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Comparison of Nonparametric Goodness

of Fit Tests

Henning L�auter� Cornelia Sachsenweger

University of Potsdam� Institute of Mathematics

PF �� �� ��� ����� Potsdam

Abstract

We consider two tests for testing the hypothesis that a density lies in a parametric

class of densities and compare them by means of simulation� Both considered tests

are based on the integrated squared distance of the kernel density estimator from

its hypothetical expectation� However� di�erent kernels are used� The unknown

parameter will be replaced by its maximum�likelihood�estimation �m�l�e���

The power of both tests will be examined under local alternatives� Although

both tests are asymptotically equivalent� it will be shown that there is a di�erence

between the power of both tests when a �nite number of random variables is used�

Furthermore it will be shown that asymptotically equivalent approximations of the

power can di�er signi�cantly when �nite sample sizes are used�

Keywords� Goodness of �t� kernel estimator� local alternatives� simulation
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� � INTRODUCTION

� Introduction

Let Xn�� � � � � Xnn be a sample of i�i�d� random variables with density fn� We

consider the problem of testing the hypothesis

H � fn � F � ffn	�� �
j� � � � Rkg

against the nonparametric alternative

K � fn �� F

where F is a parametric class of density functions� Our test statistic is the

L��norm of the distance of the kernel density estimator

fn	t
 � 	nhn

��

nX
i��

K

�
t�Xi

hn

�

from its expectation under the hypothesis density fn	�� �
 � f�

E fn	t
 � ehn	t� f�
 �

Z
K	x
f	t� xhn� �
 dx �

Under certain assumptions on the density of the random variables� the

kernel function� the bandwidth and the weight function of the kernel density

estimator follows with Liero�L�auter�Konakov 	����
�

Theorem ��� If for a parameter estimator �n under the hypothesis H with

Xi � f� for each � � �

p
nj�n � �j � OP	�


is true and if hn	lnn

� � � for a � � k

� � then follows for all n�� for all x

Pf�

�
�h

� �
�

n 	Qn	f��n
� �	f��n



�	f��n

� x

�
A� �	x




�

with

Qn	f��n
 � nhn

Z
	 fn	t
� eh	t� f��n



�a	t
 dt with

eh	t� f��n
 �

Z
K	x
f��n	t� xhn
 dx�

a	t
 � weight function and

fn	t
 � 	nhn

��

nX
i��

K

�
t �Xni

hn

�
�

�	f��n
 � �

Z
f��n	t
a	t
 dt with

� �

Z
K�	x
 dx�

��	f��n
 � ���
Z

f���n
	t
a�	t
 dt with

�� �

Z
	K 	K
�	x
 dx �

�	u�
 � �� �

and
R
��
R�
���

This way we get an asymptotic ��test� if we reject the hypothesis if

Qn	f��n
 
 �	f��n
 � u�h
�
�
n�	f��n
 �

The power of a test is the probability that the test rejects the hypothesis�

That is

P

�
Qn	f��n
 
 �	f��n
 � u�h

�
�
n�	f��n


�
�

We compare the power of the test with the Epanechnikov kernel to that with

the Gau� kernel� always using a	t
 � �� Therefore we use local alternatives of

the form

Kn � fn	�� �n
 � f	�� �n
 �Nnw		� � c
b��n 
 	�


with �n � ��n��	 with an unknown vector 	� 
 � � and � �xed� Let Nn be

a sequence of positive numbers converging to zero and c in the support of f �

Let w be a function with limited support� for which
R
w	x
 dx � �� For bn � b

we get the Pitman alternative and for bn ����
n��

� the sharp peak alternative�

In Figure � there are three of such local alternatives in comparison with the

normal density f	x� ���� �
�



� � THE MAXIMUM LIKELIHOOD ESTIMATION

����

����

����

����

����

����

����

����

����

�� ���� � ��� �
x

fn�������
fn��������
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f

Figure �	 Local alternatives fn with Nn 	 
���� bn 	 �� with Nn 	 
�
��� bn 	 �� with

Nn 	 
���� bn 	 
�� and hypothesis f �

� The Maximum Likelihood Estimation

Because the parameter � is unknown� is has to be estimated� If the hypothesis

holds then

�n � � � n�
�
�Zn

is true for the m�l�e� �n of the parameter� Zn is asymptotically normal dis�

tributed with expectation zero� It can be shown that �n under the local

alternatives behave similar as under the hypothesis under following weak as�

sumptions� The open kernel of the parameter space � will be denoted by

���

A� For all x � R there exist the second derivative ��

��i��j
f	x� �
� i� j �

�� � � � � k� They are continuous for all � � �� and it isZ
r�f	x� �
 dx � ��

Z
��

��i��j
f	x� �
 dx � � � 	�


A� For each � � �� exists such a � � �	�
 and such a ball U�	�
 � �� with

the radius � that for all i� j � �� � � � � k���� ��

��i��j
ln f	x� ��


���� � m	x� �
 �� � U�	�
 	�


for a measurable function m with
R
m	x� �
f	x� �
 dx � �

A� The determinant of the Fisher Information

I	�
 �

Z
r� ln f	x� �
	r� ln f	x� �



tf	x� �
 dx 	�


is positive for each � � ���



�

We put

�n	t
 � �n��	tr�f	t� ��
�Nnw		t� c
b��n 


with a suitable �� between �n and ��

Then it follows�

Theorem ��� If the assumptions A�� A� and A� hold thenZ
r� ln f	t� �
�n	t
 dt � O	�n


for the sequence �n � n�� �Nnbn and we get under Kn for the m�l�e�

�n � � � n�
�
�Zn � �nS � oP	�n
 � 	�


Zn is asymptotically normal distributed with expectation zero and S a non	

random vector�

The proof can be found in Liero�L�auter�Konakov 	����
� In the family F of

normal distribution densities with the k	� �
�dimensional unknown parameter

	����� ����
 with expectation ���� � � and variance ���� � ��� which we will

consider in the following� the assumptions A�� A� and A� hold�

Following Theorem ��� for the sequence �n � n�� �Nnbn

R r� ln f	t� �
�n	t
 dt �

Z � �x�g�������g
�������

��

�x�g�������
����

���

�
�n	t
 dt � O	�n
 �

Consequently� with Theorem ��� follows that the m�l�e� behave under the

local alternatives similar as under the hypothesis�

It is obvious that the m�l�e� for g	�n���
 equals the arithmetic mean of

the observations� For getting the values of the m�l�e� �n��� out of g	�n���
 we

demand unique invertibility of the function g� In the following examples the

function g has this property�

The m�l�e� of �� � �� is always

��n �
�

n

nX
i��

	xi � g	�n���


� �

�

n

nX
i��

x�i � g	�n���

� �

Therefore we will only give the values of the m�l�e� for ���� in the following�

Now we want to determine the nonrandom vector S in Theorem ��� which

is independent of n� From the proof of the theorem we get

nT��
n 	Xn� �
n

�
�Enr� ln f	Xnl� �
 � n

�
� �n	S � oP	�

 �



� � THE MAXIMUM LIKELIHOOD ESTIMATION

Tn � Tnij is the matrix

Tnij	x� �
 �
��

��i��j
ln

nY
l��

f	xnl� �


and with the law of large numbers we see

n��Tn	Xn� �
 ����
n��

�I	�


with the Fisher Information I	�
� It follows

����n � I	�
��Enr� ln f	Xnl� �
 �� �Sn ����
n��

S �

We get

I	�
�� �
��	

g�	����
�

�
�

���
�

�
g�������

�

��

�
�

�
��

g��������
�

� ��


�

and with 	t � 		�� 	�


Enr� ln f	Xnl� �


�

�
� R �t�g�������g

�������

��
�n	t
 dtR � �t�g��������

��
� �

���

	
�n	t
 dt

�
A

�

�
B� �n��g�������

�	�

��
� Nng

�������

��

R
tw		t� c
b��n 
 dt

�n��	�
��

� Nn

��

R
	t� g	����



�w		t� c
b��n 
 dt

�
CA �

Now for the vector �Sn we get

�Sn � ����n I	�
��Enr� ln f	Xnl� �


� 	n�� �Nnbn

�� �

�
� n��	� �

Nn

g�����

R
tw		t� c
b��n 
 dt

�
��



n��	� �Nn

R
	t� g	��



�w		t� c
b��n 
 dt
�
�
A �

With the substitution z �� t�c
bn

and
R
w	z
 dz � � it is

�Sn � 	n�� �Nnbn

�� �

�
BBB�

n��	� �
b�nNn

g�������

R
zw	z
 dz

�
��



n��	� �Nnb

�
n

R
z�w	z
 dz

� �Nnb
�
n	c� g	����



R
zw	z
 dz

�

�
CCCA �

Taking limits we determine the vector S which is independent of n� Therefore

we consider various cases according to the two local alternatives� We will

�nd out that depending on �n we get di�erent vectors S� Consequently� the



�

vector S depends on the local alternatives� Let the vector �Sn for n � �
converge to S�j in case of Pitman alternatives and to S�j in case of sharp

peak alternatives� Let j � � for n��

Nn
� �� j � � for n��

Nn
� � and j � � for

n��

Nn
� const� First let Kn be Pitman alternatives� that is bn � b�

��� If n��

Nn
� � we get

�n � n��
�
� �

Nn

n��b

�
� n��

and the terms of the vector �Sn containing the factor Nn

n�� can be elimi�

nated for determining the vector S � We get

S�� �

�
	�
�	�
��

�
�

This vector S is consequently independent of the considered model� that

is of g	����
�

��� If n��

Nn
� � we get �n � Nnb and the terms of the vector �Sn containing

the factor n��

Nn
can be eliminated for determining the vector S� In this

case we get

S�� �

�
b

g�������

R
zw	z
 dz

�b�

��

R
z�w	z
 dz �


b�c�g�������

��

R
zw	z
 dz

�
�

��� If n��

Nn
� const� �� L� we get n�� � L� �Nn and �n � 	L� � b
Nn� In

this case we have

S�� �

�
� L��	�

L��b
� b�

�L��b�g�������

R
zw	z
 dz

��L��	�
�L��b���

� �b�

���L��b�

R
z�w	z
 dz �


b��c�g�������

���L��b�

R
zw	z
 dz

�
A �

For sharp peak alternatives� that is bn ����
n��

�� we get�

��� If n��

Nnbn
�� then follows S�� �

�
	�
�	�
��

�
�

��� If n��

Nnbn
� � then follows S�� �

�
�

�

�
�

��� If n��

Nnbn
� L� then follows S�� �

�
L��	�
L���
��L��	�
�L������

�
�

Obviously under the sharp peak alternatives always the vector S is indepen�

dent of g	����
�



� � POWER OF THE TESTS

Now the m�l�e� and the vectors S�� and S�� will be determined for two

models of normal distribution under the special local alternatives with the

error function

w	t
 �

�
sin	���t
 for t � ���

� �
�
� �

� else
�

� We have independent� identically normal distributed random variables

Yi � � � �� Let � be normally distributed with expectation zero and

variance ��� that is Yi � N	�� ��
� It is g	����
 � � and the m�l�e�

� �
�

n

nX
i��

xi �

For the vectors S�� and S�� we get

S�� �

�
� b

�


��b�c���

��

�
�

S�� �

�
� L��	�

L��b
� b�

�
�L��b�

��L��	�
���L��b�

� �b��c���

���L��b�

�
A �

� Now we have independent� identically normal distributed random vari�

ables with EY � e��t� The parameter ���� � � is to be estimated

by

�n � �
ln
�

nPn
i�� xi

	
t

�

For the vectors S�� and S�� we get

S��� �

�
� � b e��t

�
t

��b	c� e�t


��

�
A �

S��� �

�
� L� �	�

L��b
� b� e��t

�
�L��b�t

��L��	�
�L��b���

� �b�	c� e�t


���L��b�

�
A �

� Power of the tests

When we use the test which rejects the hypothesis if

Qn	f��n
 
 �	f��n
 � u�h
�
�
n�	f��n







then �n will be the m�l�e� in the following�

For the asymptotic power under the local alternatives we can �nd explicit

approximations� In Liero�L�auter�Konakov 	����
 the following result was

proved�

Theorem ��� Given

nh
�
�
nN

�
nbn � c�n� n����h

�
�
n � c�n� nh

�
�
n �

�
n � c�n�

h
� �

�
n Nnbn � c
n� h

� �
�

n n�� � c�n� h
� �

�
n �n � c	n �

Under similar assumptions as in Theorem ��� and hnb
��
n � � we get for the

power �	fn
 �� P 	Qn	f��n
 
 �	f��n
 � u�h
�
�
n�	f��n
jfn


lim
n��

	�	fn
� �	U��n��

 � �

with

U��n�� � ���	f�


�
c�n

Z
w�	t
a	c� tbn
 dt �

Z
�	
p
c�n	 � pc�nS
tr�f	t� �
�

�a	t
 dt

� �
p
c�nbn

Z
	
p
c�n	 �

p
c�nS


tr�f	c� tbn� �
w	t
a	c� tbn
 dt

� �	c
n

Z
w	t
a	c� tbn
 dt�

Z
	c�n	 � c	nS


tr�f	t� �
a	t
 dt


�
� u� �

Considering the asymptotic behaviour we get c�n � nh
�
�
nN

�
n and c
n �

h
� �

�
n Nn as leading coe�cients in the approximation of the power� Therefore

we get the following simplier approximation of power U��n�� which is asymp�

totically equivalent to U��n���

Theorem ��� 
Pitman alternative� Given bn � b� For

U��n�� � ���	f�



c�n

Z �
w

�
t

b

�
� Strf	c� tbn� �


��
dt

�
� u�

we have

lim
n��

	�	fn
� �	U��n��

 � � �

Theorem ��� 
Sharp peak alternative� Given bn ����
n��

�� For

U��n�� � ���	f�


�
c�nbn

Z
w�	t
a	t
 dt� Tn

�
� u�

with

Tn � �c
nbn

�
bn

Z
w	t
t dt a�	c
�

Z
r�f�	t


ta	t
 dt S

�



�� � EXACTNESS OF THE APPROXIMATIONS

we have

lim
n��

	�	fn
� �	U��n��

 � � �

Under assumption A� and the choice a	t
 � � we have Tn � �� Consequently

we get for Pitman and sharp peak alternatives�

Theorem ��� If hn
bn
����
n��

� and nh
�
�
n ����

n��
� then

lim
n��

�	fn


���
��

� �

� �� � for bnc�n �
� �

���
��

�

� � �

�
�

� Exactness of the approximations

In the following we consider how �	U��n��
 and �	U��n��
 approximate the

power when we have a �nite number of observations� Let F be the class of

normal distributions N	��� ��I
 for �t � 	�� � � � � �
 and � � g	�n���
� For

constructing the local alternatives we choose

w	t
 �

�
sin	���t
 for t � ���

� �
�
� �

� else
�

c � � and 
 � ����� With S � 	S���� S���

t� f� � �f�t���

�����
� f� � �f�t���

���
�

f�� � �f�c�tbn���
�����

and f�� � �f�c�tbn���
���

as well as assumption A� about the

hypothesis density we get

U��n�� � ���	f�


�
c�n

�
�

Z
	�pc�nS���f� � 	

p
c�n �pc�nS���
f�
� dt

� �
p
c�nbn

Z �
�

� �
�

	�pc�nS���f�� � 	
p
c�n � pc�nS���
f��
 sin	���t
 dt

�

� u� �

U��n�� � ���	f�



c�n

Z �
�

� �
�

�
sin

�
���

�
t

b

��
� S���f� � S���f�

��
dt

�
� u�

	Pitman alternative


U��n�� �
���	f�
c�nbn

�
� u� 	sharp peak alternative
 �

As values for Nn and bn we choose ����� ���� ����� and ���� ���� ���� re�

spectively� Let n be ��� ��� or ����

Every of these cases we can embed in the Pitman or sharp peak alterna�

tives� The classi�cation of a special case with �xed n into either one or the



��

other of both classes is somewhat subjective� We choose sharp peak alterna�

tives as model for our considerations�

For someNn and bn one can �nd the approximations �	U��n�����
 in Table �

and the simplier approximations �	U��n�����
 in Table ��

Epanechnikov kernel Gau� kernel

bn bnn Nn

��� ��� ��� ��� ���

�� ����� ��

�� ���
�� ������ ���
�� ������

����� ������ ������ ������ ������

����� ������ ������ ������

��� ����� ������ ��

��

����� ��

�� ����



����� ������

��� ����� ��

��

Table �	 Approximations of power �U��n������

Epanechnikov kernel Gau� kernel

bn bn
n Nn

��� ��� ��� ��� ���

�� ����� ��

�� ��
��� ������ ��

�� �����


����� ������ ������ ������ ������

����� �����
 ������ ������

��� ����� ������ ������

����� ��

�� ��
���

����� ������

��� ����� ��

��

Table �	 Approximations of power �U��n������

In simulations we considered the power of the test using the Epanechnikov

kernel or the Gau� kernel�

� Power when using the Epanechnikov kernel

In Figure � one can see the hypothesis� the local alternative forNn � ����



�� � EXACTNESS OF THE APPROXIMATIONS

and bn � �� the density estimator with the Epanechnikov kernel

K	x
 �

�
�

	�� x�
 for jxj � �

� else

with a creation of �� random numbers and the expectation of the density

estimator� The results of the simulation can be found in Table �� In

����

����

����

����

����

����

����

����

����

���� ���� ���� ���� � ��� ��� ��� ��� �
t

eE�����

f
�fE���
f��

Figure �	 Local alternative f�� with N�� � ����� b�� � �� hypothesis f � expectation

eE����� and density estimator �fE���

Table � are the di�erences �	Ui��������
���	f��
� i � �� � and in Table �

are the relative distances
j��f�	����Ui��	�	��� �j

��f�	�
�

b��
N��

��� ���

����� ���
 ����

����� ����

Table �	 Power ��f��� using the Epanechnikov kernel

� Power when using the Gau� kernel

In Figure � one �nds the hypothesis� the local alternative for Nn � ����

and b � �� the density estimator with Gau� kernel with a creation of

�� random numbers and the expectation of the density estimator� In

Table � are the results of the simulations using the Gau� kernel�

We got the di�erences shown in Table � and the relative distances shown

in Table ��
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Table �	 Di�erences between the power ��f��� and the power approximation
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Table �	 Relative distances between the power ��f��� and the power approxima�

tions �Ui��������� using the Epanechnikov kernel

For the case bn � ���� Nn � ����� we repeated the simulation as well

with n � �� as with n � ��� random numbers� Using n � �� random

numbers we got the same power ��	f��
 � ���� as in the �rst simulation�

However� using n � ��� random numbers we got the power ��	f���
 �
�
�� � ������ which is still higher� From Figure � we can guess the reason

for this phenomenon� In the �gure one �nds a density estimation with

n � �� random numbers� its expectation� the hypothesis� the alternative

for b�� � ��� and N�� � ����� as well as the random numbers x��i which

fall into the considered interval� It is obviously that the density estimator

is not near the alternative� The reason for this is that the number of

random variables is too small for a convenient choice of the bandwidth bn

when we have such a tiny bn� Consequently� a simulation with bn � ���

and Nn � ����� demands a much greater number of random variables�

� Interpretation of the results

With the simulations we could con�rm the fact� that both L��tests rec�

ognize a distance from the hypothesis density worse with declining in�

terval of distance and declining distance� Very small distances in small

intervals will be interpreted as random errors and consequently the hy�
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eG����� and density estimator �fG���
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Table �	 Power ��fn� using the Gau� kernel

pothesis will not be rejected� Both tests discerned a distance from the

hypothesis worse when the intervals of distance were longer 	bn � �
 but

the distance itself smaller 	Nn � ���
 than when the intervals of distance

were smaller 	bn � �
�
 and the distance greater 	Nn � ���
� That is due

to the squaring of the distance in L��tests� If the distances are less than

one they become still less this way and so a rejection of the hypothesis

becomes improbable�

Furthermore� the simulations show signi�cant di�erences between both

tests� The power is always higher when using the Epanechnikov ker�

nel� Though the decisions based on these tests are the same when we

have an unlimited number of random variables� the di�erences should
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Table �	 Di�erences between power ��fn� and power approximations �Ui�n������

using the Gau� kernel
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Table �	 Relative distances between power ��fn� and power approximation

�Ui�n������ using the Gau� kernel

be considered when the number of random variables is limited�

Moreover� the asymptotically equivalent approximations of power �	U��n��


and �	U��n��
 di�er when the number of random variables is �nite� We

see� that with a �nite number of random variables �	U��n��
 approxi�

mates the power nearly always better and never worse than �	U��n��
�

Consequently� the simpli�cations in �	U��n��
 do not seem convenient

for a small number of random variables�
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