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Abstract

In auctions an outside seller offers a commodity for sale and collects
the revenue which is achieved. In fair division games the object is owned
by the group of bidders. Consequently the auction’s revenue is equally
distributed among all bidders. In our experiment participants face four
auction types (first versus scond price - auction versus fair division game)
repeteadly. Due to the strategy method (one bids before learning one’s
private value) we can investigate the slope and curvature of individual
bid functions, the evidence for risk aversion, the comparative statics with
respect to the game type, the price expectations, and the efficiency rates.
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1 Introduction

Auctions and fair division games are two kinds of bidding mechanisms by which
an object may be allocated among a group of bidders. In an auction, the object
is offered for sale by an outside agent (the seller) who collects the revenue him-
self. Auctions are widely used to solve allocation problems. Some well-known
examples are the “Aalsmeer (Dutch) Flower Auction”, art auctions at Christie’s
or Sotheby’s, or online auctions on the internet (see e.g. http://www.ebay.com).

In a fair division game, the object is collectively owned by the bidders. Ac-
cordingly, the revenue that is raised gets equally distributed among the bidders.
Fair division games may be less familiar, but there are examples like conflict
settlements in case of inheritance, divorce, or the termination of a joint venture.
For instance, in the latter case usually only the former business partners are
interested in buying the firm (e.g. due to private information about the future
value of the enterprise). Consequently, these are often the only bidders, who,
at the same time, (collectively) own the firm and will split the selling price.!

Within this paper we investigate auctions and fair division games within
a laboratory experiment in which subjects submit sealed bids. The reselling
values are independently and identically distributed. Furthermore, we study
these bidding mechanisms under two different price rules: the first price rule,
i.e., the selling price of the object is equal to the highest bid, and the second
price rule, i.e., the selling price is equal to the second-highest bid.

We think it is important to empirically investigate bidding behavior within
these games, since actual behavior might differ substantially from what is usually
assumed in auction theory. Theoretical models should consider the restrictions
that are imposed by actual bidding behavior. This might also have tremendous
implications for social welfare and the revenue that is raised in the different types
of games. For instance, given risk neutral equilibrium bidding as proposed in
many theoretical models, the first price auction and the second price auction
are payofl equivalent (see e.g. Wolfstetter, 1996). So, a risk neutral seller has
no reason to prefer one or the other type of auction. However, empirically, there
could be a substantial difference in the expected selling price that is induced via
choosing an auction type. So, a seller might very well have a strong preference
for one or the other mechanism. If bidding mechanisms differ in the social
welfare they generate, this can be important e.g. for the government or other
public authorities (see e.g. Cox, Roberson, and Smith, 1982). For a discussion
of these questions and some evidence from previous laboratory experiments see
the survey by Kagel (1995).

While experiments usually follow the “single bid approach” — i.e., each
subject submits a single bid for a single, previously drawn reselling value — we
employ the “bid function approach”; each subject submits a complete vector
of bids (bid function) for each possible reselling value, which is subsequently
drawn.? Specifically, we ask subjects in the experiment to develop bid functions

lFair division games are related to the so called Hahn-Noll zero-revenue auctions, see
Franciosi, Isaac, Pingry, and Reynolds (1993) for an experiemental study.
2For other experiments in which subjects had to submit bid functions see Selten and Buchta



Fair Division

Price Rule Auction
Game
price = highest bid Al F1
price = 2nd highest bid A2 F2

Table 1: The four game types.

for the four different types of games, the first (respectively second) price auction
and the first (resprectively second) price fair division game. A bid function spec-
ifies a bid for each of 11 possible private reselling values. After the bid functions
have been submitted a reselling value is drawn randomly and independently for
each subject and the game outcome is determined.

Compared to collecting single bids the “bid function approach” offers more
information on individual bidding; we observe the bids for each reselling value.
Also, submitting a bid function might induce more consistent bidding. For
instance, if a subject plans to submit a monotonic bid function, but finds one
of its bids (for some reselling value) being unreasonable, it may reconsider and
readjust not only that very bid but the entire bid function. This might reduce
inconsistencies and thus the noise in the data.

The paper here focusses on the comparative statics and the shape of bid func-
tions as well as on prices and efficiency of the auction types.® It is structured as
follows: Section 2 describes the experimental games and their theoretical bench-
mark solutions. Furthermore we inform about the experimental procedures and
payments to subjects. In section 3 we investigate the structure of individual bid
functions. Sections 4 and 5 compare differences in price and efficiency between
the four game types. Section 6 concludes.

2 Auctions and Fair Division Games

2.1 Games and Theoretical Solutions

Experimental economics as well as auction theory distinguishes open and sealed-
bid auctions. We will focus here on sealed bid—experiments in which a single
object is to be allocated and for which each potential buyer has an independent
private value. We investigate four different allocation rules which we refer to as
game types (see table 1): First Price Auction (A1), Second Price Auction (A2),
First Price Fair Division Game (F1) and Second Price Fair Division Game
(F2).

Comparing bidding behavior under the first—price rule with bidding under
the second-price rule is a familiar topic in experimental studies.* Fair division

(1998) as well as Giith (1998).

3In a companion paper (Gtith, Ivanova, Konigstein and Strobel, 1999) we investigate the
adaptation processes and learning aspects of bidding behavior.

4See the survey by Kagel (1995).



Fair Division

Price Auction
Game
bf (v;) = 22t b} (vi) = 17
2
highest bid E(p*) =224 E(p) = <ﬁ)
B (mi(vi) = T+ E(mf(vi) = 5 + A
b} (vi) = v, b} (vi) = Jqvi + o4
. . * n— * n?
2nd highest bid [ (p*) = 222 E(p') =5

E(mi(v) =2 E(m() =%+ 5

Table 2: Bid function b} (v;), expected price E(p*), and expected payofls of the
equilibrium for risk neutral bidders and the four game types.

games differ from auctions in that the price at which the object is sold is dis-
tributed among all bidders. In auctions the price is earned by an outside agent,
the seller. While the use of auctions to solve allocation problems is common,
fair division games may be less familiar. For instance, allocating inheritance is a
real life situation which resembles a fair division game. The object is collectively
owned by the heirs who, in many cases, are the only bidders. Similar problems
result when a joint venture is terminated.

Let v; be a bidder’s private value for the object to be sold, and suppose v;
is drawn for each player ¢ = 1,...,n independently from a uniform distribution
on the unit interval. If all bidders are risk neutral, the equilibrium bid function
b (v;), expected equilibrium price E(p*) and expected equilibrium payoff E(7})
are as shown in table 2. For a derivation of these results see Giith and van
Damme (1986).

2.2 Experimental Games and Procedures

In our experiment the private values ¥; did not vary continuously, but were
drawn from the set

V = {50, 60, ..., 150}

with all values ©; € V being equally likely. These values are denoted in a
fictitious currency ECU (experimental currency unit) at which subjects could
resell the object to the experimenter. Subjects could choose bids b; as follows:

b; € {0,1,...,200} .

For ease of comparison of the empirical bids i)i and values U; with the theoretical
solution given above all our analysis will be done for normalized bids b; and



values v;:

0; — 50
(o =
100
b; — 50
b, = —— .
100

Accordingly the space of possible values is V = {0,0.1,...,1}. When we refer
to the theoretical benchmark case as described in table 2, we essentially neglect
the discreteness of V.

Within a session each subject participated in 36 consecutive games of the
four different types. Nine subjects formed a session group. In each of the 36
periods they were randomly partitioned into three groups of three bidders. The
number of bidders involved in each game (n = 3) was commonly known, but not
their identity. All subjects in all sessions played the same sequence of games.
Within periods ¢ = 1 to 3 they played Al-games, within ¢ = 4 to 6 they played
A2, in t = 7 to 9 the game type was F2 and in £ = 9 to 12 it was F1. This
comprised the first block of 12 games. Then they played block 2 (periods 13 to
24) and 3 (periods 25 to 36) in the same sequence as block 1.

Most participants were students of economics or business administration of
Humboldt—University. They had been invited by leaflets to participate in an ex-
periment anounced to last about three hours, and sessions actually took about
that long. After entering the laboratory they were placed at isolated computer
terminals. Communication among participants was not allowed during the ses-
sion. While reading the instructions (see the appendix) they could privately ask
for clarification or require help in handling the PC.

In each game they had to submit a complete bidding strategy (bid vector)
bi(v;). Thus, they had to enter a bid for each of the 11 values v; € V. The actual
value v} was drawn thereafter. Payments were determined according to the game
rules and using the submitted bidding strategies.® Subjects were informed on
the screen about v}, whether or not they were buyer, about the price p at which
the object was sold and about their own payoff ; in that game. Then the next
game followed.

So, each game type applied nine times. In the first of these nine games the
bid screen was blank and each subject had to enter a vector of 11 bids (one for
each v; € V). In later periods the last bid vector for the same game type was
displayed as default. It could be revised or submitted as it is. Of course, this
may favor the status quo and may work against adjusting behavior over time.
We did it for practical reasons. If subjects do not want to always adjust all
bids, this saves time and helps to prevent getting bored by the task. Altogether
we ran 6 sessions and collected 1944 bidding strategies (54 subjects times 36
games).

5The strategy method obviously provides more information than collecting only one bid
for a single value. But since ex—post only one component of the bid vector is payoff-relevant,
it lowers the incentives of bidding at each single value. By restricting the set V we have tried
to achieve a reasonable compromise.



2.3 Payments

Subjects total earnings out of the 36 games ranged between 31 DM and 96 DM
with a mean of 56 DM (about 33 US$ at the time of the experiment including a
show up fee of 10 DM). In the first three sessions we used the same conversion
rate for ECU (experimental currency unit) into cash for all four game types: 1
ECU = 0.05 DM. Theoretically and practically this generates rather asymmetric
monetary incentives for auctions compared to fair division games. Giith (1998)
tried to guarantee equal monetary incentives by adjusting the conversion rate
such that equilibrium profits were equal for v; = 0.5. Instead we used actually
observed profits of sessions 1 to 3 to adjust the conversion rate in sessions 4 to
6 in order to induce equal expected payofls; i.e., we applied the conversion rate
that would have lead to equal payofls in sessions 1 to 3. This meant for sessions
4 to 6 that one ECU was worth DM 0.2857 in auctions and DM 0.02857 in fair
division games.

Essentially this means that we had a payofltreatment: 3 sessions with equal
conversion rate and 3 sessions with unequal conversion rate. Theoretically these
payoff differences are irrelevant. And, since in all data analyses we ran, we did
not find them being relevant, we will not discuss them any further.

3 Individual Bid Functions

3.1 Risk Neutral Equilibrium Bidding

Assuming risk neutral bidders is a theoretical benchmark case. We will first
check whether the data are in line with risk neutral equilibrium (RNE) as it is
described in table 2. Figures 2 to 5 (see the appendix) show the distributions
of bids for v; = 0.5 for the different game types. In this case (v; = 0.5) RNE
predicts the following bids:

3b1(A2) = 2 bi(F1) = 5. and b{(F2) = 2
Looking at the data we find that for Al the mode of the distribution is close
to b} (Al). For A2 the mode is in fact at the theoretical prediction b}(A2) = %
However, the modes for F1 and F2 are (roughly) at % as well, even though
this is not in line with RNE. Furthermore, all distributions exhibit considerable

dispersion. We conclude:

b} (A1) =

Result 1: By and large the data (exept for A2) reject the assumption of risk
neutral equilibrium bidding.

The distributions of bids for other reselling values v; # 0.5, which we do not
present here, lead to the same conclusion. In principle, the data might be ex-
plained by a theory that combines RNE and a sufficiently high error probability
(“RNE plus noise” ). However, the displayed distributions are quite asymmetric
around the equilibrium prediction, especially for Al, F1 and F2, which rather
suggests a systematic bias. We will show below that risk aversion may cause
such biased bids and may partly explain these observations.



3.2 Slope and Curvature of Bid Functions

Suppose bidders are risk averse and exhibit different constant relative risk aver-
sion (CRRA) utility functions u;(z) = z'~"", where the parameter r; is indi-
vidual #’s coefficient of relative risk aversion. If 7; is randomly drawn from the
unit interval with positive density for all risk attitudes between risk neutrality
(r; = 0) and extreme risk aversion (r; — 1), the equilibrium bid function in the
first price auction is b} = SErivi'G The equilibrium describes rational bidding
within a heterogenous population of bidders; i.e., when r; may vary between in-
dividuals. So, assuming risk aversion in this sense induces bid functions which
are (1) strictly increasing and (2) linear in v;.

In the following we will investigate the slopes and curvatures of the observed
bid functions. Besides for Al we will do this for A2, F1 and F2 as well. Remem-
ber that risk aversion does not influence optimal behavior in A2; equilibrium
requires “true value”—bidding regardless which risk attitudes one assumes. So,
in A2 risk aversion can not improve the fit of the theory compared to risk neu-
trality. Nevertheless we want to know whether the observed bid functions are
indeed linear.

As far as we know, F1 and F2 have not been solved yet for the case of
heterogeneous, risk averse bidders. For explorative reasons we determine slope
and curvature of the empirical bid functions also in these cases (F1 and F2). It
remains an open question whether such functions can be rationalized by some
model of risk preferences (CRRA utility, for instance, does not induce linear bid
functions in F1). So, while we do not derive bid functions for these cases, in the
next section we will derive prediction areas.

To evaluate whether the bid functions were increasing and/or linear we es-
timated the following regression model:

b = ap + qvio” + agvfigh (model 1)
with
low g if v; < 0.5
i = { 0.5 otherwise
and

Mgk — { v; —0.5 ifv; >0.5

L 0 otherwise

Thus, we fitted a piecewise-linear regression line to the data allowing for a kink
at v; = 0.5.7 The rationale for this model is that it produces piecewise-linear
approximations of convex or concave individual bid functions. Model 1 was
estimated for each individual i = 1 to 54 and each period ¢ = 1 to 36 separately,

giving us a total of 1944 estimated individual bid functions .

6See e.g. Davis and Holt (1993), p. 287.

TA slightly simpler formulation of a piecewise-linear regression model may be: b; = oo +
Y105 +’72U?zgh with all variables as defined above. However, this model is equivalent to model
1, and the latter is advantageous since we want to compare a; and as below. For instance, if
a bid function is perfectly linear, this results in a1 = as.

8 A separate analysis for each type will follow in section 3 below.



Slope Curvature

strictly increasing:  97% concave: 32%
weakly decreasing; 3% linear: 48%
convex: 20%

(100% = 1944 estimated individual bid functions)

Table 3: Slope and curvature of the estimated individual bid functions

In 1892 cases (= 97%) the bid functions were strictly increasing, i.e. a; > 0
and ag > 0 (see table 3). The fit of these piecewise-linear approximations was
remarkable: quite often the estimated individual bid function explained more
than 90% of the variance (R? > 0.9). In fact, this was the case for 1837 (94%)
of the observed bid functions.

To determine the curvature of the bid functions we computed the difference
between the two slope coeflicients A = as — a;. We consider a bid function
as linear if |A| < £0.025. If A < —0.025 (A > +0.025), the respective bid
function is classified as concave (convex). Due to these criteria about half of the
estimated bid functions (48%) are linear, 32% are concave and 20% are convex.’
Based on these findings we conclude:

Result 2: The empirical bid functions are strictly increasing in v; in almost
all cases. Many are linear, which in case of Al and A2 is in line with
equilibrium behavior if one assumes heterogenous, risk averse bidders.'°

3.3 Bidding Areas

Since subjects may differ in their risk attitudes, behavior should not be ex-
pected as uniform. Thus we are interested in a prediction area for rational bid
functions, if one allows for various kinds of (weak) risk aversion. More specifi-
cally we assume that the population of bidders may be heterogenous and that
each bidder exhibits some kind of risk aversion (allowing for risk neutrality as
a boundary case). Of course, there is a universe of models for risk averse pref-
erences and it is impossible to explicitly solve them all. However, we want to
argue that in all cases the prediction area is bounded above and below by two
bid functions: namely, the RNE (of the respective game type) and the “true
value”-bid function.

90f course, we could have run formal tests for the theoretical restrictions imposed on on
and ag. We preferred to simply report some descriptive measures since the usual assumptions
for statistical testing are hardly satisfied here. Note that each regression is based on 11 data
points drawn from a single subject. Furthermore we estimated 36 regressions for the same
subject.

10 Admittedly, the criterion for linearity which we chose is ad hoc. It could have been set
more (or less) restrictive. About 11% of the bid functions were exactly linear. On the other
hand, if the linearity criterion is set less restrictive, e.g. |A| < +0.05 (this means that the
prediction area has doubled compared to the criterion we report here), the proportion of linear
functions increases, but only to 56%.



In case of A2 this is trivial to show, since “true value”’-bidding (=RNE)
is a dominant strategy. To see why these bounds hold in Al as well note the
following:

1. Overbidding v; is weakly dominated, and can never be rational. By true
value bidding (b; = v;) a bidder gets zero for sure. Bidding below v;
induces a positive payofl in case ¢ wins the auction and a zero payofl in
case ¢ does not win.

2. Any further reduction in b; increases the payofl in case ¢ wins, but at the
same time reduces the probability of winning. In general, a risk neutral
bidder will therefore choose a lower bid than a risk averse bidder given
that both face the same (possibly mixed) population of bidders.

3. Remember that RNE-bidding maximizes bidder i’s expected payoll if all
bidders are risk neutral (and therefore submit RNE-equilibrium bids). If
any bidder 7 bids above RNE, a risk neutral bidder 7 should bid above
RNE as well.

Together, statements 1 to 3 establish our conclusion that the area for ra-
tional bidding in Al is bounded below by RNE and bounded above by “true
value”’-bidding.!' Similar statements can be given for fair division games. We
summarize that the space of bid functions that may be rationalized by risk
aversion is:

e bounded below by RNE and above by “true value”’—bidding for Al, A2
and F1

e bounded below by “true value”—bidding and above by RNE for F2.

Figure 6 (see the appendix) displays these prediction areas for the differnt game
types. Furthermore it reports the percentage of cases in which the estimated,
piecewise—linear bid functions (see above) passed through these areas. These
numbers will be referred to as hit rates (a hit is a case in which the data can be
explained by the respective area theory). The hit rates are: 84% in Al, 37% in
A2, 65% in F1 and 39% in F2.!2 We conclude:

Result 3: Many bid functions pass through prediction areas derived from gen-
eral models of risk aversion.

1 One can check this result even more easily for heterogenous CRRA bidders (see above).
Obviously, the bid function b} = 3%”1)1' is equal to the RNE for r; = O (risk neutrality) and
converges to ‘true value’-bidding for r; — 1 (extremely high risk aversion).

129ome technical remarks are in place here. First, while the theoretical boundaries of the
prediction areas are indicated by the solid lines, hit rates were calculate for slightly larger areas,
which is indicated by the dotted lines. This was done to allow for some error. Specifically the
boundaries are given by b} — ¢ and v; + ¢ for Al, A2 and F1 as well as b} + ¢ and v; — ¢ for
F2, and with € = 0.025. This seems reasonable especially in case of A2 were the theoretical
prediction area is just a line. Secondly, for similar reasons (allowing for error) we did not
require the entire estimated bid function to pass through the prediction area. Rather if this
was the case for more than half of the bid function, it was counted a hit.



Relative  Predictive
Game Type Hit Rate (h) Area (a) Success (m)

Al 84% 11% 73%
A2 37% 3% 34%
F1 65% 9% 56%
F2 39% 9% 30%

Table 4: Predictive success of bidding areas

Obviously, the prediction areas differ in size. So, if one wants to compare the
hit rates between different game types, they need to be adjusted for the size
of the prediction area. We will do that by applying a measure of predictive
success for area theories (m) as proposed by Selten and Krischker (1983). It is
defined as m = h—a, with h being the hit rate and a representing the size of the
prediction area relative to the total outcome space. In our experiment the total
outcome space is the space of all feasible bid functions that may be choosen.
Remember that the feasible (normalized) bids are between -0.5 and +1.5. The
space of feasible bid functions is displayed in figure 6 as well.

Table 4 reports h, a and m for the four game types.'> Note that m is by
definition a number between —100% and +100%. If decisions were equally dis-
tributed (i.e., random play) m would be 0, whereas m = 100% means a perfect
fit of a theory (100% of observations on a relative area of size 0). Remem-
ber that the areas were constructed assuming that bidders are heterogenous,
(weakly) risk averse and rational. We find the predictive success of this concept
substantial for all game types. However, it explains behavior much better in Al
and F1 than in A2 and F2. Given that risk preferences and beliefs about other
bidders risk preferences are stable, we see no theoretical reason for these strong
differences. One may suggest to consider noise, as we did above in the case
of investigating risk neutral equilibrium bidding. While we did allow for some
noise in measuring h and a by the parameter £, one could increase € to allow
for larger errors. Obviously, if € gets sufliciently large the predictive success for
the four game types will converge. However, looking again at the distributions
of bids for v; = 0.5 (figures 2 to 5) indicates that (roughly) the conclusion we
draw from table 4 holds even if € doubled or tripled. A more detailed analysis
of this noise issue shall not be done here.

3.4 Comparative Statics

For risk neutral agents the equilibrium bid functions for the four game types
satisly the following relations (see also figure la in the appendix):

b7 (AL) < b (F1) < b}(A2) < b} (F2). (1)

13Tn calculating a, again, we considered the prediction areas that allow for some error
(boundaries are adjusted by ¢).



We refer to this as the “comparative statics” (of game types). Following our
analysis above one may object to the assumption that all bidders are risk neu-
tral. However, since we are lacking theoretical bid functions for F1 and F2 for
general risk preferences (see above), we think nevertheless that risk neutrality
is a theoretical benchmark case that is worthwhile to look at. Furthermore,
note that the bidding areas we presented in the last section are partially nested
and ordered, and their structure suggests that the relation in (1) will hold also
for risk averse bidders. To investigate whether the comparative statics hold for
our data we estimated the aggregate bid function for each game according to
model 1.'4 The functions are shown in figure 1b (see the appendix) and clearly
support the theory.

The estimated bid functions are ordered according to the comparative stat-
ics. Again, we do not report the usual statistical information for these re-
gressions (e.g. t-statistics, etc.) since statistical testing is problematic in this
environment. However, we will provide a statistical test of the comparative
statics based on session information which avoids this problem.

Table 5 reports the percentage of subjects who behave in line with the com-
parative statics for each session and for three levels of experience (block 1 to
block 3). The head row shows the respective two game types under considera-
tion. A subject is considered in line with the comparative statics if its average
bids (over all three games in the respective block) satisfy the theoretical order.
For example, in block 1 (low experience) 100% of subjects in session 1 chose
strictly lower mean bids in Al than in A2 (first column). 78% of the subjects
in session 1 chose strictly lower mean bids in F1 than F2 (second column). The
other columns can be read accordingly. Looking down the first column one finds
that the percentages vary between sessions and for different levels of experience,
but, they are 56% (5 out of 9 subjects) or higher in almost all cases. Le., in
most cases more than half of the subjects chose bids that are in line with the
comparative statics. We obtain similar results for the other comparisons in table
5.

One may derive a statistical test of the comparative statics hypothesis as fol-
lows: If at least 5 out of 9 subjects (56%) obey the comparative static prediction
we consider the respective session in line with the theory. Comparing the two
auctions, A1-A2 (first column), we find that this is the case for all six sessions.
So a binomial test rejects the null-hypothesis (no systematic shift) in favor of
the comparative statics prediction (p = 0.016, one—tailed, N = 6). The same
holds for a comparison of the two fair division games, F1-F2, for experienced
bidders (block 3). Similar tests can be derived for A1-F1, F1-A2, A2-F2, and
A1-F2. For experienced bidders the tests support the theory for all comparisons
but A2-F2 (p = 0.109). In summary the individual data analysis supports the
finding from the regression analyses shown in figure 1b.

Result 4: The observed bid functions satisfy the comparative statics derived by
assuming risk neutrality.

14T e, we estimated one piecewise—linear regression for each game instead of one for each
subject and each period.
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Comparison A1-A2 F1-F2 Al1-F1 F1-A2 A2-F2 Al-F2
Block 1 Session

Round 1-12 1 100 78 78 67 67 78
2 67 56 78 56 56 67
3 67 78 78 44 89 78
4 89 67 67 78 78 89
5 78 44 33 78 11 33
6 89 89 100 56 78 100
Block 2 Session
Round 13-24 1 89 67 67 67 44 78
2 78 67 89 78 56 67
3 89 100 56 78 56 100
4 78 78 78 78 56 89
5 100 67 78 78 33 78
6 89 78 89 67 44 89
Block 3 Session
Round 25-36 1 100 78 67 78 44 78
2 78 67 78 78 56 56
3 89 89 56 78 56 78
4 89 78 78 78 56 89
5 100 89 89 89 67 100
6 89 67 78 67 67 100

Table 5: The percentage of subjects who behave in line with the comparative
statics for each session and for three levels of experience (block 1 to block 3).

4 Influence of Game Type on Expected Price

An interesting question in auctions is how the price at which an object is sold
is influenced by the price rule. Obviously, this is quite important for the seller.
Usually it will be up to him to choose the auction type, and he might want to
choose that type (among the two, Al and A2) which yields the higher price.
Since the price depends on the realizations of the randomly drawn values v; of
all bidders 7, we can not simply compare the experimentally observed average
prices for the two game types. Namely, any difference in the realizations of the
reselling values between the game types would induce a bias. Instead, we will
determine the respective expected prices.

To do that it is a great advantage that we collected bid functions of each
individual rather than single bids. This allows us to determine the expected
price for each group of 3 bidders by considering all possible combinations of
reselling values that could have ocurred in the experiment. So, we consider each
vector v = (vy,v2,v3) where vy to vs represent the values of the three bidders
that form a bidder group. Since each v; can take one of 11 values this may
result in 1331 (= 113) different vectors v. We determined the price p(v) for each
v. The mean of these prices represents the expected price P for the respective

11



Session Mean Expected Price (Variance)

Al A2 F1 F2

1 700 (.07) 574 (08) .738 (.10) 525 (.20)
2 715 (.03) 538 (.12) 770 (.06) .540 (.10)
3 698 (.04) 545 (.08) 771 (.10) .715 (.16)
4 717 (.05) 568 (.07) .720 (.08) .593 (.13)
5 704 (.03) 540 (.06) .743 (.07) .500 (.17)
6 633 (.07) 526 (.07) .707 (.05) .552 (.06)
all 695 (.06) 549 (.08) .741 (.08) .571 (.16)

Table 6: Mean expected price (variance)

bidder group j.

Remember that in each session each type of auction was played 9 times
by three groups of three randomly matched bidders. So in each session we
collected 27 observations of ;- And, the 6 sessions gave us 162 (= 6 times
27) observations altogether. Figure 7 (see the appendix) shows the cumulative
distribution function (CDF) of the prices p; for both auction types.

The CDF for A2 is always above that one for A1 which means that CDF(A1)
first—order stochastically dominates CDF(A2).!> Thus, the expected price is
higher for Al as compared to A2. A seller should clearly prefer the first price
auction. This conclusion is in line with the result in Cox et all (1982). It
is confirmed by table 6 which reports means of the prices pj for each type of
auction and each session (standard deviations in parentheses). The expected
price is higher in Al than in A2 for each of the 6 sessions. A binomial test
based on the session means therefore indicates statistical signifance (p = 0.032,
N = 6, two—tailed) of our finding (see figure 7).

One way to justify this result is to refer to the supporting evidence for risk
aversion (see above) which pushes the Al-bid functions upwards and leaves the
A2-bid functions unchanged (remember that price equivalence between Al and
A2, which is a common result in auction theory, requires risk neutralityle).

Regarding fair division games, table 6 and figure 8 report that the expected
price is higher in F1 than in F2. Again, this holds for all 6 sessions. One may
argue that in fair division games differences in expected prices between these
price rules are of minor importance. The price serves only to re—distribute
money within the group of bidders. Since, usually, it will be the bidders (e.g.
heirs) themselves who choose the price rule, maximizing (or minimizing) the
price is, in general, not a common goal of all bidders. And therefore price
differences between F1 and F2 do not seem an adequate criterion to solve the
bidders’ choice problem.

However, there may be third parties who are interested in differences in

158ee e.g. Laffont (1989), p. 32.
16See e.g. Wolfstetter (1996), Giith and van Damme (1986).
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expected prices. For instance, lawyers whose fees for conducting the fair division
game may depend on the price or public authorities who might want to collect
taxes based on price (note that taxes can hardly depend on the net—payoff to the
buyer (v; — p), since v; is unobservable). Such third parties may also influence
or even determine the choice of the pricing rule. So, the comparision of prices
between fair division games is indeed important. We summarize:

Result 5: Ezxpected prices are higher under the first—price rule for both auc-
tions as well as fair division games. A risk neutral seller should prefer Al
to A2.

5 Influence of Game Type on Expected Efficiency

We now look for efficiency differences between game types. Theoretically, an
allocation is efficient if the bidder with the highest reselling value gets the ob-
ject. In the empirical analysis we apply two measures of efficiency: the relative
frequency of games that result in an efficient allocation and the “efficiency rate”.
For a given realization of reselling values the efliciency rate shall be defined as
v;(buyer)

efficiency rate = ————*—
max {vy,v2,V3}

where v;(buyer) is the private value of the buyer. Note that the efliciency rate
is bounded between 0 and 1. It is 1 if the bidder with the highest value gets the
object. Similar to our analysis of price effects (see above) we determined the
expected efliciency for each game type.

Figure 9 (see the appendix) shows the CDF of the observed (expected) effi-
ciency rates for Al versus A2. Figure 10 (see the appendix) is the corresponding
presentation for F1 versus F2. Both figures strongly suggest that the first price
rule outperforms the second price rule. Expected efliciency is higher in A1l com-
pared to A2 and in F1 compared to F2. This conclusion is confirmed by table
7 which shows the mean efficiency rate for each game type and each session, as
well as by table 8 which reports the relative frequency of efficient games for each
game type and each session. Accordingly, expected efficiency of Al is higher
than that of A2 in all 6 sessions. So, the shift is statistically significant accord-
ing to a binomial test (p = 0.032, N = 6, two—tailed). The data for fair division
games show that expected efficiency of F1 is higher than that of F2 in 5 out of
6 sessions. This does not allow to reject the null-hypothesis (p = 0.219, N = 6,
two—tailed) based on session aggregates, despite the distributions of individual
decisions displayed in figure 10. Note, however, that we have chosen a rather
conservative test procedure. We summarize:

Result 6: Expected efficiency is higher under the first—price rule compared to
the second—price Tule for both, auctions and fair division games. Thus, a
social planner should prefer the former rule.
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Session Mean Efficiency Rates (%)
Al A2 F1 F2

1 974 933 929 839
2 984 943 969 90.3
3 98.2 959 96,5 915
4 98.3 905 969 914
5 994 971 96.6 925
6 96.5 952 95.1 96.3
all 98.0 944 958 918

Table 7: Mean efficiency rates

Games Resulting in

Session Efficient Allocations (%)

Al A2 F1 F2
1 89.0 83.0 79.2 69.6
2 92.3 79.6 87.2 71.4
3 91.0 84.6 85.7 73.4
4 91.4 77.5 87.0 75.7
5 95.7 90.4 89.0 75.7
6 86.2 84.9 82.0 85.0
all 91.0 83.3 85.0 75.1

Table 8: Percentage of efficient allocations

From a normative viewpoint, the efficiency loss of A2 compared to Al is
puzzling, since it can not be caused by risk aversion. Specifically, in A2 risk
aversion does not matter. Truthful bidding leads to an efficiency rate of 100%.
Contrary, risk aversion reduces efficiency in Al. So, normatively one should
observe quite the opposite of what we found here. A possible, however specula-
tive, explanation we offer is that the second price rule might be more difficult to
deal with by boundedly rational bidders than the first price rule. For instance,
they might be more familiar with paying their own bid in case of winning an
auction rather than paying the second highest bid. This might induce less noisy
decisions within A2 compared to Al, despite the fact that A2 is simpler than
Al from a normative perspective. Namely, the former can be solved solely by
a dominance criterion whereas the latter requires an equilibrium notion. We
don’t want to go any further in conjecturing about the causes of our result. The
data here are suggestive and if the observed effect shows up persistently within
similar studies, this is a clear message regarding institutional design.
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6 Concluding Remarks

We reported evidence from an experiment on different types of allocation games:
auctions versus fair division games under the first price rule, respectively the
second price rule. The “bid function approach” was useful since it gave us more
information at the individual level than the usual “single bid approach”. We
observed that:

e Individual bid functions are monotonically increasing. Monotonicity can
be taken as a weak requirement of (boundedly) rational bidding.

e By and large, risk neutral equilibrium bidding is rejected by the data (re-
sult 1). However, most bid functions are linear, which is in line with ratio-
nal behavior by bidders that are endowed with heterogenous CRRA utility
functions (result 2). Furthermore, many bid functions pass through pre-
diction areas implied by more general models of risk aversion (result 3).

e Comparing bidding between game types we find that most bid functions
are ordered according to comparative statics predictions based on ratio-
nality (result 4). In order to derive these predictions we assumed risk
neutrality, but we indicated that the ordering of bid functions might result
as well for general models of risk aversion. After all, assuming risk neu-
trality as an approximation did provide comparative statics predictions
that are supported by the data.

e The expected price is higher in Al compared to A2 so that every risk
neutral seller should prefer Al to A2. Furthermore, the expected price in
F1 is higher than in F2 (result 5).

e Expected efficiency is higher under the first—price rule compared to the
second—price rule for both, auctions and fair division games. So, a social
planner should prefer the former rule (result 6).

Results 5 and 6 summarize the implications of our data analysis for institu-
tional design. Behaviorally, the first price-rule yields higher expected prices and
allocation efficiency than the second price rule. Normatively, the result on prices
can be rationalized by risk aversion. We can not reject such an explanation, at
least not if we allow for some error. Also, several features of the individual bid
functions are qualitatively in line with this view. The result on the efficiency
influences of the different institutions, however, can not be explained by risk
aversion. We think that our findings are reliable. Specifically, the results on
the aggregate level come together with clearly structured individual bid func-
tions. Remember, while there is a lot of variation between individuals, the bid
functions of each individual taken at a time show very regular patterns. This
strengthens our confidence in the robustness of our findings, but, of course, as
in any other empirical study, these findings should be replicated.
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APPENDIX
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Figure 1la: RNE bid functions for all game types
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Figure 1b: Estimate aggregate bid functions
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Figure 2: Distribution of bids for v = 0.5 (First Price Auction)
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