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Hazard Regression

Birgit Grund ', Lijian Yang 2
October 14, 1999

Hazard regression models are convenient tools to discover the dynamic structure
of survival data. In medical research, the length of patients’ survival are often
observed and analyzed with hazard regression model, see, for instance, Cox and
Oakes (1984). More recent areas of application of the hazard regression model
include insurance industry and employment data, see, for example, Heckman and
Singer (1985), Lancaster (1990).

The XploRe library hazreg contains a collection of quantlets for the analysis of
right-censored survival data. They provide the pointwise Kaplan-Meier estimates
and confidence intervals of the survival function, estimation of the regression co-
efficients and the baseline hazard and regression functions of Cox’s proportional
hazards model, and significance tests for the regression coefficients. In this chap-
ter, we illustrate how these quantlets work with brief theory and some examples.
Section 1 introduces quantlets that provide basic description of a survival data and
arrange it in a form suitable for analysis. Section 2 discusses the Kaplan-Meier
estimator and Greenwood confidence intervals. Section 3 covers the estimation and
hypothesis testing of the semiparametric Cox’s proportional model using the partial
likelihood method.

1 Data Structure

{data,ties} = hazdat(t, delta {,z})
sorts the right-censored data, covariates, and labels

nar = haznar (data)
calculates the size of the risk set at each data point

inrisk = hazrisk(data,i)
determines all observations at risk at time T;

The data treated in library hazreg are right-censored: that is, the data consists
of triples (T;,8:,Z;), i = 1,..., N, where T; denotes the observed survival time of
the i-th individual, Z; is a p covariate vector, respectively, and §; is the censoring
indicator.

Let Y; denote the uncensored survival time, which is observed when §; = 1,
and C; the random censoring time, which is observed when §; = 0. The observed
survival time of the i-th individual is then given by T; = min(Y;, C;).

For many computations, additional information is required and has to be passed
on to the functions. For example, the method for estimating the Cox regression
coefficients depends on whether or not the data contain ties. Obviously, we could
locate the ties each time that a method requires information on ties. However, in
a typical session the same dataset will be studied for various purposes. It is much

1School of Statistics, University of Minnesota, St. Paul, MN 55108, U.S.A. Supported in part by
NSF Grant DMS-9501893, and in part by Sonderforschungsbereich 373 at Humboldt-Universitédt
zu Berlin.

2Department of Statistics and Probability, Michigan State University, East Lansing, MT 48824,
U.S.A. Supported in part by Sonderforschungsbereich 373 at Humboldt-Universitdt zu Berlin, and
by NSF Grant DMS-9971186.



more efficient to gather the tie information once, and then include it as an argument
to the various functions. In the following, we denote by d; and r; the number of
events observed at time T; and the number of observations that are still in the risk
set at time Tj, respectively.

The quantlet hazdat sorts the right-censored data (73, 9;,Z;), ¢ = 1,...,N in
the order of T'. Its syntax is the following:

{data,ties} = hazdat(t, delta {,z})
Qvh.azdattest.xpl

where

t
N x 1 vector, consisting of survival times T},

delta
N x 1 vector, consisting of censoring indicators d;,

N x p matrix, consisting of covariates Z;, default option is empty matrix.
This quantlet returns data and ties:

data
N x (p +4) matrix, the data sorted according to Tj;, the sorted d;, the sorted
orinigal labels I, a column containing the number of ties d;, and the sorted
covariates Z;,

ties
scalar, indicator of ties, 0 means there are ties in T;, 1 means no ties.

The following example, based on hypothetical data, illustrates the use of this quant-
let

library("hazreg")

y = 2|1]31214[7[1]3]2 ; hypothetical survival
c = 3|1|5]6]116]/2/415 ; hypothetical censoring
t = min(y~c,2) ; censored time

delta = (y<=c) ; censoring indicator

{data,ties} = hazdat(t,delta)

The output is the following:

data =
1 0 5 3
1 1 7 3
1 1 2 3
2 1 4 3
2 1 9 3
2 1 1 3
3 1 8 2
3 1 3 2
6 0 6 1
ties =
0

The quantlet haznar calculates the size of the risk set at each point of data, obtained
from hazdat. Its syntax is the following:



nar = haznar(data) Q
haznartest.xpl

where

data
N x (p+ 4) matrix, the sorted data matrix as output of hazdat.

This quantlet returns nar:

nar
N x 1 vector, the number at risk r; at each data point, a vector of length N.

The following example, based on hypothetical data, illustrates the use of this quant-
let

library("hazreg")

y = 2(11312]14[7[113]2 ; hypothetical survival
c = 3|1|5]6]116(/2]415 ; hypothetical censoring
t = min(y~c,2) ; censored time

delta = (y<=c) ; censoring indicator

{data,ties} = hazdat(t,delta)
nar = haznar(data)

The output is the following;:
nar = (99966633 1)’

The quantlet hazrisk determines all observations at risk at time T3, a data point
obtained from hazdat. Its syntax is the following:

inrisk = hazrisk(data,i) Q
hazrisktest.xpl

where

data
N x (p+ 4) matrix, the sorted data matrix as output of hazdat,

scalar, the position of the risk time point.
This quantlet returns inrisk:
inrisk
N x 1 vector, with elements 0 or 1 that indicate whether observations are in

the risk set or not at the ith time point.

The following example, based on hypothetical data, illustrates the use of this
quantlet

library("hazreg")

y = 2(113]1214[7[113]2 ; hypothetical survival

c = 3|1|5|6[/1|6(2]4|5 ; hypothetical censoring

t = min(y~c,2) ; censored time

delta = (y<=c) ; censoring indicator
{data,ties} = hazdat(t,delta)

inrisk = hazrisk(data,6) ; the risk set at observation 6

The output is the following:

inrisk = (00011111 1)°



2 Kaplan-Meier Estimates

{cil,kme,ciu} = hazkpm(data{,alpha})
calculates the Kaplan-Meier estimates and confidence bounds of the
survival function

The Kaplan-Meier estimate for a survival function, also called “Product-Limit es-
timator”, is given by

N 1 if t<Ty
S(t) = HTi<t I:l_g_:]’ if Ty <t

where, as defined in the previous section, d; and r; denote the number of ties and
the size of the risk set at time Tj, respectively.

In the presence of censoring, Greenwood (1926) suggested the following estimate
of the variance of the Kaplan-Meier estimator:

Ve =50 Y s (1)

The following pointwise confidence intervals for the survival function is based on
the asymptotically normal distribution of the Kaplan-Meier estimator S(t), whose
variance is estimated by V (¢), given in (1),

A~

[8() = 21 0oV O28®) + 210V (0] )

where 1 — a is the coverage probability and z, is the pth percentile of the standard
normal distribution. Note that Greenwood’s estimator (1) tends to slightly under-
estimate the true variance, so that the true coverage probability of the confidence
intervals might be somewhat smaller than stated.

For any data already sorted by hazdat, the quantlet hazkpm gives the Kaplan-
Meier estimates and confidence bounds of the survival function using formula (2).
Its syntax is the following;:

{cil,kme,ciu} = hazkpm(data {,alphal)
Qvh.azkpmtest.xpl

where

data
N x (p+ 4) matrix, the sorted data matrix as output of hazdat,

alpha
scalar, the specified coverage probability, default option is 0.05.

This quantlet returns cil, kme, and ciu:

cil
N x 2 matrix, the first column consists of the sorted Tj;, the second column
the Greenwood lower confidence bounds at T3,

kme
N x 2 matrix, the first column consists of the sorted Tj, the second column
the Kaplan-Meier estimates at Tj,



ciu
N x 2 matrix, the first column consists of the sorted Tj;, the second column
the Greenwood upper confidence bounds at T;.

The following example, based on hypothetical data, illustrates the use of this quant-
let

dat=read("haz.dat")

y = dat[,1] ; survival time

c = dat[,2] ; censoring variable
z = dat[,3:4] ; covariates

t = min(y~c,2) ; censored time
delta = (y<=c) ; censoring indicator
{data,ties} = hazdat(t,delta, z) ; preparing data
setsize(600,400)

tl=createdisplay(1,1)

{cil,kme,ciu} = hazkpm(data)

n = rows(data)

t = cil[2:n,1]

c = cill1:n-1,2]

cil = ((cill1:n-1,]) (")) ((t~c) | (cil[2:n,]))

pn = (#(1,n)’+ (0:n-2)) | (#(2*n-2,3*n-3) ’+ (0:n-2))

cn = matrix(2xn-2) ;  color_num, controls colors

ar = matrix(2*n-2) ; art, controls line types

th = 2*matrix(2*n-2) ;  thick, controls line thickness

setmaskl(cil ,pm ,cn , ar, th)

setmaskp(cil, 4, 0, 8)

c = ciul[1:n-1,2]

ciu = ((ciul1:n-1,1) (")) [ ((t~c) | (ciul2:n,]))
setmaskl(ciu ,pm ,cn , ar, th)

setmaskp(ciu, 4, 0, 8)

k = kme[1:n-1,2]

kme = ((kme[1:n-1,]1)|("k)) | ((t"k) | (kme[2:n,]1))
setmaskl (kme ,pm ,cn , ar, 2%th)

setmaskp (kme, 4, 0, 8)

show(t1,1,1,cil,kme,ciu)

setgopt(tl,1,1, "title","Kaplan-Meier Estimates",
"xlabel","Time","ylabel","Survival Function", "ymajor", 0.2)
print (t1,"hazkpmtest.ps")

Figure 1 depicts the three estimated functions.
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Figure 1: Output display for for simulated data

3 Cox’s Proportional Hazards Model

{11,111,112} = hazregll(data,beta)
calculates derivatives of the log-likelihood function up to order 2

{betahat, betak, ck} = hazbeta(data {,maxit})
estimates the parameter for Cox’s proportional model

{bhaz, bsurv} = hazbase(data)
estimates baseline hazard and survival functions

surv = hazsurv(data,z)
estimates the conditional survival function

{val, df, pval} = haztest(data,index)
performs likelihood ratio, Wald’s and scores tests

The semiparametric Cox’s proportional hazards model is the most commonly used
model in hazard regression. In this model, the conditional hazard function given

that the covariates take the values Z, is assumed to be of the form

A(t|Z) = o (t) exp{B" Z},

where £ is the vector of regression coefficients, and A (t) denote the baseline hazard.
The baseline hazard has to be estimated nonparametrically, since no particular
shape is assumed. The contributions of the covariate values to the hazard are
multiplicative. An accessible introduction to Cox’s proportional hazards model is

given, for example, in Klein and Moeschberger (1997).



The library hazreg provides estimates for the regression coefficients, 3, standard
deviations for the estimates, and testing procedures for the hypothesis that one or
more of the 8;,j = 1,...,p are zero. All is carried out through maximizing the
partial likelihood function. Additionally, estimates are provided for the baseline
hazard function, and the conditional survival and hazard function for given covariate
values.

3.1 Estimating the Regression Coefficients

Let us assume that there are no ties between the event times, and let R(t) = {j :
T; > t} denote the risk set at time point ¢. In this case, the partial likelihood is
given by

L(B) = H exp |5 2| ()

i=1 ZkER(Ti) exp [’BTZ(’C,)] 7
and the (partial) maximum likelihood estimate of 3 is obtained by maximizing the
log-likelihood function, I(3) = In L(B). From (4) it follows immediately that

(B =D B 2,y =D g > e [87Z] - ©)

=1 kER(T;)
The first derivatives of I(3) with respect to § are called “efficient scores”, given by
_dl " Ykerer) 2k exp (BT Z, )]

UB)=-—=1T7—
#) g ,:ZI Ykerr) &P [T Z1,]

where 1,, is the n—dimensional vector with all elements equal 1. Let B denote the
(partial) maximum likelihood estimate for 3.

For the case that there are ties, we still use formula (4), taking into account
that the risk set R(T;) for a time T; with tied events includes all observations tied
at t;. This approach was suggested by Breslow (1974), and is implemented in most
statistical packages. When there are few ties, this approximation to the partial
likelihood works rather well, see Klein and Moeschberger (1997, p.238).

The information matrix I(f) is given by the negative of the second derivative
of I(3). Let Ig(;) € R™ denote the indicator vector of the risk set R(T;), this means
the j** element of Igr@) is 1 when T > Tj, and 0, otherwise. Then, the information
matrix takes the form

d?l
n ~ L
= > [T explZ(0)B]] 2()"

x {17 expl Z(i) ) Diag {exp (28]} — exp (28] exp (28] } 2)

where Z(i) = Diag {Ig;} Z, and Diag{v} denotes the diagonal matrix with the
main diagonal given by vector v. This means that Z(i) is a modification of the
design matrix Z, where the j** row of Z(i) is set zero when T; < T;. Note that the
index 4 lists all n observations. When ties are present, each of the tied observations
appears with the same risk set, and contributes the same term to the sum.

Using a Newton-Raphson algorithm, /3’ is calculated by solving the nonlinear

equation system % = 0. The following stopping criterion is used

_ |Bs - Br—1] ‘
[1(Br—1)|

(6)

C(Br)



For large samples, the estimate ﬂA is known to follow an asymptotic p-variate Normal
distribution,

1(8)2{B - B} —n-saN(0,I,). (7)

The covariance matrix of § will be consistently estimated by I=1(3).

The first and second derivatives of the log-likelihood function (5) are used for
the iteration algorithm for BA, as well as to calculate the standard deviation of the
asymptotic distribution of 3, and to compute test statistics for local tests on
used for model building. The partial log-likelihood function and its derivatives are
computed by the quantlet hazregll. Its syntax is the following:

{11,111,112} = hazregll(data,beta)
Q'h_azreglltest.xpl

where

data
N x (p+ 4) matrix, the sorted data matrix as output of hazdat,

beta
p x 1 vector, the regression coefficients.

This quantlet returns ll, 111, and 112

11
scalar, the log-likelihood function at parameter value beta,

111
p x 1 vector, the first derivatives at parameter value beta of the log-likelihood
function,

112
p X p matrix, the negative Hessian matrix at parameter value beta of the
log-likelihood function.

The following example, based on hypothetical data, illustrates the use of this quant-
let

library("hazreg")
dat=read("haz.dat")

y = dat[,1] ; survival time

c = dat[,2] ; censoring variable
z = dat[,3:4] ; covariates

t = min(y~c,2) ; censored time
delta = (y<=c) ; censoring indicator
{data,ties} = hazdat(t,delta, z) ; preparing data
beta = 1|2

{11,111,112} = hazregll(data,beta)

The calculation yields values of I, ll1, and I2 as —43.306, (2.4277,—2.6719)”, and
1.5556 —0.14401 .
—0.14401 2.093 respectively.

The Newton-Raphson routine is contained in the quantlet hazbeta. Its syntax
is the following:

{betahat, betak, ck} = hazbeta(data {,maxit})



Q'h.azbetatest.xpl
where

data
N x (p+ 4) matrix, the sorted data matrix as output of hazdat,

maxit
scalar, maximum number of iteration for the Newton-Raphson procedure,
default is 40.

This quantlet returns betahat, betak, and ck:

betahat
p x 1 vector, estimate of the regression parameter beta,

betak
maxit X p matrix, iterated parameter values through the Newton-Raphson
procedure,

ck

maxit X 1 vector, convergence criteria values through the Newton-Raphson
procedure.

The following example, based on hypothetical data, illustrates the use of this quant-
let

library("hazreg")
dat=read("haz.dat")

y = dat[,1] ; survival time

c = dat[,2] ; censoring variable
z = dat[,3:4] ; covariates

t = min(y~c,2) ; censored time
delta = (y<=c) ; censoring indicator
{data,ties} = hazdat(t,delta, z) ; preparing data

{betahat,betak,ck} = hazbeta(data)

The calculation yields value of betahat as (1.9214,0.83433)7, ck up to the last 4
iterations until it stops as (2.4646e — 05, 1.5725e — 05, 1.0032e — 05, 6.3996e — 06) 7,
betak is too large to present here.

3.2 Estimating the Hazard and Survival Functions

We estimate the cumulative baseline hazard function, Ag(t) = [ Xo(s)ds, by
. d;
Rot) = D ———5— (8)
2T <t eXp [Z/B] IR(’L)

The estimator Ao (t) can be justified through a profile likelihood approach, see
Klein and Moeschberger (1996), p.260 and p.237, and Johansen (1983).
As an estimator for the baseline survival function, Sy(t) = exp [—Ao(¢)], we use

So(t) = exp [~Ao(1)] - 9)

In the Cox proportional hazards model, the survival function S(¢|Z) of an indi-
vidual with covariate values Z is connected to the baseline survival function through
a multiplicative factor,

S(t|2) = So(t)?l2 8], (10)



Consequently, we estimate the conditional survival function by

A . exp[27 5]
S(t|Z) = exp [—Ao(t)] . (11)
Note that the estimates A(t), So(t) and S(¢|Z) are all step functions, with jumps
at the event times. All three estimates are non-negative, A(t) is monotoneously
increasing, and the survival function estimates are monotoneously decreasing.
The quantlet hazbase gives the estimates A(t), So(t). Its syntax is the following:

{bhaz, bsurv} = hazbase(data)
Qvh.azbasetest.xpl

where

data
N x (p+ 4) matrix, the sorted data matrix as output of hazdat.

This quantlet returns bhaz and bsurv:

bhaz
N x 2 matrix, the first column is the sorted T;, followed by the estimated
baseline hazard function at T},

bsurv
N x 2 matrix, the first column is the sorted T;, followed by the estimated
baseline survival function at T;.

The following example, based on hypothetical data, illustrates the use of this quant-
let

library("hazreg")
dat=read("haz.dat")

y = dat[,1] ; survival time

c = dat[,2] ; cemnsoring variable
z = dat[,3:4] ; covariates

t = min(y~c,2) ; censored time
delta = (y<=c) ; censoring indicator
{data,ties} = hazdat(t,delta, z) ; preparing data
setsize(600,400)

tl=createdisplay(1,1)

t2=createdisplay(1,1)

{bhaz,bsurv} = hazbase(data)

n = rows(data)

t = bsurv([2:n,1]

b = bsurv[1:n-1,2]

bsurv = ((bsurv[1:n-1,]1) (b)) | ((t”b) | (bsurv[2:n,]))
pn = (#(1,n)’+ (0:n-2)) | (#(2*n-2,3*n-3) ’+ (0:n-2))

cn = matrix(2*n-2) ;  color_num, controls colors
ar = matrix(2*n-2) ; art, controls line types
th = matrix(2*n-2) ;  thick, controls line thickness

setmaskl (bsurv ,pm ,cn , ar, th)

setmaskp (bsurv, 4, 0, 8)

b = bhaz[1:n-1,2]

bhaz = ((bhaz[1:n-1,]1)|(t"b))|((t"b) | (bhaz[2:n,]))
setmaskl (bhaz, pm ,cn , ar, th)

setmaskp (bhaz, 4, 0, 8)

10



show(t1l, 1, 1, bhaz) ; plot baseline hazard
setgopt(tl,1,1, "title","Baseline Hazard Function","xlabel","Time",
"ylabel","Hazard Function", "ymajor", 0.2)

print (t1,"hazbhaztest.ps")

show(t2,1, 1, bsurv) ; plot baseline survival
setgopt(t2,1,1, "title","Baseline Survival Function","xlabel","Time",
"ylabel","Survival Function", "ymajor", 0.2)

print (t2,"hazbsurvtest.ps")

Figures 2 and 3 depict the baseline hazard and survival functions estimated from
the above example.
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Figure 2: Output display for for simulated data

The quantlet hazsurv gives the estimate S(¢|Z). Its syntax is the following:

surv = hazsurv(data,z)
Q'hazsurvtest.xpl

where

data
N x (p+ 4) matrix, the sorted data matrix as output of hazdat,

p x 1 vector, value of the covariates.
This quantlet returns surv:

surv
N x 2 matrix, the first column is the sorted T;, followed by the estimated

survival function at T;, conditional on Z.

11
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Figure 3: Output display for for simulated data

The following example, based on hypothetical data, illustrates the use of this quant-
let

library("hazreg")

n = 20

Pp=2

beta = 12 ; regression parameter
z = 1 + uniform(n,p) ; covariates

y = -log(l-uniform(n)) ; exponential survival
y = y./exp(z*beta) ; covariate effects

¢ = 4*xuniform(n) ; uniform censoring

t = min(y~c,2) ; censored time

delta = (y<=c) ; censoring indicator

{data,ties} = hazdat(t,delta, z) ; preparing data

zl =1.1]1.23

surv = hazsurv(data, z1)

t = surv([2:n,1]

s = surv[1:n-1,2]

surv = ((surv[1:n-1,1)1(t"s)) | ((t"s) | (surv[2:n,]))
pm = (#(1,n)’+ (0:n-2)) | (#(2%n-2,3*n-3)’+ (0:n-2))

cn = matrix(2*n-2) ;  color_num, controls colors
ar = matrix(2*n-2) ; art, controls line types
th = matrix(2*n-2) ;  thick, controls line thickness

setmaskl (surv ,pm ,cn , ar, th)

setmaskp(surv, 4, 0, 8)

setsize(600,400)

tl=createdisplay(1,1)

show(t1l, 1, 1, surv)

setgopt(tl,1,1, "title","Conditional Survival Function","xlabel","Time",

12



"ylabel","Survival Function", "ymajor", 0.2)
print (t1,"hazsurvtest.ps")

Figure 4 depicts the conditional survival function at Z = (1.1,1.23)7 estimated
from the above example.
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Figure 4: Output display for for simulated data

3.3 Hypothesis Testing

The library hazreg offers three tests for hypotheses about subsets of regression
parameters, the likelihood ratio test, Wald’s test and the scores test. Assume that
B = (B, BT, where 31 € R? consists of the regression coefficients of interest,
and (B2 € RP~9 contains the remaining parameters. We are testing the hypotheses
H() : ,Bl = ﬂlO VS. H1 : ,Bl 75 ﬂlO; where 510 S RP is given.

Likelihood-ratio Test. Let Bg| B1o denote the conditional maximum likelihood
estimate for s, given B19. It is obtained by substituting the fixed null hypothesis
value 19 for the corresponding £’s in the partial log-likelihood function (5).

The likelihood ratio test statistic is given by

Trr = 21(B) — 21(Bo), (12)

where o = (81, BT18%,). Under Hy, the large sample distribution of Tpg is x2.

Wald’s Test. Let 3 = (BT, 3T) denote the usual maximum partial likelihood
estimate of the full parameter vector (37,37 ). Now, let us partition the information
matrix I(f), defined in (7), into

o= (). (13)

where I1; denotes the g x ¢ submatrix corresponding to ;. The Wald test is defined
through . . .
Tw = (B1 — B10) 11 (B) ™" (B1 — Bio)- (14)

13



Under the null hypothesis, the distribution of Ty converges to XE.
Scores Test. Let U;(83) denote the sub-vector of the first ¢ elements of the
score function U(f3), defined in (6). The test statistic for the scores test is

Tsc = Ui(Bo)" 11 (Bo) Ui (Bo), (15)

where f, is defined as for the likelihood ratio test. Again, the large sample distri-
bution of the test statistic under the null hypothesis is Xﬁ-

Implementation. The library hazreg contains routines for testing Hy : f1 =
0, where B, is an arbitrary g—dimensional sub-vector of 8. In other words, the
hypothesized vector B1¢ is taken to be zero.

Values of the three above test statistics and the corresponding asymptotic P-
values, computed using the Xﬁ distribution are provided through the quantlet haztest.
Its syntax is the following:

{val, df, pval} = haztest(data,index) o
haztesttest.xpl

where

data
N x (p+ 4) matrix, the sorted data matrix as output of hazdat,

index
p X 1 vector, with ith element = 0 when §; = 0 is in the null hypothesis, and
1, otherwise.

This quantlet returns wval, df and pval:

val

3 x 1 vector, values of the test statistics,
df

scalar, degree of freedom,
pval

3 x 1 vector, P-values of the tests.

The following example, based on hypothetical data, illustrates the use of this quant-
let

library("hazreg")
dat=read("haz.dat")

y = dat[,1] ; survival

c = dat[,2] ; censoring

z = dat[,3:4] ; covariates

t = min(y~c,2) ; censored time

delta = (y<=c) ; censoring indicator
{data,ties} = hazdat(t,delta, z) ; preparing data

index = 1]0 ; testing if the second

; coefficient is zero
{val,df,pval} = haztest(data, index)

The output is the following:

val“pval =
0.76588 0.38148
0.35145 0.55328
4.426e-09 0.99995

df =

14
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