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Abstract

Unit root tests are considered for time series which have a level shift at a known point in
time. The shift can have a very general nonlinear form and additional deterministic mean
and trend terms are allowed for. Prior to the tests the deterministic parts and other nuisance
parameters of the data generation process are estimated in a first step. Then the series are
adjusted for these terms and unit root tests of the Dickey-Fuller type are applied to the
adjusted series. The properties of previously suggested tests of this sort are analyzed and a
range of modifications is proposed which take into account estimation errors in the nuisance
parameters. An important result is that estimation under the null hypothesis is preferable
to estimation under local alternatives. This contrasts with results obtained by other authors

for time series without level shifts.
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1 Introduction

Modeling structural shifts in time series has become an issue of central importance due to
the massive interventions that occur regularly in economic systems. In this context testing
for unit roots in the presence of structural shifts has attracted considerable attention in
the recent literature (see, e.g., Perron (1989, 1990), Perron & Vogelsang (1992), Banerjee,
Lumsdaine & Stock (1992), Zivot & Andrews (1992), Amsler & Lee (1995), Leybourne,
Newbold & Vougas (1998), Montafiés & Reyes (1998)). In some of the literature the time
where the structural change occurs is assumed to be known and in other articles it is assumed
unknown. In this study we assume that the break point is known. In practice, such an
assumption is often reasonable because the timing of many interventions is known when the
analysis is performed. For example, on January 1, 1999, a common currency was introduced
in a number of European countries or the German unification is known to have occurred in
1990. These events have had an impact on some economic time series.

We will follow Saikkonen & Liitkepohl (1999) (henceforth S&L) and Liitkepohl, Miiller
& Saikkonen (1999) (henceforth LMS) and consider models with very general nonlinear
deterministic shift functions. These authors propose a number of tests for unit roots based
on the idea that the deterministic part is estimated in a first step and is subtracted from
the series. Standard unit root tests are then applied to the adjusted series. The purpose
of this study is to propose modifications of these tests which are expected to work well in
small sample situations and we will perform Monte Carlo comparisons of the properties of
the tests. The results lead to useful recommendations for applied work.

The structure of the study is as follows. Two alternative model types from S&L and LMS
are presented in Sec. 2 together with the assumptions needed for asymptotic derivations.
Estimation of the nuisance parameters within these models is discussed in Sec. 3 and a range
of unit root tests is presented in Sec. 4 including the asymptotic distributions of the test
statistics. Since some of the tests have distributions under the null hypothesis which are not
tabulated, simulated critical values are presented in Sec. 5. Also in that section we present
some local power simulations. A small sample comparison of the tests based on a Monte
Carlo experiment is reported in Sec. 6 and conclusions are given in Sec. 7. Some proofs are
provided in the Appendix.

The following general notation is used throughout. The lag and differencing operators



are denoted by L and A, respectively. Hence, for a time series variable v;, Ly; = 3;_1 and
Ay, = y; — y,_1. Convergence in probability and in distribution are denoted by = and —d>,
respectively. Independently, identically distributed will be abbreviated as #id(-, -), where the
first and second moments are indicated in parentheses. Related to this notation, the normal
distribution is written in the usual way as N(-,-). Furthermore, O(-), o(-), O,(-) and o,(-) are
the usual symbols for the order of convergence and convergence in probability, respectively,
of a sequence. The symbol A\, (A) is reserved to denote the minimal eigenvalue of a matrix
A. Moreover, || - || denotes the Euclidean norm. The abbreviations sup and inf are used
as usual for supremum and infimum, respectively. The n-dimensional Euclidean space is
signified as R". DGP abbreviates data generation process, DF is short for Dickey-Fuller and
OLS and GLS are used for ordinary least squares and generalized least squares, respectively.

Moreover, AR abbreviates autoregressive or autoregressive process.

2 The Models

We consider two different general models for time series with a possible unit root and a level

shift. The first one is of the form
ys = po + it + f:(0)'y + x4, t=1,2,..., (2.1a)

where the scalars po and pq, the (m x 1) vector 6 and the (k x 1) vector v are unknown
parameters and f;() is a (k x 1) vector of deterministic sequences depending on the param-
eters . The functional form of f;(6) is assumed to be known. If the sequence represents a
level shift the timing of the shift is also known. For example, f;(f) may be thought of as a
shift dummy variable which has the value zero before some given break period 7 and the
value one from then onwards. In that case, the break date 77 is assumed to be known. Much
more general situations are covered by our framework, however. Further discussion may be
found in S&L and other examples are considered in Sec. 6.

The quantity z; represents an unobservable stochastic error term which is assumed to

have a finite order AR representation,
b(L)(1 — pL)xy = &y, (2.10)

where &, ~ 4id(0,0%) and b(L) =1 — b L — --- — b,L? is a polynomial in the lag operator

with roots bounded away from the unit circle. More precisely, for some € > 0, b(L) # 0 for
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|L| < 1+ e. For simplicity, we assume that a suitable number of presample values of the
observed series y; is available. Obviously, if p = 1 and, hence, the DGP of z; has a unit root,
then the same is true for y;.

The second model is
b(L)y = po + pat + fi(0)y+v,  t=1,2,..., (2.2q)
where the error term v, is assumed to be an AR process of order 1,
vy = pUs_1 + E¢. (2.2b)

As before, g; ~ i1d(0,0?) and —1 < p < 1 with p = 1 implying a unit root in y;.
The parameters pg, 11 and v in these models are supposed to be unrestricted. Condi-
tions required for the parameters 6 and the sequence f;(#) are collected in the following set

of assumptions which are partly taken from S&L.

Assumption 1
(a) The parameter space of 8, denoted by ©, is a compact subset of R™.

(b) For each t = 1,2,..., fi(#) is a continuously differentiable function in an open set
containing the parameter space © and, denoting by F;(f) the vector of all partial
derivatives of f(6),

supzsuDHAft( )| <oo and SUPZSUP”AFt( ) < oo

t=1 0€© t—1 0€O©

where fo() = 0 and Fy(0) = 0.

(c) Defining g:(8) = [1 : f:(0)'] for t = 1,2,..., with Ag1(0) = [1 : f1(0)']", and G¢() =
[f:(8) : Fy(0)'"] for t = 1,2,..., there exists a real number € > 0 and an integer 7, such
that, for all T > T,,

M=

1nf Amin {Z Ag (0 Agt(e)'} > €, inf Ain {

=1 0co

Aftw)Aft(e)'} >

t

||
I\

and

M=

9eo AGt(G)AGt(e)'} > e

t

/|
I\



As mentioned earlier, some of these conditions are just repeated from S&L. The extensions
are conditions for the partial derivatives of f;(f). They are used here to accommodate the
modifications of the estimation procedures and unit root tests considered in the following
sections. A compact parameter space © and the continuity requirement in Assumption 1(b)
are standard assumptions in nonlinear estimation and testing problems. Furthermore, the
summability conditions in Assumption 1(b) are now needed for the function f;(#) and its
partial derivatives F;(#). They hold in the applications we have in mind, if the parameter
space O is defined in a suitable way. Therefore the condition is not critical for our purposes.
The conditions in Assumption 1(b) and (c) are formulated for differences of the sequences
f1(0), ¢9:(0) and the partial derivatives because our aim is to study unit root tests. Hence,
estimation of the parameters p,# and ~ is considered under the null hypothesis that the
error process contains a unit root. Efficient estimation then requires that the variables are
differenced.

To understand Assumption 1(c), assume first that the value of the parameter 6 is known
and that the parameters p and 7 are estimated by applying OLS to the differenced models.
Then these assumptions guarantee linear independence of the regressors when 7T is large
enough. There is of course no need to include the infimum in the condition of Assumption
1(c) if @ is known. It is needed, however, when the value of # is unknown and has to be
estimated. We have to impose an assumption which guarantees that the above mentioned
linear independence of regressors holds whatever the value of # because consistent estimation
of 6 is not possible. This is the purpose of Assumption 1(c).

Consistent estimation of § and +y is not possible because, by Assumption 1(b), the varia-
tion of (the differenced) regressors does not increase as T — oo. The present formulation of
Assumption 1(b) also applies when the sequence f;(6) and hence g,(f) depends on T which
may be convenient occasionally. This feature is not made explicit in stating the assump-
tion because it is not needed in the present application of Assumption 1 although it may
sometimes be useful to allow the shift function to depend on T'.

In the terminology of Elliott, Rothenberg & Stock (1996, Condition B), our assumptions
imply that, for each value of 6, the sequence g;() defines a slowly evolving trend, although
our conditions are stronger than those of Elliott et al.. No attempt has been made here to

weaken Assumption 1 because it is convenient for our purposes and applies to the models of



interest in the following. More discussion of Assumption 1 is given in S&L.

We compare unit root tests within the models (2.1) and (2.2). More precisely, we consider

tests of the pair of hypotheses

Hy:p=1 VS. H, :|p| < 1.

The idea is to estimate the nuisance parameters, in particular those related to the determin-

istic part, first and then remove the deterministic part and perform a test on the adjusted

series. In the next section we therefore discuss estimation of the nuisance parameters.

3 Alternative Estimators of Nuisance Parameters

3.1 Model 2.1

Suppose that the process z; specified in (2.1b) is near integrated so that

c
P:PT:1+T, (3.1)

where ¢ < 0 is a fixed real number. The estimation procedure proposed by S&L employs an

empirical counterpart of the parameter ¢. This means that we shall replace ¢ by a chosen

value ¢ and pretend that ¢ = c although we do not assume that this presumption is actually

true. The idea is to apply a GLS procedure by first transforming the variables in (2.1) by

the filter 1 — prL where pr = 1+ £ and then applying GLS to the transformed model. The

choice of ¢ will be discussed later.

For convenience we will use matrix notation and define

and

YV=Tly1: (g2 —pryr) o -2 (yr — pryr—1)], (3-2a)
P I L-pr (3.20)
1 2-pr) -+ (T—pr(T-1))
Z5(0) = [f1(0) : f2(0) — prfu(0) : -+ fr(0) — prfr—1(0)]" (32¢)

Here, for simplicity, the notation ignores the dependence of the quantities on the chosen

value ¢. Using this notation, the transformed form of (2.1) can be written as

Y = Z(0)p+U, (3.3)



where Z(0) = [Z1 : Z5(0)], ¢ = [po : 11 = 7] and U = [uq : --- : up]' is an error term such
that vy, = 2 — prry 1 = b(L) ey + T (c — €)xy_1. Our GLS estimation is based on the
covariance matrix resulting from b(L)™'e;, denoted by o2%(b), where b = [by : --- : by]'. The

GLS estimators are thus obtained by minimizing the generalized sum of squares function

Qr(¢,0,0) = (Y = Z(0)9)'S(0) 7 (Y — Z(0)9). (3.4)

The above estimation procedure makes use of the initial value assumption zy = 0. Al-
though initial values which are independent of the sample size have asymptotically no effect
the situation may be different in finite samples. Therefore we shall also consider an alter-
native approach which is free of this feature. In this approach the first observation in the
transformed regression model (3.3) is omitted. Since the regressor corresponding to the level
parameter py will then be asymptotically zero we shall not try to estimate this parameter.
Instead, after deleting the first observation from the regression model (3.3) we replace the
first column of the regressor matrix by a vector of ones. This means that instead of py we
consider the parameter pj = uo(1— pr). Of course, if there is no estimate of i it is then not
possible to obtain a sample analog of the process x; but only of x; + uo so that this feature
has to be taken into account when unit root tests based on this approach are developed in

Sec. 4.

Define
Y* ={[(y2 — pryn) : -+ ¢ (yr — pryr—1)]’, (3.5a)
1 .. 1 I
Zr = (3.50)
2=pr) - (T=pr(T=1))
and
Z3(0) = [(f2(6) — prfr(6)) = - - = (fr(6) — prfr-1(0))]" (3-5¢)
Instead of (3.3) we have
Y*=27%(6)¢p" + U™, (3.6)
where Z*(0) = [Zf : Z3(0)], ¢* = [p§ : 11 : '] and U* = [ug : -+ : up|" with u; as before.

Here, for simplicity, the dependence of the parameters uf and ¢* on the sample size has not
been indicated. The GLS estimator of the parameter vector ¢* is obtained by minimizing

the function
Q7(¢%,0,b) = (Y* = Z*(0)¢*)S*(b) "' (Y™ — Z*(0)¢"), (3.7)
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where ¥*(b) is a ((T'— 1) x (T — 1)) analog of the matrix X(b). Notice that if ¢ = 0 (or
pr = 1) the two columns of the matrix Z} are identical so that one of them can be deleted.
In what follows the treatment of this problem is fairly obvious so that it will not be discussed
any further. We will also consider the case where no linear trend term is present and, hence,
i1 = 0 a priori. In that case the corresponding column is deleted from the regression matrix.

Using Assumption 1(c) it is easy to see as in S&L that GLS estimators of the parameters
¢*, 6 and b exist for all 7" large enough. These GLS estimators are denoted by ¢, 6* etc.

Their asymptotic properties are given in Lemma A.1 in the Appendix.

3.2 Model 2.2

Suppose now that the error process v; specified in (2.2b) is near integrated so that p = pr is

as in (3.1). Then the generating process of v; can be written as
Vg = PrUs—1 + &y, 1= 1, 2, R (38)

Again the first estimation procedure proposed by LMS employs an empirical counterpart of
the parameter c so that we shall replace ¢ by a chosen value ¢ and pretend that ¢ = c¢. Now,
if pr = 1+ £, the idea is to first transform the variables in (2.2a) by the filter 1 — prL.

Using the matrix notation from (3.2), the transformed form of (2.2a) can be written as
Y=W(@®)5+¢€, (3.9)

where W(0) = [Z(0) : V] with Z(0) = [Z, : Z5(0)], as before, and V the (T x p) matrix
containing lagged values of y; transformed in the same way as the other variables. Fur-
thermore, 8 = [uo : p1 = 7 : 0] and € = [e; : --- : er| is an error term such that
e = vy — prvs_y = & + T (c — €)v;_;. We shall consider a nonlinear OLS estimation of
(3.9) by proceeding in the same way as in the case ¢ = 0, that is, e; = ¢; or under the null

hypothesis. Our estimators are thus obtained by minimizing the sum of squares function
Sr(6,8) = (Y = W(0)8)' (Y — W(0)5). (3.10)

The estimator of 8 can be written as

B= W)W )" W)Y, (3.11)
where 0 is the value of # which minimizes (3.10) jointly with A.

7



In the same way as above one may also wish to consider a modification of the above
approach to avoid potential adverse finite sample effects of unrealistic initial value assump-
tions. Thus, we define Y*, Z} and Z;(0) as before and the ((7'— 1) X p) matrix V* and the
((T'—1) x 1) vector £* are defined by deleting the first row and first component from V' and

&, respectively. Instead of (3.9) we now consider
Y*=W*(6)5" + &7, (3.12)

where W*(0) = [Z*(0) : V*| with Z*(0) = [Z, : Z;(0)] and B* = [u§ : p1 = 7' : U] with
us = to(1 — pr). For simplicity the notation again ignores the dependence of the quantities
on the chosen value of ¢ and on the sample size. Thus, in this approach we do not try to
estimate the parameter py. This means that we cannot obtain an empirical counterpart of
the process v; but only of v; 4+ py. This feature will be taken into account in constructing
unit root tests in the next section.

We estimate the parameters £* and 6 in (3.12) by minimizing the obvious analog of the
sum of squares function in (3.10). If € = 0 (or pr = 1) the two columns of the matrix Z} are
identical so that the regression model (3.12) is not of full column rank. Then we shall delete
the first column of Z} and accordingly delete pj from the parameter vector 3*. Since the
treatment of this special case is fairly obvious it will not be discussed here in more detail.

Again we may also impose the restriction p; = 0 if a linear trend term is not needed.

4 The Tests
4.1 Model 2.1

We consider the following tests. Once the nuisance parameters in (2.1) have been estimated
one can form the residual series #, = y, — fio — jut — f:(8)'5 (¢t = 1,...,T) and use it to
obtain unit root tests. S&L propose the following procedure.

Consider the auxiliary regression model
it:p.’ﬁt,1+U:, t:2,,T (41)

In the previous section it was seen that if Z; is replaced by z; the covariance matrix of the
error term in (4.1) is 02%*(b). Since the parameter vector b is estimated to obtain #; it seems

reasonable to use this estimator also here and base a unit root test on (4.1) with p estimated



by feasible GLS with weight matrix ¥* (IA))’I. We denote the usual ¢-statistic for testing the
null hypothesis p = 1 associated with the feasible GLS estimator of p by 7sg because it is
the statistic considered by S&L except that these authors use residuals z; for t = 1,...,T
in (4.1) with initial value &y = 0.

The error term in the auxiliary regression model (4.1) also contains estimation errors
caused by replacing the nuisance parameters pg, p1, € and 7 by their GLS estimators. Being
able to allow for the effect of these estimation errors might improve the finite sample proper-
ties of the above test and particularly the performance of the asymptotic size approximation.
To investigate this, consider the special case where the shift function is a step dummy vari-
able f;(6) = dy; which is zero up to period 771 — 1 and one from period 7} onwards. Suppose

that the null hypothesis holds. Then it is straightforward to check that
up = Az — (fn — ) = Adie (=), t=2,...,T.

Thus, augmenting the auxiliary regression model (4.1) by an intercept term and the impulse
dummy Ad;; would result in an error term which, under the null hypothesis, would not
depend on the errors caused by estimating the nuisance parameters p; and . It is fairly
obvious that the inclusion of the impulse dummy Ady; has no effect on the asymptotic prop-
erties of the GLS estimator of the parameter p and, consequently, on the limiting distribution
of the resulting test. Below we will see that the inclusion of an intercept term results in a
different limiting distribution. Therefore, we will consider tests with and without intercept
in the following.

If the step dummy d;; is replaced by the general function f;(6) the above modification

becomes slightly more complicated. We then have

wr = Az, — (u —m) — ARO) A+ Afi(8)'y

= Aag— (fu =) = AROY (7 =) = (ALO) = AO) 7, t=2....T,
(4.2)

In the last expression the third term can be handled in the same way as in the previously
considered case of a step dummy but the fourth term requires additional considerations. A
fairly obvious approach is to assume that the function f;(#) is continuously differentiable

in an open set containing the parameter space © and use the Taylor series approximation

Af,(6) — Afi(0) ~ A (a f:(6) /ae') (0 — ). Instead of (4.1) we then consider the auxiliary



regression model
iy = pis_y + Af(0) 7y + AF,(0)'my +uf,  t=2,...,T, (4.3)

where F}(0) is a (mk x 1) vector containing the partial derivatives in df,(6)/36. Let 7,4 be
the usual ‘¢-statistic’ based on the GLS estimation of the parameters in (4.3) with weight
matrix X (b) 1. Here the subscript indicates that the statistic is obtained from the adjusted
auxiliary regression model.

In these tests we still do not make adjustments for the fact that the b parameters are
also estimated. A possible modification that adjusts for the estimation of b may be obtained
as follows. Define w; = b(L)x; so that w; = pw;_y + &;. Thus, if we condition on yi, ..., y,,

a version of the test statistic 7¢¢; may be obtained from the auxiliary regression model
Wy = pWy_1 + errory, t=p+1,...,T,

where w; = b(L)Z;.
Now, to obtain a modification which takes into account estimation errors in b, consider

the identity
W, = wy+ b(L)2 — b(L)zy
= wy, + b(L) (& — ;) + (b(L) — b(L))&, — (b(L) — b(L)) (3 — 1), t=p+1,...,T.

Multiplying both sides of this equation by p(L) and observing that p(L)w; = &; yields

p
lz]t = p’UA}t_l + p(L)b(L)(i‘t - $t) + Z(b] - bj)p(L)i?t_]‘ + 7y, t=p+ 2, ce ,T,
j=1

A

where r, = ¢, — (b(L) — b(L))p(L)(&; — x;) is an error term. Since we try to improve the
size performance of the test statistic 7557, we now assume that the null hypothesis holds and

replace p(L) on the r.h.s. by A. Thus, we consider the auxiliary regression model
place p( y : y reg
~ p ~
’lf)t = p’lf)t,1 + b(L)(Ai‘t — A.’L't) + Z(b] — b])AZ/ﬁt,J + 7y, t= p+ 2, P ,T.
j=1

Note that estimation errors in r; are expected to be smaller than those in the second and
third terms on the r.h.s. of this equation because, under Hy, they are affected through the

product (b(L)—b(L))(AZ; — Ax;) only. To be able to use this auxiliary model we still have to

deal with the second term on the r.h.s.. This, however, leads to considerations very similar

10



to those in the previous modifications and expanding the difference Az; — Ax; we get the

auxiliary model
P
iy = piy_y + [B(L)AF,(0)]m1 + [B(L)AF () ma + " ;A% j+rf, t=p+2,...,T. (4.4)
j=1

The modified test statistic is obtained as the usual ¢-statistic for the hypothesis p = 1 based

on OLS estimation of this model. It will be denoted by 7,5

Because the actual mean of the Z; may be nonzero, it may be reasonable to include an

intercept term in the previously considered auxiliary regressions. For instance, instead of

(4.3) we may consider
By = v+ pi_y + Afe(0) 1 + AR (0)'my +uf, t=2,...,T. (4.5)

The relevant unit root ¢-statistic will be denoted by 7;,;, where the subscript indicates that
an intercept is included in the model. Similarly, if an intercept term is added to (4.4), the

+
Tint:

resulting unit root test statistic will be denoted by

Because z; is a zero mean process it is not unreasonable to set o = 0 in estimating the
parameters of the deterministic part. However, in small samples it may be preferable to
avoid such an assumption because the actual values of the process may be different from
zero. Therefore it may be useful to consider the estimators based on model (3.6) and the
series 2 = y,— fiit— f,(0*)'y* (t = 2,...,T). The theoretical counterpart of #* is =¥ = z,+
for which we have z} = v + pz;_| + uff” (t=1,2,...), where v = (1 — p)ug. Thus, in this

approach our unit root tests are based on the auxiliary regression model
Ty =v+pxp | +up, t=2,...,T. (4.6)

The resulting test statistic based on feasible GLS estimation of this model will be denoted
by Tge.r-
It is also possible to include terms to take care of estimation errors and base the unit

root test on an auxiliary regression similar to (4.5),
=+ pit |+ Af(0) T+ AF(0) T +uf*,  t=2,...,T. (4.7)

The resulting unit root test statistic will be denoted by 7;;,. If in addition we condition on

nt*

Y1, - - ., yp and use a model corresponding to (4.4) with @} = b*(L)z} and similar modifications

11



for the other terms the resulting test statistic will be denoted by 7.t (see also Table 1). Note
that b* is the estimator of b obtained from minimizing (3.7).

Moreover, if we have the a priori restriction p; = 0 the estimation procedures in Section
3 and the definitions of z; and Z; are adjusted accordingly. Since in this case the limiting
distributions of the corresponding unit root tests change, we augment the test statistics with
a superscript 0 to distinguish them from the statistics which allow for a linear time trend.
In other words, the test statistics based on the restriction p; = 0 are denoted as Tgg;, Tog,
Toi> Tonts Tint> To&rs oy and 7,0, respectively. The limiting null distributions of all the test

statistics are given in the following theorem which is partly proven in the Appendix and

partly reviews results from the related literature.

Theorem 1.
Suppose that Assumption 1 holds and that the matrices Z(6) and Z*(6) are of full column
rank for all 7" > k£ + 1 and all § € ©. Then,

p 1 -1/2 .1
ILr N, N ( /0 Bc(s)st) /0 B.(s)dB.(s), (4.8)

where B.(s) = [; exp{c(s — u)}dBo(u) with By(u) a standard Brownian motion,

1 _ —1/2 1
Tt s T i 5 ([ Blsds) [ Buls)dBu(s), (19)
0 0

where B,.(s) is the mean-adjusted version of B,(s),

—-1/2

+ d 1 \2 1 _ _
rounsas iy < ([ Gelsiopds) [ Gulsio)dGlsi0), (4.10)

where G.(s;¢) = B.(s) — sK.(¢) with
Ko(e) = hie)™ | "(1 = es)dBo(s) + h(©)~(c — ©) | "(1= ¢8)Bu(s)ds

and h(¢) = 1—c+¢%/3. Here the stochastic integral is a short-hand notation for f; G.(s; ¢)dB,(s)—
K.(€) Jy Ge(s;€)ds. Moreover,

rt ([ oy S
Tints Tint ? GC(S,C) ds /GC(S,C)dGC(S,C), (4'11)
0 0

where G.(s; €) is a mean-adjusted version of G.(s; ). Furthermore,
p 1 _ -1/2 01 _
T Tt~ ([ Gis0Pds) [ Grlsi0dGi(si0) (4.12)
0 0
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where G%(s;¢) = B.(s) — sK}(¢), with K}(0) = B.(1) and, for ¢ < 0,

K@ =2 [ (5 s) aboe) + 2D [ (2 ) Busyas

Cc C

G*(s;€) is a mean-adjusted version of G%(s;¢) and the stochastic integral is a short-hand

notation for [} G*(s;¢)dB.(s) — K (¢) [y G (s;€)ds. O

Notice that for ¢ = 0 the null distributions in (4.8) and (4.9) are conventional Dickey-
Fuller (DF) distributions for unit root tests in models without deterministic terms and with
intercept, respectively. The distribution in (4.10) was given by S&L for the statistic 7sg s, in

the form e
5 ([ Gulssopds) Gtz ~ 1),
where
Gu(s:2) = Bu(s) — s (/\Bc(l) +3(1= ) /0 1 sBC(s)ds)

with A = (1 — ¢)/h(¢). It can be shown that this limiting distribution is equivalent to the
one in (4.10) (see the Appendix). We use the latter version now because it facilitates a
comparison with the other limiting distributions given in the theorem.

The limiting null distribution of the test statistics 7;,; and 7., are again obtained by
setting ¢ = 0. It is free of unknown nuisance parameters but depends on the quantity ¢. It
differs from that of 7gg1, 44 and 7';_1]- in that G(s; ¢) is replaced by a mean-adjusted version.
This difference is due to the intercept term included in the auxiliary regression model (4.5).
In this sense 7;,; may be called a “mean-adjusted version” of 7,4; etc.

Obviously, the asymptotic distribution of the test statistics 7,75, and 7..; also differs
from the other ones. Instead of G.(s;¢) in (4.11) we have G(s;¢) in (4.12). The difference
between these two quantities is due to the different limiting distributions of the estimators
fp and 7. This difference results from a different treatment of the intercept term in the
regression models (3.3) and (3.6) and in the special case ¢ = 0 this difference vanishes.

To the best of our knowledge the asymptotic distributions in (4.11) and (4.12) have not
been studied previously so that critical values and suggestions for appropriate values of ¢ are
not available. Thus, simulations are required to make the test statistics Tin:, T3g1, Ti and
their relatives applicable and to study their power properties. Even without such simulations

it is clear, however, that in terms of asymptotic local power the test statistics in (4.11) and
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(4.12) are inferior to those in (4.10) because they are not asymptotically equivalent to Tggr,
and the asymptotic local power of Tggr is indistinguishable from optimal (see Elliott et
al. (1996)). However, since this result is based on an initial value assumption which may
be unrealistic in some cases (see Elliott et al. (1996, pp. 819-820)) the performance of
the Tin, T and 77, tests may be preferable in some finite sample situations. We will
provide critical values, local power results and small sample comparisons for these tests in
the following sections. Before that we shall discuss unit root tests in the framework of model

(2.2).
4.2 Model 2.2

Once the nuisance parameters in (2.2a) have been estimated, the residual series 7, = b(L)y, —
flo — fiit — ft(é)'i/ may be used to obtain unit root tests. There are several possible choices.
LMS suggest using DF t¢-tests like, for instance, Elliott et al. (1996). In the following we
shall also consider these tests.

Consider the auxiliary regression model
Uy = ply_1 + €;, t=2,...,T. (4.13)

If o, is replaced by v; the error term in (4.13) becomes &; so that we can use OLS to obtain a
test statistic. LMS consider the usual ¢-statistic for testing p = 1 in (4.13). In the following
this statistic will be denoted by tus. Note that LMS use the model (4.13) fort =1,...,T
with 9y = 0.

In the same way as in the previous subsection a modification of the test statistic can be
considered which takes into account that the error term in the auxiliary regression model
(4.13) also contains estimation errors caused by replacing the nuisance parameters b = [b; :
--- 1 by]’, po, w1, 6 and y by their OLS estimators. As far as the finite sample properties of
the above test and particularly the performance of the asymptotic size approximation are
concerned it might therefore be worthwhile to try to allow for this feature. To investigate this
possibility, suppose the null hypothesis holds and note that, by straightforward calculation,

one can readily see that
ef =&, — [b(L) — b(L)|Ay, — (is — 1) — [Af:(0)'7 — Afe(0)'y], t=2,...,T. (4.14)

For simplicity, consider first the special case where the function f;(f) is defined by the

step dummy d;; so that it is independent of the parameter 6. As is clear from equation
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(4.14), the estimation errors caused by using estimators of nuisance parameters can then
be allowed for by augmenting the auxiliary regression model (4.13) by the impulse dummy
Ady, the lagged differences Ay;_1,...,Ay,—p, and an intercept term. After this the test
statistic can be defined on the basis of the OLS estimator of p in the same way as before.
The inclusion of an impulse dummy in (4.13) will not change the limiting distribution of
the resulting unit root test but the inclusion of an intercept term does. We shall consider
both modifications. It should be noted, however, that since the mean value of the lagged
differences Ay;_1, ..., Ay, is generally nonzero the inclusion of these variables as additional
regressors in (4.13) will change the limiting distribution of the resulting unit root test. The
reason is that these lagged differences are not asymptotically orthogonal to the variable
Us—1. It turns out, however, that this feature can be allowed for by using the mean-adjusted
variables Ay, ; — fi. (j = 1,...,p) where ji, = i, /b(1).

When the function f;(#) depends on the parameter vector € the treatment of the fourth
term on the right hand side of (4.14) becomes slightly more complicated than in the foregoing
special case. In the same way as in Subsection 4.1 we shall then assume that the function
f+(0) is continuously differentiable in an open set containing the parameter space © and use
the Taylor series approximation Af,(0) — Afy(0) ~ A(0f,(0)/86')(0 — 0). Thus, instead of

(4.13) we shall consider the auxiliary regression model
13,5 = pTN)t_l + Aft(é)lﬂ'l + AFt(é)l’?TQ + (1277'3 + GI, t= 2, Ceey T, (415)

where Fy(0) is a (mk x 1) vector containing the partial derivatives in the matrix df,(d)/90
and ¢, = [Ayp_1—fis -+ ¢ Ayp_p—[i]. Let to4; be the usual ¢-statistic for the null hypothesis
p = 1 based on the OLS estimator of p in (4.15).

Including an intercept term in the auxiliary regression gives
B = v+ ply1 + Afi(0)'m, + AF,(0) 10 + Gims +€f, t=2,...,T, (4.16)

and the relevant t-statistic will be denoted by t;,;.

Using the estimators b*, ji*, 7* and 6* we can form the series o = b*(L)y, — jitt — f,(6*)'7
(t=2,...,T). Its theoretical counterpart is v; = v;+ g for which we have v} = v+ pv;_ | +&;
where v = (1 — p)ug. Thus, in this approach our unit root tests are based on the auxiliary
regression model

Uy =v+pi,_+e, t=2,...,T. (4.17)
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Our test statistic, denoted by t} ,,q, is the t-statistic for the null hypothesis p = 1 in (4.17)
based on OLS estimation.
It is also possible to include terms to take care of estimation errors and base the unit

root test on an auxiliary regression similar to (4.16),

’5: =v -+ ,017:_1 + Aft(é*)l’ﬂ'l + AFt(QN*)Iﬂ'Q + qN:ITFg + GIT, t= 2, Ce ,T, (418)

%
int*

The resulting unit root test statistic will be denoted by t

Moreover, if we have the a priori restriction pu; = 0 the estimation procedures in Section
3 and the definitions of v; and v} are adjusted accordingly. Since in this case the limiting
distributions of the corresponding unit root tests change, we augment the test statistics with
a superscript 0 to distinguish them from the statistics which allow for a linear time trend.

respectively.

In other words, the test statistics are denoted by t9 4, to, th,, tins and t}n,

The limiting null distributions of all the test statistics are given in the following theorem

which is also partly proven in the Appendix.

Theorem 2.
Suppose that Assumption 1 holds and that the matrices Z(6) and Z*(6) are of full column
rank for all "> k£ + 1 and all # € ©. Then, using the notation of Theorem 1,

0 0 d 1 ) -1/2 1
60176, t0, —> ( /O B.(s) ds) /O B.(s)dB.(s), (4.19)
1 -1/2 .
£0 420 g0 4y ( /0 Bc(s)2d5> /0 B.(s)dB.(s), (4.20)
1 -1/2 1
t11s, bag — ( /0 Gc(s;e)%zs) /0 Go(s; D)dGo(5;9), (4.21)
1 -1/2 .1
bt s ( / Gc(s;é)2ds) | Gelsi0)dGe(s: ) (4.22)
0 0
and
i . d 1 _ . -1/2 1 - .
Tarss i — (/0 G (s;c) ds) /0 Gz (s;¢)dGr(s;€). (4.23)
(]

Thus, the t statistics have the same asymptotic distributions as the corresponding 7

statistics in the previous subsection. For both models, alternative approaches such as point
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optimal tests are possible in the present context. For instance, if the auxiliary regression
model (4.13) is used as a starting point these tests would be based on the statistics 6%(1)
and 6%(pr) defined by replacing p in the variance estimator by unity and pr, respectively.
According to the simulation results of Elliott et al. (1996) the overall properties of their DF
t-statistic appeared somewhat better than those of the point optimal tests. Therefore we use
the DF test versions. It may also be worth noting that seasonal dummies may be included

without affecting the limiting distributions of our tests.

5 Critical Values and Local Power Simulations

All the tests considered in the previous section are summarized in Table 1 for the case where
no a priori restriction is available for p;. In order to investigate the null distributions and

local power of the test statistics we have generated time series
Ty =prry 1 +e, t=1,2,....T, x2g=0, pr=1+4+¢/T, e ~iidN(0,1). (5.1)

Thus, p = 0 so that there is no additional dynamics. Moreover, there is no deterministic part
and we can use the generated series to investigate the tests with and without the restriction

w1 = 0. For this purpose we use again pr = 1 + ¢/T and consider the following Z; series:

o 0 =1, — g (t =1,...,T), where iy is obtained from a regression (1 — prL)x; =

tozor + errory (t=1,...,T) with

1, t=1,
2ot =
1—pr, t=2,...,T,
° §:§” =1z — fio — int (t =1,...,T), where [ip and ji; are obtained from a regression

(1 = prL)zy = wozot + p1(t — pr(t —1)) + errory (t=1,...,7).
Moreover, the ] series are obtained as:
e iV =g, (t=1,....7)
. 53:(1) =z, — ut (t =1,...,T), where fi; is obtained from a regression (1 — prL)z; =

v+ m(t—pr(t—1))+error, (t=2,...,T).
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The series :z-?) (1 =0,1) are used to compute t-statistics for the null hypothesis p = 1 based

on the regression model (4.1), the series :i'gl) is also used to compute the t-statistic for p =1

in :%gl) = v+ pfvgl_)l + u; and the series i:(i) (1 = 0,1) are used for the same purpose in
conjunction with model (4.6). For large sample size T and ¢ = 0 (i.e,, pr = 1) we get
realizations of the null distributions corresponding to (4.8) - (4.12) and, hence, of (4.19) -

(4.23) in this way.

Table 1. Summary of Tests

Test

statistic | Underlying auxiliary regression

Asymptotic distribution (fol G.(s; E)st) s Iy Ge(5;2)dG.(s;€)

TS&L Ty = ply_1 +
Tadj & = pii_y + Afy(0)'m + AF,(0)'my + u)
T Wy = pe—y + [BL)AS(0)]m1 + [B(L)AF(0) 7o + X0_y ajAdy_j + 1]
toms Uy = pUp1 + €
tadj ¥y = pi 1 + Afo(0)'m + AF(0)'my + Gims + €]
Asymptotic distribution (fol G.(s; E)st) s Iy Ge(5;2)dG,(s;€)
Tint Ty =v+plq+ Aft(é)'ﬂl + AFt(é)'WQ + u
| = vt g + BI)ALOYIm + BAF@) I + 57y 0gAd s + 1
tint o = v+ piy_1 + Af,(0)'m + AF,(0)'my + Gims + €]

Asymptotic distribution (fol Gx(s; E)st)_l/Z s G*(s;¢)dG?(s; ¢)

TS&L Ty =v+pZi_y +uf

Tint B =v+ pii_y + Af(07)m + AF(07)'my + u”

Tk Wy = v+ pif_y + [ (L)Af(0°)]my + [b*(L)AF,(0%))ms + X0y ay Ady_; + 1}
toars Uy =v+po, e

bine T = v+ pb;_y + Af(0")'m1 + AF,(67)' 72 + Gi'ms + €

Since we do not know which ¢ value results in optimal local power of the tests with
asymptotic distributions (4.11)/(4.22) and (4.12)/(4.23) we first investigate that issue. To
this end we have generated critical values for a 5% significance level based on 10 000 drawings

with sample size T' = 500 using ¢ = 0 and then we have simulated the local power curves in
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Figures 1 and 2. In Figure 1 it is seen that the local power associated with the distribution
in (4.11)/(4.22) is almost invariant to the value of ¢. Hence, ¢ = 0 may just as well be used.
In other words, the deterministic terms may be estimated under the null rather than local
alternatives in order to get optimal local power for 7;;, 7", and t;,;. The same also holds
x okt

for T8¢, T, T

s Tomis 81 and t7, as is seen in Figure 2. In that figure it is also obvious that

for the latter statistics the value of ¢ matters. However, optimal local power is achieved for

¢ =0, at least for c=0,-3,...,—30.

1.0
0.9t
0.8}
0.7t
0.6}

= 0.5}
0.41
0.3t —cbar 0
0.2} TR %]
01| e 33)
0.0

0 35 6 O 12 15 18 21 24 27 30 33 36
—C

Figure 1. Local power associated with (4.11)/(4.22) (Tins, Tt

e ting) (—€=10,5,10,15,20).

Some quantiles obtained from 10000 drawings for different sample sizes and different
values of ¢ are given in Table 2. In the second and second last panel of the table quantiles
are given for nonzero ¢ values. They are seen to vary quite a bit with the sample size. In
fact, they roughly decline in absolute value with growing 7. For (4.8)/(4.19) the critical
values correspond to the critical values of a DF t-test without any deterministic components
in the DGP for large T (see, e.g., Fuller (1976, Table 8.5.2)). For smaller sample sizes,
however, they differ substantially from the asymptotic quantiles because in generating these
null distributions we use an estimator for py which is obtained under local alternatives. In
this case we have used a transformation based on pr = 1 + ¢/T with ¢ = —7 because this
value was recommended by Elliott et al. (1996) for processes without deterministic trend
component (u; = 0). Elliott et al. show that this choice results in tests with optimal local

power properties. Clearly, if the asymptotic critical values (see 7' = 1000 in the table) were
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Figure 2. Local power associated with (4.12)/(4.23) (T&er, Tive Tonks 5 args bit)

int
(—e=0,5,10,15, 20).

used when the actual sample size is T = 50, say, the test would reject considerably more
often than indicated by the significance level chosen. For example, the critical value for a
5% level test for T = 1000 is —1.96 which roughly corresponds to the 10% quantile of the
distribution for T = 50. Thus, substantial small sample distortions of the size of the tests
must be expected given that the present results are simulated under ideal conditions which
are not likely to be satisfied in practice. Hence, in practice, additional sources for distortions
may be present. The critical values for ¢ = 0 are less sensitive to the sample size which may
be useful in applied work. In the third panel of the table, for all sample sizes, the quantiles
are seen to be close to the corresponding quantiles of the DF distributions for DGPs with
constant term (see again Table 8.5.2 of Fuller (1976)). Similarly, the simulated quantiles in
the fifth panel ((4.10)/(4.21), ¢ = —13.5) are very close to those in Table I.C of Elliott et al.
(1996) for all sample sizes given in that table.

We will now consider the local power properties resulting from the five distributions in
Theorems 1 and 2 with ¢ = —7 for (4.8)/(4.19), ¢ = —13.5 for (4.10)/(4.21) and ¢ = 0 for
the remaining distributions. As mentioned in Section 4 one would expect the tests based
on the :%,gi) series to have better power than those based on the :%I(i) because the former
make assumptions regarding the initial values and, hence, in this respect they are based on

tighter conditions than the latter tests. Viewed in a different way, the specific initial value
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+(@) may suffer

assumptions are not important asymptotically whereas the tests based on the
from the inclusion of an intercept term even asymptotically. Of course, tests based on the
assumption p; = 0 are expected to have more power than the corresponding tests which do
not use that a priori restriction. To explore these issues we have generated z; series according
to the mechanism (5.1) with different values of ¢ and 7" = 500. Comparing the resulting test
values to the 5% critical values in Table 2 gives the empirical local power of the tests. The

corresponding local power curves are plotted in Figure 3. They are again based on 10000

replications of the simulation experiment.

1.0
0.9}
0.8}
0.71
0.6}

~20.5]
0.4]
0.31
0.2}
0.1
0.0 \ \ \ \ \ \ \ N

O 3 6 9 12 15 18 21 24 27 30
—C

Figure 3. Local power of tests (7" = 500).

(— (4.8)/(4.19) (Ts&La Tadj ad]’tLMS’tadj)
— - (4.9)/(4.20) ( z%taszzgangaLaT;%a z:lgo’t?nt’tLMS’ int)s
------ (4.10)/(4.21) (TS&L,Tadj,Tadj,tLMs,tadj) — — — (4.11)/(4.22) (Tints Titss tint)s
- (4.12)/(4.23) (T5gr: Tonts T, mtatLMSa adj))

The results in the figure are as expected. The tests which use the restriction p; = 0
are relatively more powerful than the corresponding ones which do not take the restriction
into account. Moreover, tests which include an intercept term in the auxiliary regression

(based on if(i)) tend to be less powerful than the corresponding tests based on the initial

value assumption (based on the :zﬁ”) Except for 72¢;,, T

o> Yl and t0,;, the differences

adj’
in local power are in fact not very substantial. In other words, if a linear trend term

cannot be excluded a priori, the price in terms of local power for not making the initial
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value assumption is not very high. On the other hand, substantial gains in local power are
possible if y; = 0 can be assumed. In this case avoiding the initial value assumption has a
quite high price. Generally tests which include an intercept term in the underlying regression
model have reduced local power. Of course, local power is a concept based on asymptotic
considerations. In small samples the situation may be quite different, in particular, if the
initial value assumption is not satisfied for a time series of interest. Therefore we will explore

the small sample properties of the different variants of the tests in the next section.

6 Small Sample Comparison

We have performed some simulations to investigate the performance of the tests in small

samples based on the following two processes:
Yt :d1t+xta (1 —blL)(l —pL).’L't = &, t= 1,...,T, (61)

and

(1 = b L)y = dig + vy, U = pU-1 + €y, t=1,...,T, (6.2)

with ¢, ~ itd N(0,1), p = 1,0.9,0.8, T = 100,200. In some of the simulations we also
generated 100 presample values which were discarded except that presample values were
used in the estimations underlying model (2.2). Furthermore, we use 71/T = 0.5, that is,
the break point is half way through the sample. Preliminary simulations indicated that the
location of the break point is not critical for the results as long as it is not very close to
the beginning or the end of the sample. Therefore placing it in the middle does not imply
a loss of generality for the situations we have in mind. The first process (6.1) is in line
with the model (2.1) with an abrupt shift at time T} so that the 7 tests are the appropriate
tests whereas in general the model underlying the t tests can only approximate the DGP
(6.1). Thus applying this test as well should give some indication of the flexibility of the
framework and of the consequences of using the ‘wrong’ model. In contrast, the DGP (6.2)
is a special case of (2.2) and generates a smooth shift in the deterministic term. For this
process the t tests are appropriate whereas the 7 tests are approximations only. To capture
the smooth transition from one regime to another the 7 tests may be combined with a smooth
shift function. For both types of tests we use the shift functions given in Table 3 for both

processes. The last two shift functions allow for smooth deterministic shifts. All three shift
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functions can be shown to satisfy Assumption 1. For some of the tests the derivatives of
the shift functions are needed. They are also given in Table 3. Since ft(l) does not depend
on 6 the derivative Ft(l) is zero. Hence, no extra terms AFt(l)(Q) appear in the auxiliary

regressions for Tagj, Tags Cadjs Tints Tints bints Toms Tang and t7,. In the simulations we use a

int>
range of 0 < 6 < 2 for f¥ (f) and 0 < 0 < 0.8 for 1@ (f) in estimating the parameters of the
deterministic term. Although there is no linear trend term in the DGPs we allow for such a
term in computing some of the test statistics.

Relative rejection frequencies from 1000 replications of the experiment are given in Tables

4-9. In Tables 4 and 5 actual sizes are given for tests for which estimation of the deterministic

part is done under local alternatives (¢ = —7 for the 78y, 7oy, T,

t) ;s and t),; tests and
¢ = —13.5 for Ts&r, Tadjs 7';1]-, trms and te4). The nominal significance level is 5% in all
cases. Obviously, all tests reject too often in some situations. Note that asymptotic critical
values are used so that some overrejection was to be expected on the basis of the discussion
related to Table 2. For some cases unexpectedly large rejection frequencies are observed,
however. For example, for T = 100 it is seen in Table 4 that t%,,5 rejects in more than 50%
of the cases for both DGPs if by = 0.8 and the shift function ft(2) is used in the test. Even

if T'= 200, the empirical size is unacceptable in this case, namely more than 30%. Some

tests do reasonably well in specific situations. For example, 7.7

+ . .
agj and T,q produce rejection

frequencies close to 5% when the correct shift function ft(l) is used and the same is true
for most of the tests when 7" = 200. Moreover, for most designs 7gg rejects in less than
10% of the replications for 7' = 200 and is thereby best in this respect. Still, none of the
tests performs satisfactorily for all shift functions and designs, in particular, for 7" = 100.
Therefore the overall message from Tables 4 and 5 is clear: Using nonzero values of ¢, that
is, estimating under local alternatives, bears the risk of substantially distorted sizes of the
tests. Thus, these tests cannot be recommended with the nonzero ¢ values considered here.
Consequently, there is no point in exploring their small sample power for these ¢ values.
Hence, in the following we focus on the tests with ¢ = 0, that is, estimation of the nuisance
parameters is done under the null hypothesis.

Power results are given in Tables 6 - 9 for selected tests only. We will first comment on
Tables 6 and 7 where the initial values used in the simulations are randomized by simulating

100 presample values as described previously. The results in Tables 6 and 7 show that for
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¢ = 0 the test sizes are much better in line with the nominal 5% (see p = 1) at least for those
tests presented in the tables. In fact, for ¢ = 0 some tests tend to be conservative in specific
situations and in some cases very much so (see, e.g., T;,; in combination with ft(l)). Most of
the tests which are not shown in the tables tend to be generally conservative and therefore
do not have much small sample power. In the tables we only show the results for those tests
which performed overall best in terms of small sample power within their respective groups,
the groups being 7° tests (7 tests without linear trend term), 7 tests (with linear trend), t°
tests and t tests. We are only presenting the best tests in the tables to avoid covering up
the most important findings by the large volume of results for all the tests and simulation
designs. It may be worth noting, however, that some of the other tests were nearly as good
as the tests shown in the tables whereas some other tests performed very poorly indeed.
Thus, some of the other tests are not very useful for applied work whereas some other ones
are almost as good as those presented in the tables.

In the following, we consider only 7, 740 . Tint, Tahy and ti. In the group of 7°

adj
tests which exclude the deterministic trend term, ngj and 7'(;;2 were generally best in terms

of power, each having advantages in some situations. Among the t° tests, t? , was overall

int
clearly best with highest power most of the time and close to the maximum in the other
situations. Note also that its empirical size is usually relatively close to the nominal 5%. In
all cases with p = 1 its relative rejection frequency is around 10% or less.

In the group of 7 tests which allow for a linear trend term, 7;,; and 7;,, dominate the
other tests. Again there is no clear winner among the two tests. Whereas 7;,; is preferable
in conjunction with shift function ft(3), ;- clearly dominates for ft(l). Note, however, that
both tests perform poorly for by = 0.8 and 7" = 100. Finally, t;,; is overall the best t test
allowing for a trend. Its power is usually very close to that of t;,,, though. In fact, the two
tests often produce identical rejection frequencies. Therefore, we present results for just one
of them. For T' = 100, both t;;; and t},, reject a bit too often if they are used in conjunction
with ft(2) and ft(?’). This may not be too surprising given that using these shift functions for
the presently considered DGP means that we are fitting a misspecified model. The tests are
doing quite well if the correct shift function ft(l) is used.

The following further conclusions emerge from Tables 6 and 7. In line with the local

power results, excluding a linear trend term from the models when such a restriction is
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correct results in substantially better power. Although there are power differences between
the best tests which allow for a linear trend, there is no clear winner. In other words, each
of the tests is advantageous in some situations. On the one hand, t;,; has often more power
than 7;,; and 7,7, and, on the other hand, t;,; tends to reject a bit too often. The same is
true for tests excluding a linear trend term.

It is also apparent that it is not essential to use a test designed for a particular model
when that model is in fact the true DGP. In other words, the performance of the tests is
similar for the alternative DGPs (6.1) and (6.2). This may not be very surprising given that
the two models are in some sense quite close. To see this multiply both sides of (2.1a) by

b(L) which yields
b(L)yy = vo + it + fo(0)' X+ b (L)A fe(0)'y + v, t=p+1,...,T,

where vy and v, are functions of 1, p; and the coefficients in b(L), A = b(1)y and b, (L) is
obtained from the identity b(L) = b(1) + b.(L)A. Moreover, v; is as in (2.2b). This shows
that if we condition on yi,...,y, in model (2.1) we obtain a model of the form (2.2) except
that the additional regressors Af;(0),...,Afi_p+1(6) are included and nonlinear parameter
restrictions are involved. By Assumption 1(b) the variables Af;(f) are “asymptotically
negligible.”

The results in Tables 6 and 7 show that the performance of the tests depends more
strongly on the shift functions than on the type of DGP. Furthermore, changing b; from 0.5
to 0.8 has a substantial effect. It implies a sizable decline in power in most cases. Again, this
behaviour of the tests may not be too surprising because for b; close to 1 the processes have
two roots close to unity and therefore are difficult to distinguish from unit root processes.
Finally, the performance of all the tests improves markedly if 7" is increased from 100 to 200.

It is noteworthy that the tests based on z}, w; or v}, that is, the tests avoiding specific
initial value assumptions in estimating the nuisance parameters, do not appear in the top
group in Tables 6 and 7. This result is in line with the local power results. On the other
hand, the initial value assumption which is used in deriving some of the tests is violated in
the presently considered cases. Therefore we have explored the impact of the initial values
by controlling them in some of our simulations. In Table 8, results for 7" = 100 and zero
initial values are provided. Clearly, the power of the tests tends to be larger than in the

corresponding entries in Table 6, especially for those tests which do not allow for a linear
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trend. Thus, using the initial values which are assumed in some theoretical derivations of
the previous sections helps to improve power even in samples of size T" = 100 although they
have no impact asymptotically.

Since 7" = 100 is obviously too small to ensure the validity of asymptotic properties, it
is also not surprising that the power tends to be smaller if unusually large initial values are
considered. In Table 9 we show results for the situation where the initial values are all set to
5. For p = 0.9 and 0.8, the standard deviations of the y, generated by (6.1) range from about
3 to almost 10, depending on b;. Hence, initial values of 5 may be regarded as moderate or
large compared to the randomly chosen values in Tables 6 and 7. Using identical values for
y—1 and yo may be reasonable given the large correlation in the y;. In Table 9 the power
of the tests tends to be lower than in the corresponding Table 6. In some situations the
power decline is particularly strong for tests that do not include an intercept term in the
0 70)

test regression (7,4, Tou;

N . A similar problem was also observed for some of the other tests

based on regressions without an intercept and for which results are not shown in the tables.
It may also be worth noting that the relative performance of the tests changed if zero initial
values instead of random initial values are used. In that case some tests without intercept
term in the test regression did a little better than in the nonzero initial value case. Thus, in
particular if unusual initial values are suspected, using one of the tests with intercept term
in the test regression is advisable. Alternatively one may remove the first values of a time
series under consideration if they appear to be unusual.

The results in Tables 6, 8 and 9 also show that the tests are generally not very reliable if
time series with 7" = 100 observations are under consideration. Moreover, the performance of
the tests tends to be inferior if one of the misspecified and more complicated shift functions

ft@) or ft(?’) is used.

7 Conclusions

Standard unit root tests are known to have reduced power if they are applied to time series
with structural shifts. Therefore we have considered unit root tests that explicitly allow
for a level shift of a very general possibly nonlinear form at a known point in time. We
have argued that knowing the timing of the shift is quite common in practice whereas the

precise form of the shift is usually unknown. Therefore, allowing for general and flexible shift
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functions is important. In this study we have focussed on models where the shift is regarded
as part of the deterministic component of the DGP. Building on proposals by S&L and LMS
it is suggested to estimate the deterministic part in a first step by a GLS procedure which
may proceed under local alternatives or under the unit root null hypothesis. The original
series is adjusted in a second step by subtracting the estimated deterministic part. Then
DF type tests are applied to the adjusted series. A number of modifications of previously
proposed tests of this sort are considered. In particular, tests are proposed that take into
account estimation errors in the nuisance parameters and tests which do not assume specific
initial values of the DGP. Local power and small sample properties of the tests are obtained.

The following general results emerge from our study. Some of the suggested modifications
work clearly better in small samples than the original tests proposed by S&L and LMS in
that they have superior size and power properties. Although local power gains are possible
for some of the tests if the nuisance parameters are estimated under local alternatives rather
than under the null hypothesis, substantial size distortions may result in small samples in
the former case. Therefore we recommend estimating the nuisance parameters under the
null hypothesis.

Initial values are found to have an impact on the small sample power of the tests. It
turns out that including an intercept term in the test regression is important to guard against
undesirable effects of large initial values. In practice, it may be worth discarding unusual
values at the very beginning of a time series under consideration to avoid a loss in power
due to untypical initial values.

If a deterministic linear time trend can be excluded on a priori grounds, it is recommended
to perform tests in models without a linear trend term because excluding it may result in
sizable power gains. Finally, using test versions with the best power properties is of particular
importance in the present context because in some situations the tests do not perform very
well for samples of size as large as 7" = 100.

Although we have focussed on a single shift in a time series, the tests can in principle be
extended to allow for more than one shift. Of course, the small sample behaviour may be
different in this case and needs to be explored in the future if applied researchers wish to
use the tests in this more general context. In future research it may also be of interest to

consider the situation where the timing of the shift is unknown and has to be determined
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from the data. Moreover, a comparison with other unit root tests which allow for structural

shifts may be worthwhile. We leave these issues for future investigations.

Appendix. Proofs

A.1 Proof of Theorem 1

In the proof of Theorem 1 we focus on the limiting distributions of test statistics for models
where j1; is not known to be zero a priori. The case where the restriction p; = 0 is imposed
follows by making straightforward modifications to these proofs. We begin with the result
in (4.10).

The limiting distribution of 75g, is derived in S&L. In that article it is given in a slightly
different form, however. To see that the present form is equivalent it may be worth noting

that (A.21) of S&L may be written alternatively as

T-'X' ,2(b)" (X — X_))
=T ' 31 [b(L)&1][b(L) Ady] + 0,(1)
=T 0, bW {z1 — (= pa) (¢ — 1)H[B(L) Az — b(1) (11 — )] + 0p(1)
% 02 [) Ge(s;0)dBe(s) — 02K, (€) Jy Ge(s; 2)ds,

(A1)

where the last relation follows from well-known limit theorems by noting that the limiting

distribution of [ given in (3.12) of S&L can be written alternatively as wK.(¢), where

w=0a/b(1),

1
0

K.(©) = h(d)™" / (1 — es)dBo(s) + h(e)" (c — ¢) /0 "(1= ¢s)Bu(s)ds (A.2)

and h(c) =1 —c¢+ ¢?/3. From the representation in (A.1) the limiting distribution in (4.10)
follows as in the proof of the asymptotic distribution of the test statistic in S&L. Thus, to

prove (4.10), it remains to show that 7,4 and T;ij have the same limiting distribution as

TS&L-
Using
T g ~% wG.(s;) (A.3)

(see (A.18) of S&L) and the fact that f;(#) satisfies Assumption 1(b) it can be seen that
| - . T o
HT t_zlxt—1Aft(9)H <T lléltag)% |24 ,5:213161(13 1Af(0)]] = O, (T )
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and that a similar result also holds with Af,() replaced by AF,(6). Using these facts
and arguments similar to those in the proof of Lemma 1 of S&L it can be shown that the
appropriately standardized moment matrix in the GLS estimation of (4.3) is asymptotically

block diagonal and also positive definite. Since it is further straightforward to show that
T A
S Af(O)uf = 0,(1)
t=1

and similarly with A f,() replaced by AF,(0) it follows that the limiting distribution of the
GLS estimator of p in (4.3) and hence that of its ¢-ratio is the same as in the case of the

auxiliary regression model (4.1). We have thus shown that (4.10) holds for the test statistic

Tadj-

As for test statistic T(;“dj, note first that the arguments used for 7,4 above and those in
the proof of Theorem 1 of S&L show that the appropriately standardized moment matrix in
the auxiliary regression model used to obtain the test statistic T;ij is asymptotically positive
definite and also block diagonal between w;_; and the other regressors. Using the expression
of the error term in this auxiliary regression model it is further straightforward to show that
T;ij has the same limiting distribution as 7gg s, and 7,4;. Thus, (4.10) is proven.

Since the test statistics 7;,; and 7,, are obtained by augmenting the auxiliary regression
models used to obtain test statistics 7,4 and 7';;]-, respectively, by an intercept term, (4.11)
can be proven by extending the arguments used above in a standard manner.

Before we prove (4.12) we establish a useful intermediate result regarding the properties

of some of the estimators described in Sec. 3. The following lemma complements results

presented in Lemma 1 of S&L.

Lemma A.1.
Suppose that Assumption 1 holds. Suppose further that the matrix Z*(6) is of full column
rank for all 7> k + 1 and all § € ©. Then,

A~

0" =0+ 0,(1), (A.4)
V=74 0,(1), (4.5)
b b (A.6)
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and

where w = 0/b(1) and

K:(e) = 1—_2 /01 (% — s) dBy(s) + M /01 (% — s) B.(s)ds.

Cc

Remark: For simplicity we have assumed a full rank condition similar to that in Lemma
1 of S&L. Lemma A.1 shows that, except for py, GLS estimators of the other parameters have
similar properties as in Lemma 1 of S&L. The limiting distribution of the GLS estimator of
11 depends on the chosen value of ¢ in a discontinuous way, though. If ¢ = 0 the limiting
distribution is the same as in Lemma 1 of S&L but if ¢ < 0 a different result is obtained (see
(A.2)). Next denote by Zj5 the second column of Z; and note the following two facts: (a)
T 714715 — h(¢) while the corresponding limit obtained from the mean-adjusted version
of Zy5 is ¢2/12 and (b) [; (1 — és)ds = 1 — ¢/2 so that the mean-adjusted version of 1 — s
is ¢(3 — s). Thus, from (A.2) and the definition of K?(¢) it can be seen that in the present
situation the inclusion of a constant term in the regression model affects the result so that
the first limiting distribution in (A.7) may be viewed as a ‘mean adjusted’ version of that of

the limiting distribution of fi; (denoted f1) in Lemma 1 of S&L.

Proof of Lemma A.1. If ¢ = 0 the result is fairly obvious because the considered
regression model differs from that used in Lemma 1 of S&L only in that the first observation
is omitted.

Now suppose that ¢ < 0. Arguments similar to those used for (A.1) - (A4.3) in S&L then
readily show that 7~'Z}' Z} converges to a positive definite limit and that T—'/2Z}'Z3(0) =
O(T~'/?) uniformly in §. When these results are available it is straightforward to proceed
in the same way as in the proof of (A.8) of S&L and establish (A.5) and also that the GLS
estimators of y; and pj are consistent of order O,(7~/2). The next step is to prove the
consistency of b* but, making use of the above mentioned results, this can be done in the
same way as the corresponding step in the proof of Lemma 1 of S&L. In the same way as in

that proof one can also show that instead of the representation of 7%/2(ji; — u;) given there
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we now have
T2 (i = 125)
T'2(ji; — )

and, furthermore,

— (T2 () 20 TP ) U+ o,(1)

T2 (3 — ) = (T Z35700) 'T P Z55U + 0p(1),

where Zi, is a mean-adjusted version of Z;, with a typical component ¢(3 — %) + 5%. By
simple calculation, T~'Z,Z1, = & + o(1). The first result in (A.7) follows from this, (3.3)

of S&L and well-known limit theorems. This completes the proof of Lemma A.1. O

Now we can turn to the proof of the result in (4.12). We derive the limit distribution of
TS, and just note that the result for the other statistics follows with similar arguments as

those used to prove (4.10) and (4.11). Define

Xt = (a0 7
and
A, 1 --- 1
Q o Sk o
l‘l . e 0 ‘/'L‘T_l

Then the GLS estimators obtained from (4.6) satisfy

D _

= QU= ()7'Q) Qb AK. (A.8)
-1

The proof of the theorem essentially means deriving the limiting distribution of T'(p* — 1)
and showing that o* — v = O,(T~/2). Details are similar to those in the proof of Theorem

1 of S&L and in the above proof given for (4.10). First note that

&7 =] — (5 — m)t — £(07)3 + £i(0)'y- (A.9)

In the same way as in the case of (A.17) of S&L we can conclude from this, T~ /2x;y %

wB.(s) (see (3.3) of S&L) and Lemma A.1 that
1, .l
T 287y 5 WG (s;0). (A.10)

It is also straightforward to see that (A.19) of S&L holds with AZ; replaced by Az} and
that Q* and AX* in (A.8) can be replaced by analogs defined in terms of z} — (it — )t
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and Axf — (g7 — 1) = Axy — (47 — p1). As far as asymptotic distributions are concerned,
the effect of the quantities f,(8%)'4* and f,(0)'y on z} in (A.9) can thus be ignored. Using
these facts, (A.10), well-known limit theorems and arguments similar to those in (A.20) of
S&L and (A.1) above, one can derive the limiting distribution of the test statistic 74, in a

straightforward fashion. Details are omitted.

A.2 Proof of Theorem 2

We focus again on the case where i, is not zero a priori. The result for tz g in (4.21) can
be obtained from LMS so that we consider t,4.

We shall first study the appropriately standardized moment matrix in the OLS estimation
of the parameters in (4.15). By Lemma A.1 of LMS, we have fi, = p. + O,(T'/2) which, in
conjunction with (A.10) and arguments similar to those in (A.14) of LMS, can be used to
show that

T
T3 Gg, — 0”(b).
t=1
The same arguments and the representation given for o, in the proof of Theorem 1 of LMS

yield

T
T35 5,214, = 0p(1).

t=1

Finally, when the assumptions made for f;(6) and F}(6) are also used, we get

7Yt [AO) : AR(EY] = 0,(1)

and .
T2 > [Af(6) - AF(8)] = 0,(1).
Thus, the appropriately standardized moment matrix between the three regressors v;_1,
[A f:(0)" : AFt(é)’]l and ¢; is asymptotically block diagonal. It is also asymptotically positive
definite, as can be seen by using the assumptions and arguments similar to those in the proof
of Lemma A.1 of LMS.
We shall next consider the error term e in (4.15) and show how it is related to the error

term e} in (4.13). First, recall that pr(L) = 1 — prL and observe that, for ¢ > 2,

ef = e+ (b(L) = b(L)) (Ay — £yi-1) + £ (fio — po)

1 (A.11)
= (in = ) (1 = 2) = (pr(D)£i(0)'F — pr(L) £u(0)'7) -
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Here we have used the definitions of v; and @; and the identities py(L)y; = Ay, — T7Yi—1 and
pr(L)t=1-— C(tT;l) Identifying the parameter vector w3 in (4.15) with —(b — b) shows that
the inclusion of the regressors Ay,_; — fi. (j = 1,...,p) in (4.13) changes the second term
on the r.h.s. of (A.11) to (b(L) — b(L))(fi. — Sy—1). It is also easy to see that, as far as the
limiting distribution of the test statistics tzas and t,q is concerned, the contribution of the
third and fifth terms on the r.h.s. of (A.11) is negligible. In the same way one can conclude
that, from our point of view, terms which are added to the error term eI by including the
regressors Af,(A) and AF,(0) are asymptotically negligible. Thus, we can conclude that for

our purposes the error term eI can be treated by using the approximation

cf ~ - (L)~ (L) (e~ ) — (o - m) (1 i 1)) | (A.12)

Using Lemma A.1 and equation (A.10) of LMS in conjunction with the representation given
for ¥4 in the proof of Theorem 1 of the same paper it can be shown that el can be further
approximated by replacing fi, on the r.h.s. of (A.12) first by u, and then by Ay,. Since the
third and fifth terms on the r.h.s. of (A.11) can be ignored we have thus demonstrated that
the above approximation of eI becomes eI ~ e; and, since the appropriately standardized
moment matrix in the OLS estimation of (4.15) is asymptotically block diagonal, it follows
that the OLS estimators obtained for the parameter p from (4.13) and (4.15) are asymptot-
ically equivalent. Since it is straightforward to show that the same is true for the related
error variance estimators the limiting distribution of t,q follows.

Using the definition of the test statistic t;,; and the above arguments it is straightforward

to prove (4.22). In order to prove (4.23) we first need the following analog of Lemma A.1.

Lemma A.2.

Suppose that the assumptions of Theorem 2 hold. Then,

b 25 b (A.13)
0" = 0+ 0,(1) (A.14)
T =7+ 0p(1) (4.15)
and
T2 (ji; = b (1) /b(1)) = 0K (@), (A.16)



where K(¢) is as in Lemma A.1 with K}(0) = B.(1).

Proof: The proof can be obtained by using the arguments in the proof of Lemma A.1
of LMS and those in the proof of Lemma A.1. Details are straightforward and therefore

omitted. O

Once the result of Lemma A.2 is available, the limiting distribution of the test statistic
t7y g can be obtained by following the arguments in the proof of Theorem 1 of LMS and
in deriving the limiting distribution of the test statistic 75, ;. Similar arguments combined
with those used to prove the asymptotic distribution of the test statistic tqq; show that 7;;

int

has the same limiting distribution as t} ;-
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Table 2. Simulated Quantiles of Null Distributions of Test Statistics Based on 10000
Replications

‘ Distribution ‘ T‘ Gp.o1  ¢p.025 Q.05 ap.1 ‘

50 | -2.65 -2.26 -1.97 -1.63
100 | -2.61 -2.25 -1.96 -1.62
19) | 200|-2.64 -2.26 -1.94 -1.62
) 500 | -2.60 -2.25 -1.95 -1.62
1000 | -2.55 -2.24 -1.96 -1.61
50 | 2.03 -2.56 -2.28 -1.98
100 | -2.73 -2.41 -2.15 -1.83
(4.8)/(4.19) | 200 |-2.68 -2.34 -2.05 -1.73
(e=—7) | 500|-2.64 -2.30 -2.00 -1.67
1000 | -2.56 -2.22 -1.96 -1.63
50 | -3.64 -3.28 -2.99 -2.67
100 | -3.58 -3.22 -2.94 -2.62
(4.9)/(4.20) | 200 |-3.58 -3.22 -2.93 -2.62
0)

500 | -3.47 -3.17 -2.90 -2.62
1000 | -3.48 -3.15 -2.88 -2.58
50 | -3.34 -2.96 -2.65 -2.37
100 | -3.23 -2.90 -2.61 -2.33
(4.10)/(4.21) | 200 |-3.17 -2.91 -2.64 -2.33
(¢ =0) 500 | -3.22 -2.92 -2.64 -2.35
1000 | -3.18 -2.86 -2.62 -2.33
50 | -3.83 -3.48 -321 -2.91
100 | -3.62 -3.30 -3.03 -2.74
(4.10)/(4.21) | 200 | -3.51 -3.24 -2.96 -2.66
(6= —13.5) | 500 |-3.43 -3.09 -2.84 -2.57
1000 | -3.40 -3.11 -2.85 -2.57
50 | -3.81 -3.45 -3.15 -2.86
(4.11)/(4.22) | 100 | -3.73 -3.38 -3.11 -2.80
(4.12)/(4.23) | 200 | -3.64 -3.32 -3.06 -2.77
(=0) 500 | -3.62 -3.32 -3.08 -2.79
1000 | -3.55 -3.28 -3.03 -2.76
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Table 3. Shift Functions and Their Derivatives

Shift function Derivatives
J1(0) F,(6)
0, t<T
D) = dy = : FV9) =0
1, t>T,
0, t<T 0, t < T
2(6) = | E0) = 1
1—exp{-0(t—T1)}, t>T (t—T)exp{-0(t-T1)}, t=Th
dit dit1
@y _ | 1—6L @) gy — | (1—0L)?
o (0) = dig 1 F(0) = dit o
1—6L (1-09L)?

Table 4. Empirical Sizes of Tests, T'= 100, T} = 50, ¢ = —7/ — 13.5, Nominal Significance
Level 5%, Random Initial Values

Shift Test

. 0 0 +0 . + 0 0 .
function | DGP by | 7ggp Tadj Todj TS&L Tadj Todj t; s tadj trms  tag

Y ] (6.1) 050077 0076 0069 0.085 0.087 0.071 0244 0.104 0.243 0.123
0.8 | 0.164 0.165 0.064 0.072 0.073 0.063 0460 0.143 0.261 0.145

(6.2) 0.5 0077 0.077 0070 0.081 0.083 0.068 0.241 0.106 0.260 0.128
0.8 | 0.168 0.168 0.064 0.070 0.071 0.062 0472 0.158 0.272 0.160
P ] (61) 05019 0207 0307 0.191 0240 0.343 0377 0225 0.358 0.249
0.8 0258 0.247 0367 0.140 0.144 0226 0.566 0.276 0.396 0.271
(6.2) 05 |0201 0217 0317 0.184 0249 0.354 0373 0.229 0.358 0.248
0.8 |0.249 0276 0409 0122 0170 0270 0.568 0.279 0.390 0.264
P | (61) 05]0193 0269 0224 0158 0.360 0262 0387 0225 0327 0217
0.8 [ 0.206 0.533 0.227 0.080 0501 0.160 0.564 0.278 0.357 0.269

(6.2) 0.5 |0.197 0.272 0.231 0.153 0.351 0.258 0.397 0.233 0.337 0.212
0.8 | 0215 0.526 0.235 0.080 0.510 0.158 0.586 0.302 0.376 0.280
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Table 5. Empirical Sizes of Tests, T'= 200, T} = 100, ¢ = —7/ — 13.5, Nominal

Significance Level 5%, Random Initial Values

Shift Test
func‘:ion DGP b1 Tg&L ngj T;i(]]' TS&L Tadj T;ii t%MS tgdj tLMS tadj
7 1 (6.1) 050059 0059 0054 0.060 0.061 0.053 0.082 0.070 0.082 0.064
0.8 | 0.057 0.057 0.042 0.057 0.057 0.051 0.214 0.069 0.152 0.069
(6.2) 0.5 |0.057 0.057 0.052 0.059 0.061 0.053 0.084 0.071 0.084 0.064
0.8 | 0.052 0.052 0.041 0.057 0.058 0.050 0.217 0.069 0.167 0.073
2 1 (6.1) 050134 0141 0154 0.107 0.129 0.145 0.176 0.144 0.122 0.127
0.8 | 0.083 0.089 0.127 0.08% 0.100 0.129 0.348 0.147 0217 0.124
(6.2) 050133 0141 0158 0.111 0.136 0.155 0.172 0.141 0.122 0.128
0.8 | 0.086 0.098 0.144 0.087 0.123 0.167 0.339 0.140 0.227 0.129
P | (6.1) 050131 0156 0.145 0.093 0.135 0.123 0.184 0.148 0.127 0.121
0.8 | 0.090 0.226 0.101 0.059 0.312 0.090 0.355 0.143 0.203 0.111
(6.2) 050129 0159 0.149 0.095 0.133 0.120 0.181 0.151 0.130 0.125
0.8 | 0.088 0.234 0.107 0.063 0.322 0.097 0.367 0.153 0.210 0.119

Table 6. Relative Rejection Frequencies of Tests, T' = 100, 77 = 50, ¢ = 0, Nominal

Significance Level 5%, Random Initial Values

Shift DGP (6.1), b, =0.5 | DGP (6.1),b, =0.8 | DGP (6.2), by =0.5 DGP (6.2), b, =0.8
function | Test | p=1 0.9 08 | p=1 0.9 08 | p=1 09 08 | p=1 0.9 0.8
ft(l) 70,1 0.039 0291 0.535| 0.016 0.156 0.315 | 0.040 0.285 0.527 | 0.020 0.140 0.275
T;ij 0.063 0.353 0.590 | 0.050 0.292 0.436 | 0.061 0.343 0.575 | 0.063 0.287 0.382
t0, | 0.054 0.292 0.561 | 0.067 0.234 0.354 | 0.060 0.289 0.577 | 0.065 0.227 0.345
Tint | 0.020 0.090 0.302 | 0.000 0.006 0.034 | 0.022 0.091 0.305 | 0.001 0.004 0.029
7t, 1 0.080 0.233 0.526 | 0.065 0.167 0.286 | 0.075 0.216 0.499 | 0.064 0.149 0.262
tine | 0.081 0.217 0455 | 0.077 0.159 0.268 | 0.079 0.216 0.468 | 0.079 0.161 0.269
ft(2) 7910063 0.247 0.486 | 0.036 0.145 0.263 | 0.064 0.259 0.486 | 0.046 0.158 0.281
T;:ij 0.069 0.253 0.496 | 0.042 0.166 0.281 | 0.072 0.266 0.491 | 0.049 0.176 0.299
t?, | 0.100 0.286 0.547 | 0.099 0.238 0.361 | 0.095 0.306 0.535 | 0.088 0.227 0.366
Tint | 0.056 0.142 0.348 | 0.018 0.034 0.059 | 0.051 0.157 0.358 | 0.022 0.040 0.085
T;;t 0.059 0.150 0.362 | 0.031 0.048 0.080 | 0.059 0.160 0.371 | 0.026 0.051 0.116
tine | 0.135 0.288 0.509 | 0.141 0.237 0.330 | 0.134 0.290 0.505 | 0.134 0.244 0.355
ft(3) 0. 10064 0.266 0.417 | 0.079 0.223 0.302 | 0.060 0.268 0.426 | 0.082 0.217 0.293
T;:ij 0.059 0.249 0.404 | 0.037 0.144 0.249 | 0.056 0.252 0.418 | 0.036 0.140 0.243
t?, | 0.110 0.259 0.435 | 0.105 0.208 0.293 | 0.108 0.268 0.445 | 0.101 0.217 0.304
Tine | 0.060 0.141 0.322 | 0.074 0.086 0.133 | 0.062 0.146 0.325 | 0.072 0.091 0.134
T;;t 0.048 0.120 0.314 | 0.016 0.028 0.064 | 0.062 0.129 0.317 | 0.014 0.029 0.068
tine | 0.134 0.278 0.468 | 0.140 0.213 0.314 | 0.135 0.279 0474 | 0.129 0.229 0.322
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Table 7. Relative Rejection Frequencies of Tests, 7" = 200, 77 = 100, ¢ = 0, Nominal
Significance Level 5%, Random Initial Values

Shift DGP (6.1), by = 0.5 | DGP (6.1), b =08 | DGP (6.2), b = 0.5 | DGP (6.2), b; = 0.8
function | Test | p=1 0.9 0.8 [ p=1 0.9 08 [ p=1 0.9 08 [p=1 0.9 0.8
172, [ 0035 0653 0867 | 0.017 0494 0.726 | 0.033 0.633 0.850 | 0.017 0.472 0.650
T(j;ij 0.050 0.693 0.878 | 0.041 0.591 0.774 | 0.044 0.678 0.869 | 0.040 0.556 0.706
t?nt 0.055 0.698 0.966 | 0.064 0.495 0.799 | 0.063 0.703 0.964 | 0.058 0.519 0.781
Tintg | 0.028 0.469 0.907 | 0.009 0.130 0.513 | 0.024 0.466 0.899 | 0.007 0.125 0.476
Ti';t 0.050 0.617 0.943 | 0.064 0.434 0.753 | 0.063 0.613 0.933 | 0.061 0.415 0.732
tine | 0.059 0.556 0.910 | 0.058 0.387 0.675 | 0.061 0.568 0.913 | 0.062 0.394 0.687
ft(2) ng- 0.051 0.610 0.819 | 0.028 0.472 0.684 | 0.0563 0.608 0.810 | 0.028 0.464 0.656
T(j;ij 0.051 0.614 0.824 | 0.033 0.482 0.691 | 0.053 0.614 0.812 | 0.029 0.474 0.664
t?nt 0.071 0.629 0.904 | 0.068 0.474 0.724 | 0.073 0.631 0.907 | 0.067 0.476 0.708
Tint | 0.046 0489 0.844 | 0.011 0.142 0.509 | 0.047 0.491 0.896 | 0.011 0.161 0.511
Ti';t 0.044 0.492 0.891 | 0.020 0.174 0.531 | 0.043 0.497 0.889 | 0.020 0.195 0.534
tine | 0.071 0.558 0.877 | 0.075 0.398 0.682 | 0.074 0.559 0.867 | 0.077 0.393 0.658
ft(S) ng- 0.049 0.571 0.747 | 0.0561 0.507 0.656 | 0.045 0.553 0.742 | 0.050 0.492 0.637
T;:ij 0.046 0.563 0.741 | 0.028 0.463 0.635 | 0.043 0.542 0.737 | 0.026 0.447 0.619
t?nt 0.068 0.534 0.809 | 0.074 0.385 0.625 | 0.065 0.536 0.802 | 0.067 0.389 0.596
Tint | 0.051 0.484 0.854 | 0.075 0.241 0.512 | 0.042 0.488 0.861 | 0.075 0.237 0.529
Ti';t 0.036 0.479 0.856 | 0.012 0.167 0486 | 0.034 0.473 0.861 | 0.013 0.170 0.497
tine | 0.075 0.545 0.862 | 0.075 0.389 0.634 | 0.079 0.552 0.861 | 0.082 0.399 0.645
Table 8. Relative Rejection Frequencies of Tests, T = 100, 77 = 50, ¢ = 0, Nominal
Significance Level 5%, Zero Initial Values
Shift DGP (6.1), by = 0.5 | DGP (6.1), b =0.8 | DGP (6.2), by = 0.5 | DGP (6.2), b; = 0.8
function | Test | p=1 0.9 08 | p=1 0.9 08 | p=1 09 08 | p=1 0.9 0.8
fU 172, [ 0049 0512 0845 | 0.015 0.259 0.584 | 0.044 0.446 0.730 | 0.017 0.210 0.404
T(j;ij 0.067 0.617 0.889 | 0.066 0.487 0.751 | 0.069 0.560 0.785 | 0.067 0.427 0.580
t?nt 0.047 0.257 0.596 | 0.046 0.197 0.327 | 0.060 0.271 0.594 | 0.053 0.208 0.329
Tine | 0.021 0.094 0.325 | 0.001 0.005 0.043 | 0.019 0.091 0.317 | 0.002 0.004 0.032
Tiflt 0.072 0.238 0.571 | 0.072 0.181 0.321 | 0.070 0.229 0.559 | 0.070 0.190 0.317
tine | 0.067 0.245 0.583 | 0.073 0.171 0.310 | 0.067 0.244 0.561 | 0.067 0.170 0.319
ft(Q) ng- 0.055 0.459 0.782 | 0.024 0.248 0.500 | 0.057 0.414 0.668 | 0.032 0.246 0.435
T;:ij 0.059 0476 0.786 | 0.024 0.269 0.517 | 0.064 0.427 0.681 | 0.034 0.271 0.451
t?nt 0.083 0.288 0.570 | 0.085 0.219 0.336 | 0.088 0.296 0.560 | 0.095 0.203 0.344
Tine | 0.041 0.150 0.366 | 0.009 0.033 0.068 | 0.046 0.142 0.349 | 0.011 0.037 0.088
Tiflt 0.052 0.157 0.391 | 0.017 0.038 0.083 | 0.063 0.155 0.373 | 0.021 0.045 0.115
tine | 0.136 0.340 0.588 | 0.130 0.260 0.379 | 0.129 0.316 0.562 | 0.126 0.251 0.370
ft(3) ng- 0.058 0.420 0.630 | 0.049 0.319 0.496 | 0.061 0.402 0.559 | 0.055 0.312 0.463
T;:ij 0.052 0.394 0.624 | 0.023 0.245 0.457 | 0.064 0.375 0.550 | 0.027 0.237 0.401
t?, | 0.112 0.213 0.400 | 0.120 0.174 0.250 | 0.106 0.230 0.409 | 0.115 0.170 0.257
Tint | 0.054 0.157 0.379 | 0.046 0.076 0.133 | 0.0564 0.153 0.360 | 0.0561 0.094 0.135
T;Lt 0.043 0.140 0.365 | 0.009 0.026 0.072 | 0.043 0.132 0.348 | 0.009 0.029 0.078
tine | 0.126 0.276 0.467 | 0.132 0.211 0.308 | 0.128 0.272 0.475 | 0.136 0.224 0.318
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Table 9. Relative Rejection Frequencies of Tests, T = 100, 77 = 50, ¢ = 0, Nominal
Significance Level 5%, Initial Values 5

Shift DGP (6.1), by = 0.5 | DGP (6.1), b =0.8 | DGP (6.2), b = 0.5 | DGP (6.2), b; = 0.8
function | Test | p=1 09 08 |p=1 09 08 |p=1 09 08 |p=1 09 08
Ff 170 10049 0126 0104 | 0015 0180 0.234 | 0.042 0.044 0.053 | 0.016 0.166 0.151
T | 0.067 0168 0147 | 0.066 0.372 0.405 | 0.064 0.066 0.070 | 0.046 0.349 0.272
t0. | 0.064 0.261 0.593 | 0.066 0.183 0.311 | 0.067 0.329 0.659 | 0.062 0.243 0.410
Tint | 0021 0.084 0.265 | 0.001 0.004 0.034 | 0.021 0.060 0.155 | 0.001 0.002 0.017
it | 0072 0214 0429 | 0.072 0.179 0.293 | 0.068 0.189 0.292 | 0.062 0.222 0.298
tine | 0.070 0.208 0.421 | 0.077 0.169 0.263 | 0.076 0.166 0.311 | 0.080 0.133 0.177
fP 170 10055 0162 0153|0024 0.190 0.260 | 0.062 0.041 0.059 | 0.037 0.164 0.105
T | 0059 0165 0168 | 0.024 0.203 0.270 | 0.069 0.045 0.063 | 0.055 0.194 0.120
t0. | 0.094 0.292 0.580 | 0.095 0.204 0.330 | 0.095 0.355 0.665 | 0.104 0.270 0.413
Tt | 0.041 0117 0.231 | 0.009 0.032 0.066 | 0.047 0.096 0.166 | 0.011 0.032 0.060
rh, 1 0052 0126 0.226 | 0.017 0.042 0.082 | 0.051 0.116 0.160 | 0.025 0.106 0.140
tine | 0122 0.243 0.373 | 0.133 0.222 0.300 | 0.116 0.190 0.272 | 0.146 0.181 0.197
f& 170 [ 0058 0.182 0170 | 0.048 0.256 0.296 | 0.072 0.053 0.050 | 0.185 0.279 0.137
T [ 0052 0161 0157 | 0.023 0189 0.245 | 0.056 0.047 0.045 | 0.027 0.142 0.087
t0 | 0112 0.268 0.506 | 0.120 0.185 0.288 | 0.111 0.333 0.585 | 0.125 0.231 0.362
T | 0.053 0137 0.262 | 0.046 0.081 0.121 | 0.057 0.144 0.216 | 0.173 0.283 0.264
b, 1 0.043 0124 0.248 | 0.009 0.031 0.071 | 0.045 0.111 0.199 | 0.012 0.055 0.121
tine | 0.126 0.268 0.435 | 0.132 0.216 0.298 | 0.117 0.253 0.391 | 0.139 0.199 0.260
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