basic idea of Duan’s (1999) extension of his GARCH option pricing model is a
transformation of the fat-tailed innovation to a standard normal one, under which his lo-
cally risk neutral valuation relationship remains valid. In our case with simple returns
and the Student-t distribution, the model under the data generating probability measure P
generalizes from (16), (17) and (18) as

v = mt+Vhé& (32)
& ~ i.d.ty(0,1) (33)
hi = f(hs,&;—00 < s < t;0). (34)
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where t,,(0,1) is the standardized Student-t distribution with v degrees of freedom. Denote
by G, the Student-t distribution function with v degrees of freedom, standardized to have
variance one. ? Then, & can be transformed to a standard normal random variable by

Ty(&) = @' [Go(&)]-

Student-t (AR-)GARCH vs. Normal

Figure 5: Upper panel: Difference between simulated GARCH option
prices with Student-t innovations to GARCH prices with normal inno-
vations. GARCH parameters were set to a = 0.09, 8 = 0.9 and the
Student-t degrees of freedom to v = 6.4. The x-axis represents the money-
ness Si/K of the option. The dashed line incorporates AR(1) dynamics
with ¢ = 0.2, the solid one does not. Lower panel: the corresponding
differences divided by the (AR-) GARCH price with normal innovations.

Under the equivalent martingale measure (), the model writes as

v = e+ VU2 - N\) (35)
7 ~ ii.d.N(0,1) (36)
he = f(hs,&s5—00 < s < t;0) (37)
& = UiNZ - M), (38)
where )\; is the solution to
r—
EC[T;(Z, — \) | Fioa] = \/h_’;”. (39)

2In many statistical programming packages the Student-t distribution function is available. In Gauss,
one minus this function is given by cdftc(). To obtain the corresponding standardized distribution function,

use Gy(z) = 1 — cdfte(x v=2) o compute the inverse of G, use the Gauss function cdftci as G;l T) =
v

cdftei(z) /525 -
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Student-t (AR-)TGARCH vs. Normal

......

Moneyness

Figure 6: Upper panel: Difference between simulated TGARCH option
prices with Student-t innovations to GARCH prices with normal innova-
tions. TGARCH parameters were set to a = 0.03, o= = 0.12, 8 = 0.9
and the Student-t degrees of freedom to v = 6.4. The z-axis represents the
moneyness of the option. The dashed line incorporates AR(1) dynamics
with ¢ = 0.2, the solid one does not. Lower panel: the corresponding
differences divided by the (AR-) GARCH price with normal innovations.

The conditional expectation on the left hand side of (39) is a function of \; and can be
calculated numerically. As in the previous sections, we set pu; = v + ¢y;—1 and h; to be the
TGARCH process given in (26).

To investigate the effects of conditional Student-t innovations on option prices in the
current model framework, we show the differences of option prices generated under normal
innovations and corresponding prices under Student-t innovations. For the dynamics of the
return process, we continue to consider the GARCH and TGARCH type volatility processes
as well as autoregressive, respectively no autoregressive, dynamics in the conditional mean.
The parameters were set at the same values as in the previous section. The degrees of
freedom for Student-t distribution were fixed at v = 6.4, which corresponds to typical
estimates for the German stock returns, see Table 1.

Figure 5 shows the differences of option prices under GARCH and normality to corre-
sponding option prices under GARCH and Student-t innovations. The dashed (solid) line
represents the situation of (no) autoregressive dynamics. The results can be summarized
as follows: Both effects found in the previous section, i.e., the smile-formed shape of the
option price difference caused by GARCH and the increase of the smile caused by AR dy-
namics become even more pronounced under conditional leptokurtosis. In relative terms,
this is particularly significant for out-of-the-money options. A similar picture arises for the
TGARCH case in Figure 6.

Finally, Table 5 reports the percentage differences of simulated option prices using the
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é.t ~ N(O’ 1) gt ~ty (0: 1)
GARCH TGARCH GARCH TGARCH
Stock St/K =0.8 0.9 0.8 0.9 0.8 0.9 0.8 0.9
ALLI 21.18 11.03 46.39 14.74 1.74 1.87 3.21 2.37
BASF -.83 .180 -.24 .51 .35 .64 .61 .68
BAYE -3.40 -1.25 -.57 -.08 -.87 -.40 .74 .09
BAYH -7.90 -.67 -3.27 .79 -3.59 -.81 .38 73
BAYV 6.24 5.00 4.81 4.82 .13 1.33 2.42 1.51
BMW -2.07 2.09 -2.09 2.32 | -12.61 -4.06 | -10.48 -3.32
COMM .54 .65 1.09 .88 43 .48 1.23 .93
DAIM -2.24 .38 .75 1.08 -3.57 -.54 -2.16 .08
DEUT -2.38 -.11 12.81 2.16 -0.13 .64 -1.32 .58
DEGU .50 41 1.21 .49 -2.09 -.50 -1.27 -.40
DRES 2.96 1.96 5.11 3.07 -3.96 -2.01 -6.17 -2.10
HENK -4.06 -1.41 -3.38 -1.09 .66 .74 .05 .56
HOEC -6.60 -.41 -5.30 .23 -6.43 -1.30 -6.02 -.69
KARS -6.97 -.92 -5.11 -.55 -9.95 -1.14 8.54 1.19
LIND -32.84 -4.70 | -25.89 -1.72 | -19.04 -5.60 | -16.34 -4.75
MAN -2.63 .51 5.06 1.59 -5.94 -.89 -8.84 -1.06
MANN 2.77 1.11 7.29 1.83 .07 1.27 3.96 2.34
MUEN -26.14 -3.64 | -27.61 -2.53 | -10.568 -6.49 | -18.80 -9.97
PREU 15.38 7.65 11.92 7.47 -6.13 -1.00 -7.41 -.79
RWE 27.96 8.91 36.01 10.3 -1.21 .08 -4.44 -.29
SCHE -7.40 -.45 -6.92 -.40 -4.03 -1.15 -5.88 -1.59
SIEM 3.25 .23 -3.37 -1.12 5.43 -.34 -3.89 -2.76
THYS 1.40 .15 1.27 -.08 1.12 47 1.02 .40
VEBA 6.37 2.70 2.71 1.28 1.14 1.18 -.b5 31
VIAG -10.34 -2.53 | -10.74 -3.03 -1.73 .39 6.43 .93
VOLK -.90 .06 2.44 0.67 -.11 44 -.15 .67

Table 5: Percentage differences of simulated option prices using the parameter estimates for
the German stock price series.

parameter estimates for the German stock price series. Large percentage differences can
be found for Allianz, Linde, Miinchner Riick, Preussag, RWE and Viag, which corresponds
to large discrepancies in the volatility estimates reported in Tables 3 and 4. The largest
percentage difference, 46.39%, occurs for Allianz with a conditionally normal TGARCH
model.

6 Conclusions and Outlook

Modelling volatility with or without linear AR(1) dynamics in the conditional mean yields
volatility estimates of some German stocks that differ substantially. As option prices cru-
cially depend on volatility estimates, the presence of autoregressive dynamics may affect
option prices strongly if the elasticity of option prices with respect to volatility is high. To
analyse the qualitative and quantitative dimension of this effect, we have shown that in a
continuous time framework the presence of a trend reversion component for the log price of
the underlying stock increases the deviation from Black-Scholes prices caused by stochastic
volatility. The analytic results for our continuous-time model provide useful insights, but
the model is rather restricted: it can only display negative autocorrelation of returns and
orthogonality of the two risk sources (i.e., no leverage effect). Therefore, we further con-
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sidered a discrete-time framework with AR(1) conditional mean and GARCH conditional
variance. To account for stylized facts of stock returns, we considered the leverage effect and
conditional leptokurtosis. Using Monte Carlo simulation, we evaluate option prices under
the risk-neutral pricing measure. Our results may be summarized as follows:

1. GARCH effects imply a smile-shaped difference of option prices to Black and Scholes
prices, viewed as a function of the moneyness.

2. The leverage effect, captured by the TGARCH model, skews this smile with out-of-
the-money options becoming less expensive.

3. The inclusion of linear autoregressive dynamics, AR(1), affects option prices. The
deviation of option prices from the BS model tends to increase in the presence of
autoregressive dynamics. This deviation only depends on the size, not on the sign of
the autoregressive parameter.

4. Conditional leptokurtosis imposes another smile: the smile-formed shape of the option
price difference caused by GARCH and the increase of the smile caused by AR dynam-
ics become even more pronounced. Under TGARCH, the difference of option prices
assuming conditional normality versus Student-t remains symmetric with respect to
the moneyness, but is again increased in the presence of AR effects.

As weakly autoregressive processes such as an AR(1) process with ¢ = 0.1 are empirically
indistinguishable from a low order moving average process, one may ask how option prices
are affected when using MA instead of AR models. In addition, the specification of the
conditional mean equation may be generalized to account for weekday effects which can be
found for German stock market returns, see e.g. Herwartz (1999). Finally, using stochastic
volatility models with separate stochastic innovations in the volatility process may give some
different results than for GARCH-type models, although we conjecture that our qualitative
results remain unchanged.

Appendix A

Proof of Proposition 1: From Drost and Werker (1996), we have the moments

E[Uf] = v
252

2 27 2 v°6 —|t—s|0
Elojo;] = v +2(0_62/2)e .

Using Fubini’s theorem, we obtain

_ 1 T
E[V;] = —/ E[of]dt = v
T Jo
and, for t > s,
_ 2 T t
B2 = = / / Efo?0?]dsdt
™ Jo Jo
5 v262 Or+e -1
= v+
(0—462/2) 6272
O
Proof of Proposition 2: We have
B 0T 1
0 0 Ot +e >0, (40)

982 ~ 4(0-02/2)2 6’1
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and
OB _ 6°0710°/2(1+e77) + (30 = 6*)(1 —e~") — 6*7(2 + 77)

- = 41
06 4 0372(6 — §2/2)2 ’ (41)
which is negative under the fourth moments condition 4% < 26. Furthermore, we have
0A 7 3 o
NG = ¢(dr) (df — 2v/urd} + (vr — 2)di + 2/vTdy — (1 +07)) .
Since 1(d1) > 0, the sign of ;—\’;‘5 is determined by the sign of the polynomial in dj,
dt — 2v/ord? + (vr — 2)d? + 2\/urdy — (1 +v7), (42)

which is negative at d; = 0 and positive for large absolute values of d;. The zeros of (42)
are

Vo 1
d1:¥i§ o +4(1 £ V2 + or),

or, equivalently,

log(S¢/K) = ﬂ:% v +4(1 £ V2 +v7) — r7.

As long as v7 < 4 + /32, there are only two real zeros in d;, a positive and a negative

one. In terms of the moneyness S;/K, as long as r7 < 1/2\/117 +4(1 4+ /2 + vT) there is

one positive and one negative zero in log(S;/K). This implies that at the money (values
in a neighbourhood of log(S;/K) = 0) the derivative is negative. On the other hand, for

log(S:/K) > %\/UT +4(1 + /2 4+ vr)—r7 and for log(S;/ K) < —%\/UT +4(1+ /24 vr)—
r7 the derivative is positive. Thus, at-the-money options become less, far in- and out-of-
the-money options more valuable in the presence of a trending OU-process. O

Proof of Proposition 3:
Because of E?[y,] = r, E¢[y?] = r?> + E?[h,] and E®[h;Z;\;] = 0, we can write

E°h] = w+aE%h1]+aBO(v -+ dys—2)’] + BE[hsi]
w+(a+B)ECh 1] +a (v —r(l—¢))" +ag”E[h; ).

Under stationarity, the unconditional expectations are independent of ¢ and the result is
obtained. O
Appendix B

Suppose that a continuous time stochastic process Y; is observed at regular time intervals
of length h > 0 and call this process Y{3);,t € hIN. The process Y; is called a GARCH
diffusion if for each h > 0 the process Y(;),t € hIV is a weak GARCH process in the sense
of Drost and Nijman (1993) with

Thye = Wh + anY(hye p + Brotny (43)

being the best linear predictor of Y&)t in terms of 1, 0'(2h)0 and lagged values of Y3, and
Y2, ..
(h)t
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¢
-0.5 -0.2 -0.1 0 0.1 0.2 0.5
a1 0.255 0.112 0.103 0.100 0.103  0.112 0.260
Ste(ay) 1.540 0.636 0.575 0.561 0.582  0.649 1.571
B 0.532 0.818 0.834 0.839 0.834 0.817 0.523
Ste(51) 4460 1356 1.110 1.050 1.172  1.420 4.430
w1 0.290 0.074 0.064 0.061 0.064 0.075 0.296
Ste(wr) 4.402 1.027 0.805 0.750 0.867  1.090 4.370
0 0.261 0.074 0.066 0.064 0.066 0.075 0.265
Ste(9) 4.956 1.235 0963 0893 1.179 1.384 4.916
10042 11.263  0.106 0.034 0.020 0.106 0.156  11.387
Ste(6?) 7715 0.572 0.214 0.111 0.879 1.091 7.557
dB (r =0.01) 0.321  0.021 0.004 0.000 0.005  0.022 0.329
dB (1 =0.1) 3.811  0.213 0.045 0.000 0.055 0.227 3.902
dB (t=1) 37.988  2.095 0.440 0.000 0.548 2.230  38.890
dB (r=10) | 317.792 17.502 3.679 0.000 4.581 18.635 325.335

Table 6: Deviations of discrete and implied continuous time parameter estimates when the
true DGP contains an autoregressive parameter ¢. The volatility parameters of the simulated
DGP are a; = 0.1, 81 = 0.85, and w1 = 0.05. Ste denotes the standard error of 2000 Monte
Carlo replications, measured in E-03. dB is the total differential of B given in (15) with
respect to the parameter changes of 0 and §, measured in E—02.

As shown by Drost and Werker (1996), the mappings between the discrete and continuous
time parameters in (43) and (10), respectively, are given by

6 = —% log(an + Bn) (44)
w = %wh (45)
52 = 1 2log®(an + Bn) (46)

Th 1 (a 2(1-32
h _ah((1—’l;f?zvh(+ﬂff)) + 6log(an + Br) + 21log (an + Br) + 4(1 — an — Bh)

Now, for a given time interval h, which w.l.o.G. we set to one, we can estimate the GARCH
parameters wy, oy and f; and obtain the corresponding continuous time parameters 6, w
and § through the equations (44) to (46). We do that by letting the true data generating
process contain an autoregressive component but estimating a (misspecified) AR(0)-GARCH
model. This conveys information about the change of parameter estimates.

The parameter estimates and corresponding standard errors of 2000 Monte Carlo repli-
cations are given in Table 6. Denote the difference of the parameter estimates under nonzero
¢ to the corresponding estimates under ¢ = 0 by dw, d6? and df. We are interested in the

sign of the total differential
OB OB
dB = ——dé* + —
22 " a0
where OB/8§? and OB/ are given in (40) and (41). For selected values of 7, dB always
turned out to be positive (see Table 6), indicating that the negative effect through (0B/06)df

is outweighed by the positive effect of (0B/0§%)ds>.

do,
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