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Abstract

We consider two tests for testing the hypothesis that a density lies in a parametric
class of densities and compare them by means of simulation. Both considered tests
are based on the integrated squared distance of the kernel density estimator from
its hypothetical expectation. However, different kernels are used. The unknown

parameter will be replaced by its maximum-likelihood-estimation (m.l.e.).

The power of both tests will be examined under local alternatives. Although
both tests are asymptotically equivalent, it will be shown that there is a difference
between the power of both tests when a finite number of random variables is used.
Furthermore 1t will be shown that asymptotically equivalent approximations of the

power can differ significantly when finite sample sizes are used.
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1 INTRODUCTION

1 Introduction

Let X,1,..., X, be asample of i.i.d. random variables with density f,. We
consider the problem of testing the hypothesis

H: foeF={fu(,0)0c6CRY}

against the nonparametric alternative

K: f.¢F

where § is a parametric class of density functions. Our test statistic is the

Lo-norm of the distance of the kernel density estimator

Fult) = (nh) ™! Zz:;[( (t ;LnX)

from its expectation under the hypothesis density f,.(-,9) = fs
Ef.(t) = ep, (t; fs) = /K(ac)f(t — 2hy,,9) dz .

Under certain assumptions on the density of the random variables, the
kernel function, the bandwidth and the weight function of the kernel density
estimator follows with Liero/Lauter/Konakov (1998):

Theorem 1.1 If for a parameter estimator 0, under the hypothesis H with
X; ~ fg for each 9 € ©

\/ﬁmn - 19| = OP(l)

is true and if h,(Inn)¢ — 0 for a € > %, then follows for all n — oo for all x

b (Qulf5.) = 1(f5.)

P
fo o(f5,)

<z | — O(2)



with
Qnlfy,) = nhn/(fn(t) —en(t, f3 ))?a(t)dt  with
et f;) = /K(ac)fén(t—xhn)dx,

a(t) = weight function and

¢ — = - t_Xni
[n(t) = (nhy) IZ;K( - )
plfs,) = w [ f3,(Wa(t)dt  with

S
. /Kz(x)dx,

Uz(fén) = 2/@*/f2n(t)a2(t) dt  with
Y = /(K*K)2(x) dz

and [ = [ .

This way we get an asymptotic a-test, if we reject the hypothesis if

Qulf3) 2 n(f3.) +uahio(f; ).

The power of a test is the probability that the test rejects the hypothesis.
That is

P (Qn(fgn) > ulf; )+ uahéown)) |

We compare the power of the test with the Epanechnikov kernel to that with
the Gauf kernel, always using a(t) = 1. Therefore we use local alternatives of

the form
K.t fu(-05) :f('vﬁn)‘|‘an(('_C)b;1) (1)

with 9, = 94+n""1 with an unknown vector 1, # > 0 and 9 fixed. Let N, be
a sequence of positive numbers converging to zero and ¢ in the support of f.
Let w be a function with limited support, for which [ w(z)dz = 0. For b, = b
we get the Pitman alternative and for b, — 0 the sharp peak alternative.
In Figure 1 there are three of such local alternatives in comparison with the
normal density f(z;0.2,1).
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Figure 1: Local alternatives f, with N, = 0.38,b, = 1, with N, = 0.038,4, = 1, with

N, =0.38,b, = 0.1 and hypothesis f.

2 The Maximum Likelihood Estimation

Because the parameter ¥ is unknown, is has to be estimated. If the hypothesis

holds then
1§n -9 = n_%Zn

is true for the m.le. 9, of the parameter. Z, is asymptotically normal dis-
tributed with expectation zero. It can be shown that ¥, under the local
alternatives behave similar as under the hypothesis under following weak as-

sumptions. The open kernel of the parameter space © will be denoted by

o°.
Al For all € R there exist the second derivative %f(x,ﬁ), 1,] =
1,...,k. They are continuous for all ¢4 € ©° and it is
92
¥)de = _— ¥)de =0. 2
Vst =o. [ i e =0 @)

A2 For each 9 € ©° exists such a § = §(9) and such a ball Us(9) C ©° with

the radius 8 that forall 4,7 =1,...,k
2
‘Llnﬂwﬁ’)

!
3007, <m(z,9) VI € Us(9) (3)

for a measurable function m with [ m(z,?)f(z,?9)dz < co.

A3 The determinant of the Fisher Information
I1(9) = /ng In f(z,9)(Vgln f(x,ﬁ))tf(x,ﬁ) dz (4)

is positive for each ¥ € ©°.



We put
M (t) = —n PtV f(t,9) — Nyw((t — )b 1)

with a suitable 9 between 1§n and 9.
Then it follows:

Theorem 2.1 If the assumptions Al, A2 and A3 hold then
/w In f(t, D)An(t) dt = O(r)
for the sequence T, = n=" + N,b,, and we get under K, for the m.le.
én—ﬁ:n_%Zn—l—TnS—l—Op(Tn). (5)

Zy, 1s asymptotically normal distributed with expectation zero and S a non-

random vector.

The proof can be found in Liero/Léuter/Konakov (1998). In the family § of
normal distribution densities with the k(= 2)-dimensional unknown parameter
((1), I(2)) with expectation ¥y = p and variance 9(y) = o?, which we will
consider in the following, the assumptions A1, A2 and A3 hold.

Following Theorem 2.1 for the sequence 7, = n= %+ N,b,

(
[ Valn f(t,9)A,(t) dt:/( (z—g(90)))2 0 )/\n(t) dt = O(7y) .

Consequently, with Theorem 2.1 follows that the m.l.e. behave under the
local alternatives similar as under the hypothesis.

It is obvious that the m.l.e. for g(ﬁn(l)) equals the arithmetic mean of
the observations. For getting the values of the m.l.e. ¥,(;) out of g(ﬁn(l)) we
demand unique invertibility of the function ¢. In the following examples the
function ¢ has this property.

The m.l.e. of ¥ = o? is always

n n

2 _ 1 j ! j
Gn= =D (@i = g(aw))? =~ > ot = gDy
=1 =1

Therefore we will only give the values of the m.le. for ¢ in the following.
Now we want to determine the nonrandom vector S in Theorem 2.1 which

is independent of n. From the proof of the theorem we get

nT (X, 9)n2E, Vg In f( X0, 0) = n27,(S + op(1)) .



2 THE MAXIMUM LIKELIHOOD ESTIMATION

T, = T,;; is the matrix

82
Trii(x,9) = 90:07; lan Tty )

and with the law of large numbers we see
n T, (X, 9) —— —1(V)
with the Fisher Information I(9). It follows

7 I (0) T B, Ve In f(X, 9) =2 S, —— S

We get

and with " = (1, 9)
D) Vﬁlnf( nly )
f (t—g( (1;)) g'(9 () )/\n(t) dt
J(L%rl—ﬁamww

n—B8q' 2 \
_ 0w Ng ftw (t —c)b;h) dt

o2

—r = N [ (= gy (= )bt dt

g n
Now for the vector S, we get

S, = —17'1(0)'E,Vyln f( X, 9)

2

( Oy + , oy S tw((t Sh)de )
(n=P + N,b,)~*- :
Z (0™ + N, [(t = g(90))*w((t = c)b7") dt)

With the substitution 2 := —nc and [w(z)dz =01t is

_ b2 N,
n Py + mfzw(z) dz
G -8
nN( —I-Nb) %(—5¢2—|—Nb3f22w )dz
+ 2N,b2(c - fzw z )
Taking limits we determine the vector S which is independent of n. Therefore

we consider various cases according to the two local alternatives. We will

find out that depending on 7, we get different vectors 5. Consequently, the



vector S depends on the local alternatives. Let the vector S, for n — oo

converge to Sy; in case of Pitman alternatives and to Sy; in case of sharp

n_ n

peak alternatives. Let j = 1 for N—: — 00, j = 2 for N;: — 0 and 57 = 3 for
7}\,;/3 — const. First let K,, be Pitman alternatives, that is b, = b.

111f” —>ooweget

N,
_ B n ~ B
T =N (1—|— —5b) n

n

and the terms of the vector S, containing the factor n]\i% can be elimi-

nated for determining the vector S . We get

This vector S is consequently independent of the considered model, that

is of g(ﬁ( )

1.2 If ” — 0 we get 7, ~ N,b and the terms of the vector S, containing
the factor % can be eliminated for determining the vector S. In this

case we get

b
S12 = 9'0a) szw :
20%2szw(z)dz—l—4 e=a(? fzw

1.3 If” — const. =: Ly we get n=% ~ L; - N,, and 7o ~ (L1 + b)N,

thls case we have

Ly
Sps = Li+b T L1-|—b fzw
B 2Ly 4o 2b°
Ttn)? T 79 JZ2w( dZ"’ 02 L -|—b fzw

For sharp peak alternatives, that is b, —— 0, we get:
n— 0o

2.1 If % — oo then follows Sy = ( i ) .
0—2

_ 0
2.2 If % — 0 then follows Sy = ( . ) .

s Lo
]?fnbn — Ly then follows Sy3 = 2%;@ .
Tat)o?
Obviously under the sharp peak alternatives always the vector S is indepen-

dent of g(¥)).



3 POWER OF THE TESTS

Now the m..e. and the vectors Si3 and Si3 will be determined for two
models of normal distribution under the special local alternatives with the

error function

0 sin(—2nt) fort e [—1, 3]
w =
0 else

e We have independent, identically normal distributed random variables
Y; = p+ e. Let £ be normally distributed with expectation zero and
variance o2, that is ¥; ~ N(u, 0%). It is g(9(1)) = p and the m.lLe.

n
E z;.
=1

fi =

3|

For the vectors S1p and Si3 we get

_b
512 = ( _Qb(iiu) ) ;
To?

Ly b2
Ll-l—b 27F(L1-|—b)
513 = 2
2-L1-o 2b%(c—p)

o2 (L1 +Db) w02 (L1 +b)

e Now we have independent, identically normal distributed random vari-

ables with EY = e™'. The parameter Y1) = 7 is to be estimated

by
o n(ere)

Tn = ;

For the vectors S1p and Si3 we get

he Yt
T 2nt

Qb(c— e”t) ’

To?

Swl?

L1~’LZJ1 _ b2 et
S _ Ll-l—b 27F(L1-|—b)t
Y13 = 2Ly 107 21)2(c— evt)
(L1+b)02 ~ 7o2(L1+D)

3 Power of the tests

When we use the test which rejects the hypothesis if

Qulf3) 2 n(f;.) + uahio(f;)



then ¥, will be the m.l.e. in the following.
For the asymptotic power under the local alternatives we can find explicit
approximations. In Liero/Lauter/Konakov (1998) the following result was

proved:
Theorem 3.1 Given

1
IAT2L
nhy Nb, = cip,

n
_L _L 8 _L
2 — 2y — 2 —
hn Nnbn = C4p, hn n = Csp, hn Tn = Cén, -

Under similar assumptions as in Theorem 1.1 and h,b;1 — 0 we get for the

power 11(f,) = P(Qu(f;,) = plf;,) +wahio(f ) i)
Tim (11(f,) = ®(U1,,0)) = 0
with
Ui = @) (e [wate = ) at+ [ 1z = Veas) o s 0)Fatt) a
+ 2@/(@¢ — /3.8) Vg f(c — thy, 9w (t)a(c — tb,) dt

+ m(c4n/w(t)a(c — th,,) dt —I-/(C5n¢ — 60S) Vo f(t,)a(t) dt)) = Uo -

1
Considering the asymptotic behaviour we get ¢y, = nhj Ng and ¢4, =
1
hy 2 N, as leading coefficients in the approximation of the power. Therefore
we get the following simplier approximation of power U, , , which is asymp-

totically equivalent to Uy , 4.

Theorem 3.2 (Pitman alternative) Given b, =b. For

Usmo = o= '(fy) [cln/ (w (%) —stf(c—tbn,ﬁ))2 dt] -

we have

lim (I(f,) — ®(Usna)) = 0.

n—0oo

Theorem 3.3 (Sharp peak alternative) Given b, —— 0. For

n—0oo

Usna = 01 (f3) [cln n/wz(t)a(t) dt—|—Tn] — Uy

T, = kcanby, [bn/ tdta /ngfqg t)dt S]

with
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we have

Tim (T1(f,) ~ ®(Us0)) = 0.

Under assumption Al and the choice a(t) = 1 we have T,, = 0. Consequently
we get for Pitman and sharp peak alternatives:

3
Theorem 3.4 If > —— 0 and nh; —— oo then
n n—o0 n—r00

= 0
lim T(fu) § >a, <1 for bpern = § £>0
—1 00

4 Exactness of the approximations

In the following we consider how ®(U; , o) and ®(Us,, o) approximate the

power when we have a finite number of observations. Let § be the class of
normal distributions N (ul,0%l) for 11

= (1,...,1) and p = ¢(J,(y)). For
constructing the local alternatives we choose

w(t) = { sin(—27t) fort € [-1,1]

2
0 else '

fuy = 2le=thnd)

30 and foo = af(ca_;rf"’ﬁ) as well as assumption Al about the
hypothesis density we get

¢ =0and § = 1000. With S = (Suy ) fi = LD, f, = 20,

Uine = o7 '(f) (%w [ VEmSw i+ (Vo = VS

1
‘|‘2\/ Clnbn/2

— Uy,

3 t 2
Uy = 0 ' (f9) lcln/ X (Sin (_277 (5)) - Smh - S(z)fz) dt] — Ugy

(Pitman alternative)

Usna = U(fg& —u, (sharp peak alternative) .

N

(=vesnSa)f11 + (Vezn — /€305(2)) f22) sin(—2nt) dt)

As values for N,, and b, we choose 0.38, 0.2, 0.038 and 1.0, 0.5, 0.1, re-
spectively. Let n be 50, 100 or 150.

Every of these cases we can embed in the Pitman or sharp peak alterna-

tives. The classification of a special case with fixed n into either one or the
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other of both classes is somewhat subjective. We choose sharp peak alterna-
tives as model for our considerations.
For some N, and b,, one can find the approximations ®(Uy ,, 0.12) in Table 1

and the simplier approximations ®(Us ;, 0.12) in Table 2.

Epanechnikov kernel GauB kernel
" N, b, b,
1.0 0.5 1.0 0.5 0.1
50 | 0.380 || 0.9924 0.5921 1.0000 | 0.8958 | 0.1714
0.200 || 0.4358 0.7170 | 0.3102 | 0.1333
0.038 0.1353 | 0.1272 | 0.1228
100 | 0.380 1.0000 | 0.9957
0.200 0.9900 | 0.5699
0.038 0.1232
150 | 0.200 0.9957

Table 1: Approximations of power ®(U; ,,0.12)

Epanechnikov kernel GauB kernel
" N, b, b,
1.0 0.5 1.0 | 05 | 01
50 | 0.380 || 0.9958 0.9260 1.0000 | 0.9958 | 0.8359
0.200 | 0.5117 0.8287 | 0.5361 | 0.2843
0.038 0.1369 | 0.1317 | 0.1268
100 | 0.380 1.0000 | 1.0000
0.200 0.9957 | 0.9106
0.038 0.1313
150 | 0.200 0.9957

Table 2: Approximations of power ®(Us,0.12)

In simulations we considered the power of the test using the Epanechnikov

kernel or the Gauf} kernel.

e Power when using the Epanechnikov kernel

In Figure 2 one can see the hypothesis, the local alternative for N,, = 0.38
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and b, = 1, the density estimator with the Epanechnikov kernel

3(1—a?) for |z] <1

K@) = { 0 else

with a creation of 50 random numbers and the expectation of the density

estimator. The results of the simulation can be found in Table 3. In

0.80 | T
0.70 -

0.60 -
0.50 -
0.40 -
0.30 -
0.20 -
0.10 -
0.00

-0.8 =06 —-04 —-0.2 0 02 04 06 038

t
Figure 2: Local alternative f5o with N5g = 0.38, bso = 1, hypothesis f, expectation

er0.15 and density estimator fz 50

Table 4 are the differences ®(U; 50,0.12) — 1 (f50), ? = 1,2 and in Table 5
Iy (f50) —®(Us 50,0.12)] )

are the relative distances

11 (f50)
b
Ny || %
1.0 | 0.5
0.380 || 0.79 | 0.37
0.200 || 0.28

Table 3: Power I1;( f50) using the Epanechnikov kernel

e Power when using the Gauf kernel

In Figure 3 one finds the hypothesis, the local alternative for N,, = 0.38
and b = 1, the density estimator with Gaufl kernel with a creation of
50 random numbers and the expectation of the density estimator. In

Table 6 are the results of the simulations using the Gauf} kernel.

We got the differences shown in Table 7 and the relative distances shown
in Table 8.
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(I)(U1,50,0.12) - Hl(f5o) (I)(Uz,50,0.12) - H1(f50)
b b
N 50 50
1.0 0.5 1.0 0.5
0.380 0.2024 0.2221 0.2058 0.5560
0.200 0.1558 0.2317

Table 4: Differences between the power II;(f50) and the power approximation

O (U, 50,0.12) using the Epanechnikov kernel

|Q(U1 50,0.12) — Hi(fs0)] | [®(Uz50,012) — i ( f50)]
i ( fs0) 1L (f50)

b b
N50 50 50
1.0 \ 0.5 1.0 \ 0.5
0.380 || 0.2562 0.6003 0.2605 1.5030
0.200 || 0.5564 0.8275

Table 5: Relative distances between the power II;(f50) and the power approxima-

tions ®(U; 50,0.12) using the Epanechnikov kernel

For the case b, = 0.1, N, = 0.038 we repeated the simulation as well
with n = 50 as with n = 100 random numbers. Using n = 50 random
numbers we got the same power I13( f50) = 0.15 as in the first simulation.
However, using n = 100 random numbers we got the power Il3( fig0) =
% ~ 0.2333 which is still higher. From Figure 4 we can guess the reason
for this phenomenon. In the figure one finds a density estimation with
n = 50 random numbers, its expectation, the hypothesis, the alternative
for bsg = 0.1 and Ngg = 0.038 as well as the random numbers x5g; which
fall into the considered interval. It is obviously that the density estimator
is not near the alternative. The reason for this is that the number of
random variables is too small for a convenient choice of the bandwidth &,
when we have such a tiny b,. Consequently, a simulation with b, = 0.1

and N, = 0.038 demands a much greater number of random variables.
e Interpretation of the results

With the simulations we could confirm the fact, that both Lo-tests rec-
ognize a distance from the hypothesis density worse with declining in-
terval of distance and declining distance. Very small distances in small

intervals will be interpreted as random errors and consequently the hy-
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0.80
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0.60
0.50
0.40
0.30
0.20
0.10

0.00 | S
1 0.5 0 0.5 1

Figure 3: Local alternative f5o with N5o = 0.38, bso = 1, hypothesis f, expectation

€015 and density estimator fg 50

n N, bn
1.0 0.5 0.1
50 | 0.380 0.72 0.27 0.05
0.200 0.19 0.13 0.05
0.038 0.06 0.07 0.15
100 | 0.380 % ~ 0.9667 % ~ 0.3667
0.200 | £ ~0.2667 | L ~0.0333
0.038 % ~~ 0.2333
150 | 0.200 0.50

Table 6: Power Ily(f,) using the Gauf} kernel

pothesis will not be rejected. Both tests discerned a distance from the
hypothesis worse when the intervals of distance were longer (b, = 1) but
the distance itself smaller (N, = 0.2) than when the intervals of distance
were smaller (b, = }) and the distance greater (N, = 0.2). That is due
to the squaring of the distance in Ly-tests. If the distances are less than
one they become still less this way and so a rejection of the hypothesis

becomes improbable.

Furthermore, the simulations show significant differences between both
tests. The power is always higher when using the Epanechnikov ker-
nel. Though the decisions based on these tests are the same when we

have an unlimited number of random variables, the differences should



15

(I)(U1,n,0.12) - H?(fn) (I)(Uz,n,o.m) - Hz(fn)
" N, b, b,
1.0 0.5 0.1 1.0 0.5 0.1

50 | 0.380 || 0.2800 | 0.6258 0.1214 | 0.2800 | 0.7258 0.7859
0.200 || 0.5270 | 0.1802 0.0833 | 0.6387 | 0.4061 0.2343
0.038 || 0.0753 | 0.0572 | —0.0272 | 0.0769 | 0.0617 | —0.0232

100 | 0.380 || 0.0333 | 0.6290 0.0333 | 0.6333

0.200 || 0.7233 | 0.5366 0.7290 | 0.8773

0.038 —0.1101 —0.1020
150 | 0.200 || 0.4957 0.4957

Table 7: Differences between power Ily(f,) and power approximations ®(U; ,0.12)

using the Gauf} kernel

|(I)(U1,50,0.12) - Hl(f50)| |(I)(U2,50,0.12) - H1(f50)|

I (f50) I, ( f50)
n N, bn bn
1.0 0.5 0.1 1.0 0.5 0.1

50 | 0.380 || 0.3889 | 2.3178 | 2.4280 | 0.3889 | 2.6881 | 15.7180
0.200 || 2.7737 | 1.3862 | 1.6660 | 3.3616 | 3.1238 | 4.6860
0.038 || 1.2550 | 0.8171 | 0.1813 | 1.2817 | 0.8814 | 0.1547

100 | 0.380 || 0.0344 | 1.7153 0.0344 | 1.7270

0.200 || 2.7112 | 16.1141 2.7334 | 26.3453

0.038 0.4719 0.4372
150 | 0.200 || 0.9914 0.9914

Table 8: Relative distances between power Il3(f,) and power approximation

O(U; 1,012) using the GauB kernel

be considered when the number of random variables is limited.

Moreover, the asymptotically equivalent approximations of power ®(Uy ,, o)
and ®(U;,, ) differ when the number of random variables is finite. We
see, that with a finite number of random variables ®(U; ;o) approxi-
mates the power nearly always better and never worse than ®(Us,, ).
Consequently, the simplifications in ®(U;,, ) do not seem convenient

for a small number of random variables.
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Figure 4:
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