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Strategies, Heuristics and the Relevance of Risk
Aversion in a Dynamic Decision Problem®

Wieland Miiller
Humboldt—University Berlin'

August 20, 1999

Abstract

In this paper I consider a complex decision problem where subjects have to
cope with a time horizon of uncertain duration and must update their termination
probabilities which depend on stochastic events during “life”. First I describe how
economic theory suggests to solve the decision problem. But since real decision
makers can hardly be expected to behave according to the theoretical solution in
the problem at hand, I describe several heuristics or rules of thumb and investigate
their theoretical performance. Then observed behavior and the way how people
tackled the problem is described. In the second part of the paper I discuss how
much of the data can be explained by assuming that experimental subjects are risk
averse.

1. Introduction

How people solve dynamic decision problems does not seem to be a well developed area
of experimental research, but recently things have begun to change. There are experi-
mental studies like Johnson, Kotlikoff and Samuelson (1987), Hey and Dardanoni (1988)
and more recently Fehr and Zych (1995) and Anderhub et al. (1997) that investigate
dynamic decision making in saving and consumption contexts in either a deterministic or
a stochastic environment. These studies provide interesting insights into human decision
making in dynamic situations but their main focus is on whether people behave according
to theoretical predictions.

It is only recently that attention has been paid to the question of how people actually
solve dynamic decision problems. For example, Carbone and Hey (1997) investigate what
people do when faced with a fairly easy dynamic decision problem. The authors find that
only a few subjects use Backward Induction (BI) in a consistent and thorough manner,
although most people try to use BI. Kéhler (1996) gives a report of an experimental
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investigation of consumption under uncertainty. Subjects are offered a trial facility which
enables them to try out different consumption patterns before the actual decision is made.
Kohler identifies three different types of strategies within the trial calculations: in a
“learning”-strategy a subject performs more than one trial in one of the first two periods;
a “rolling”-strategy is performed if no two consecutive periods elapse without trials and
in a “fixed end”-strategy a subject performs trials in three consecutive periods each time
assuming the same end period.

This study tries to contribute to the discussion of intertemporal decision making by further
investigating an experiment by Anderhub et al. (1997). While the latter study explores
whether subjects’ behavior is at least qualitatively as prescribed by the optimal solution,
we here focus on strategies or heuristics that have been used and subjects’ attitudes
towards risk.

In their experiment Anderhub et al. (1997) basically design a consumption environment
with an uncertain time horizon. Moreover, a new feature is added to this more traditional
setup by only successively revealing the individual termination probability. More precisely,
in each of the twelve rounds of the experiment a participant is given an amount of money,
S1, which he is asked to distribute over an uncertain number of periods. At the beginning
of a round a participant only knows that he is going to “live” for at least three and at most
for six periods. However, after the third period independent and identical chance moves
decide whether or not a participant is going to experience a new period. There are three
different termination probabilities, 0 < wy < we < w3 < 1. When deciding on a round’s
first consumption level, z; (< Sy), each of the three probabilities appear as equally likely to
decide after the third period whether or not this round continues with a new period. Before
deciding on the second consumption level, 2o (< S; — x1), one of the three probabilities
is randomly excluded so that at this stage a participant should update his individual
termination probability accordingly. After the decision on the second consumption choice
is made one of the two remaining probabilities is randomly eliminated. Thus it is only
when a participant decides on the round’s third consumption level, z3 (< S; — x1 — 25),
that he knows which of the three possible termination probabilities will be the actual one
in the present and up to the fifth period of the current round. In a case where a subject
reaches the sixth period the round ends with certainty. The payoff of one round is equal to
the product of all consumption levels chosen in the periods of that round. (For instance,
if a round ends in the fifth period the payoff for that round is x; - x5+ 3+ x4 - 5. Note, on
the one hand, that in a case where a subject reaches a period without having any money
left a zero-payoff results. On the other hand, any money not spent in the course of a
round is worthless.)

When solving such a dynamic decision problem involving uncertainty economic theory
expects subjects to rely on BI. The analytical solution of this specific problem, however,
is extremely difficult to obtain. In fact one has to rely on numerical techniques in order
to derive the optimal solution assuming a risk-neutral decision maker (see Section 3.1).
For the optimal solution to be a useful prediction of actual play, subjects should be able
to arrive at this solution, though not necessarily by using the same techniques (Friedman,
1953). In the light of the difficulties involved with the derivation of optimal behavior
for the problem at hand, it is questionable if the optimal solution is a useful predictor
or a “useful approximation” (see Roth 1996) for the behavior of boundedly rational de-
cision makers. However, the problem at hand-although somewhat artificial in nature—is



Remaining 11.92 DM Excluded

Figure 2.1: Example of one round

of practical relevance since it involves aspects of savings decisions that also occur in real
life. More generally, the findings in this area of research do not only have implications
for consumer behavior. They also tell us something about decisions made by managers
or politicians. Therefore, it is both interesting and important to find out how human
decision makers behave in a situation as complex as the one at hand.

The experimental situation certainly belongs to the class of problems, in which as argued
by Hey (1983, p. 137) “it is simply impossible to carry out the backward induction
procedure” at least for an experimental subject who faces a narrow time constraint. Thus
it is more likely that subjects rely on heuristics and apply some forward-looking procedures
as already mentioned by Hey (1983). This is also suggested by the data generated in this
experiment.

The remainder of the paper is organized as follows: After introducing the experimental
design in section 2, in section 3 the optimal solution of the decision problem will be pre-
sented as well as several simpler strategies and heuristics. In section 4 observed (average
and individual) behavior will be described. Section 5 theoretically investigates the effects
of risk aversion for the experimental situation and shows that these results are relevant
for explaining observed data. Finally, the findings are summarized in section 6.

2. The Experiment

The experiment consists of 12 rounds. At the beginning of each round a participant
is given an amount of 11.92 DM (refer to Figure 2.1). In each round the task is to
distribute this amount over an uncertain number of periods. All a participant knows at
the beginning of each round is that the round will consist of at least 3 and at most of 6
periods, i.e. the actual number of periods, T', in one round of the game is a stochastic
variable whose range is the set of numbers {3,4,5,6}. After the third period an identical
and independent random move decides whether or not a subject reaches the next period.
Thus after deciding on the consumption level z; (3 < i < 5) with probability w € (0,1)



the round ends in which case the subject earns the payoff U = [[%_, 23 in that round.
With probability 1 —w the round continues with period 7 4+ 1. In the case where a subject
reaches the sixth period of a round the computer invests any money left over. There are
three different termination probabilities, namely w € {%, %, %} At the beginning of each
round the players do not know which of the three termination probabilities will be applied
from the third period on. The information about this is only successively revealed during
the first two periods of a round. The players are told that after confirming the choice
of x1 one of the three probabilities is randomly excluded and that after confirming the
choice of x9one of the remaining two probabilities is randomly excluded. Thus, a player
does not know before the third period which of the three probabilities will be applied
from then on. The three different termination probabilities were represented by dice of
different colors: w = % was represented by a red die, w = % by a yellow die and w = é by
a green die. Players are told that from the third period on the relevant die will be thrown
by the computer and they are informed which points the die has to show in order to reach
a new period. For instance, if the red die shows the numbers 4,5 or 6 the participant
reaches the next period (see Appendix D.1 for details). In the example shown in Figure
2.1 first the yellow and then the green die was excluded so that it is the red die (standing
for the termination probability w = %) deciding from the third period on whether or not
there is a new period.

Because of the three different dice or termination probabilities there are altogether 6
possible sequences of initial chance moves (first red die excl. then yellow die excl. such
that the green die applies, and so on ...). Fach participant plays all six sequences in
a random order before they are repeated in another random order.! The first (second)
random order including rounds 1 to 6 (7 to 12) will be referred to as the first (second)
cycle. The random orders are separately drawn for each subject.

Moreover, before the first decision, participants are asked whether they want to be paid
according to the average payoff of all twelve rounds or according to the payoff of one
randomly selected round which, of course, is drawn after the experiment. The comput-
erised experiment was run in several sessions with a total of 50 participants who earned

on average DM 27.62.

3. How to solve the decision problem?

3.1. Economic theory

e Backward Induction € Principle of Optimality (BI)

Standard economic theory expects a decision maker to work backwards through the de-
cision tree taking into account the principle of optimality. This principle states that the
decision at any node in the tree has to be optimal given optimal behavior thereafter. For
the problem at hand this implies that a subject first has to determine optimal behavior in
the fifth period for every possible history in the game. Then a subject has to determine
optimal behavior in the fourth period taking into account the optimal behavior in the
fifth period and so on until the first period is reached. Note that when deciding on the

I This procedure was chosen in order to obtain comparable decisions. We did not find evidence that
participants noticed this weak regularity.
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Figure 3.1: Optimal consumption behavior

optimal behavior in the second (in the first) period the termination probability can as-
sume two (three) values. This together with the special form of the payoff function makes
it extremely difficult to solve this game analytically (even by assuming a risk-neutral de-
cision maker). Anderhub et al. (1997) rely on numerical methods to find the solution
for a risk-neutral decision maker. The trajectories of the solution are displayed in Figure
3.1. (The small numbers on top of the boxes indicate the residual funds available to the
decision maker at the beginning of a new period.)

The BI solution will serve as a benchmark for good performance. Throughout the paper
this solution will be referred to as the optimal solution. Note that the optimal solution
reacts sensitively to all chance moves. For example if the order of die exclusion is —green,
—yellow such that the red die (highest termination probability) is the remaining one the
termination probability has to be gradually updated upwards. The obvious consequence
is that consumption must increase during the first three periods. Similarly, if the order
of exclusion is —red, —yellow such that the green die (lowest termination probability) is
the remaining one the termination probability has to be gradually updated downwards
with the consequence that consumption must decrease during the first three periods.
Furthermore, consumption decreases from the third period on for all six sequences of
initial chance moves.

3.2. (Simple) Strategies and Heuristics

In this section several strategies and heuristics will be described that are tailored to the
problem at hand.

o Fxpected number of periods (ENP)

The idea of this strategy is to set current consumption equal to current wealth divided by
the expected number of remaining periods (see Figure 3.2). For example at the beginning
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Figure 3.2: Expected number of period strategy

of each round the expected number of periods? is 4.46. Thus, this strategy suggests to
set 1 = 11.92/4.46 =~ 2.67. Note that this strategy proceeds forward when determining
the decision. The most difficult task is of course to compute the expected number of
remaining periods. Whereas there is little chance that the BI solution might be computed
or heuristically approximated by an experimental subject—at least in the earlier periods—
this is more likely for ENP. This is especially true for later periods for which the exact
computation of the expected number of remaining periods becomes easier.

e FEquiprobability (EQP)

The Equiprobability heuristic that is often mentioned in the literature (see for instance
Johnson and Payne, 1985) ignores the fact that different outcomes occur with different
probabilities and treats all events as equally likely. Mathematically, the problem can be
stated as follows

1
1(T17973 + T1 79374 + T1T9T3T4 T + T1 T T3T4T5T6) — Max!

subject to 2; > 0 (i = 1,2,...,6) and Y%, z; < 11.92.
The necessary and sufficient conditions imply
2] =xy =x3 =250, z)=2.22 xf=1.60, xzz=.60.
e Avoidance of Payoff Uncertainty (APU)

Adopting this strategy a player tries to achieve the same payoff for all possible courses
of the game. Thus he has to make sure that x1Zex3 = Z1T9x3x4 = T1X9X3T4T5 =
T1T9x3%4T5%¢ from which one concludes zj = xf = 2§ =1 and 1 + z9 + 23 = 11.92 -3 =
8.92 implying z} = x} = x5 = 8.92/3 = 2.97 (z; = 2.98).

2These numbers appear at the top left-hand side of the boxes in Figure 3.2.
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Strategy/ Exp. Std.  Eff. Min. Max. ot Oops

Heuristic Payoff Dev. Payoff Payoff
BI 35.16 18.25 1.00 0 57.718 0 .35
ENP 33.59 1144 96 14.38 50.14 .31 .09
EQP 30.64 12,69 .87 15.25 55.15 .48 .37
APU 26.29 0 S50 26.29  26.29 .74 41
2 30.55 23.04 87 800 6144 .70 .68
MAX 24.89 29.68 .71 0 78.86 .89 .89

Av. Obs. Beh. (2762 156 .79 0 7886 .35 O

Table 3.1: Strategies and Heuristics

In order to relate the various strategies and heuristics described above to the optimal
solution (BI) Table 3.1 shows some of their characteristics such as expected, minimal,
and maximal payoff and efficiency which is defined as the expected payoff of a given
strategy/heuristic divided by the expected payoff of the optimal solution implying, for
example, the value 1 for the latter. Furthermore, the value 6, gives the mean of the
absolute deviation (cell by cell) of a given strategy/heuristic from the optimal solution.
Formally, §,,x = 55 pOF ‘mé) — Pl ‘ where m,g') (zPT) are the consumption levels of a given
strategy or heuristic (of the BI solution) for each of the 28 nodes of the decision tree.
For example, the ENP strategy differs on average by .31 payoff units per cell from the
optimal solution. (For the rows “2” and “MAX” and the value 6, see the next section.)

4. Observed Behavior

4.1. Average observed behavior

Figure 4.1 shows the mean, minimum, maximum and the variance of observed decisions
at all nodes (the numbers of cases are given above each box). The line above or below
each box indicates whether the given mean value lies above or below the corresponding
value of the optimal solution.

At the end of the previous section the measure §,,; was introduced in order to relate the
various strategies and heuristics to the optimal solution. The measure 6, is similarly
constructed but this time with reference to average observed behavior as shown in Figure
4.1. Thus, 6,5 measures the mean absolute deviation (per cell) of a particular strat-
egy /heuristic from average observed behavior (see Table 3.1). The result is striking since
according to this measure the strategy ENP fits the data best and is about four times
closer to (average) observed behavior than the optimal solution.

The fact that the strategy ENP explains average decisions much better than the optimal
solution remains true if one uses the dynamically adjusted solutions in order to compute
the d,ps-measure, i.e. observed data was compared with the decisions that would have
been the correct ones (according to both strategies) given the—for the most part—wrong
decisions in former periods. The values of the measure 6,5 are now .09 and .27 payoff
units for the dynamically adjusted strategy ENP and the dynamically adjusted optimal
solution, respectively.? Thus the forward working strategy ENP seems to be a serious

3Note that this time only the decisions up to the fifth round were included in order to compute the
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Figure 4.1: Average observed behavior




alternative to the backward working optimal solution.

4.2. Behavioral patterns

Although aggregated behavior is quite impressive in the sense that it reacts to information
qualitatively in the same way as the optimal solution does, behavior on the individual
level varies considerably. First of all individuals seem to differ in the degree to which they
understand the rules and the highly stochastic nature of the decision problem. There
are only few participants who act consistently and at least in a qualitatively correct way
across rounds and periods. Some participants start out very consistently at the beginning
of one round but then their decisions become less thought-out.

In this section observed behavior will be described in more detail. This is done in order to
find out whether there is evidence on the individual level for the strategies and heuristics
described above and whether there are other rules of thumb used by experimental subjects.
Initially, it seems almost impossible to categorize the individual data. But by looking very
closely at the individual decisions it is possible to “understand” about half of the data.
Because of the complexity of the problem it is reasonable to concentrate our attention to
the second cycle of the game. Although one cannot assume that play has converged in
the second cycle it is at least more likely that at this stage subjects have understood the
rules of the game and that they are familiar using the computer.

The patterns of behavior as described below are not always based on clear definitions.
They solely try to reflect certain features of behavior that become apparent when one looks
at the data. The hope, however, is to provide some stylized facts about the important
question of how subjects try to solve the dynamic decision problem.

o Qualitatively optimal behavior

Subjects in this group display the same qualitative behavior as the optimal solution (or all
strategies which do not ignore information). They start in each of the six rounds with the
same moderate value for x; and their reactions to all the information is qualitatively cor-
rect (and also consistent with respect to xs) i.e., they increase/decrease consumption after
“bad news” / “good news”. Furthermore, consumption decreases from the third period on.
An example is shown in Table 4.1.*

o (Consistent but not qualitatively optimal behavior

Subjects in this group meet three optimality criteria: (1) they rely on the same z1-choice
in all six rounds of the second cycle, (2) they react consistently to the exclusion of the
first die i.e., after the exclusion of a particular die at the first chance move they rely
on the same® choice for x9 and (3) consumption is monotonically decreasing from the
third period on. Because of the first two features it is very likely that subjects in this
group had a certain plan when generating their decisions. But despite these consistencies
subjects in this group are different from subjects in the above group since their reactions

measure Opps.

4Note that the decisions are not ordered according to the number of rounds but according to the
sequences of initial chance moves. Furthermore, recall that Sy = 11.92 — Z?=1 z;, i.e. Sy denotes the
remaining fund available before deciding about z4.

5 Actually, these values vary at most by 0.10 units, if at all.
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rd. x; 1.die x9 2 die x3 rem. die Sy X4 Xs Xg  payoff

7 293 gr 3.30  yell. 4.10 red 1.59 1.00 0.45 17.84
8 293 yell. 293 gr. 4.23 red 1.83 1.20 43.58
9 293 g 330 red 3.20 yell. 2.49 30.94
11 293 red 280 gr. 3.30 yell. 2.89 27.07

10 293 yell. 293 red 250 gr. 3.56 1.67 1.11 0.78 31.03
12 293 red 280 yell. 250 gr. 3.69 1.60 1.20 0.89 35.00

Table 4.1: Example for qualitatively optimal behavior

rd. x; 1ldie xo 2die x3 rem.die Sy X4 Xs xg  payoff
8 392 gr. 200 Yell. 3.00 red 3.00 1.00 1.00 23.52
10 3.92 yell. 200 Gr. 3.00 red 3.00 1.00 23.52
7 392 gr. 200 Red 3.00 yell. 3.00 23.52

12 392 red 200 Gr. 3.00 yell. 3.00 1.00 1.00 1.00 23.52
9 392 yell. 2.00 Red 2.00 gr. 4.00 200 1.00 1.00 31.36
11 392 red 200 Yell. 2.00 gar. 4.00 2.00 31.36

Table 4.2: Example for consistent but qualitatively not optimal behavior

to information is not qualitatively correct. They either choose a rather low/high z;-value
such that consumption in the second period always increases/decreases or their reactions
to the exclusion of the second die are qualitatively incorrect.

Some subjects in this group display another interesting tendency: they partially ignore
information. One example is shown in Table 4.2. This subject totally ignores the in-
formation concerning the exclusion of the first die and partially ignores the information
concerning the exclusion of the second die. (S)He relies on the same choice in the second
period and on only two different choices in the third period. It is likely that the represen-
tation of the decision tree in this subject’s mind is as shown in Figure 4.2. This subject’s
behavior is also interesting in the uncertain periods: Within the first four sequences (s)he
saves exactly DM 3 for the uncertain periods and spends exactly DM 1 in each of the
uncertain periods with the result that the payoff that was built during the first periods is
maintained. This is a variant of the APU strategy. However, since this subject does not
allocate the money evenly during the first three periods (s)he incurs a loss of DM 2.77
as compared to the proper APU strategy. The behavior of this subject is different if the
green die applies. Now DM 4 are saved for the uncertain periods in order to spend DM 2
in the fourth period and DM 1 each time the fifth or sixth period is reached. This might
be inferred from this subject’s decisions.

o “Go-for-the-mazximum” policy

The highest possible payoff that can be earned in one round is DM 78.86 by (correctly)
guessing that the current round will consist of exactly 4 periods and allocating the initial
amount of DM 11.92 evenly (11.92/4 = 2.98) to these periods. There was one very risk-
loving subject who was aware of this fact and who tried to reach the maximal payoff
at least when the red or yellow die applied. In the course of the 12 rounds this subject

10
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Figure 4.2: Representation of the problem by the subject of Table 4.3.

earned 3 times the maximal payoff.® This subject deviates from the risky behavior only
within the first two rounds where (s)he experiments a bit or when the green die applies.”
Some characteristics of this strategy are shown in Table 3.1.

o Cautious policy

The behavior of subjects in this group is best described as “cautious”. These subjects
save far more during the certain periods than prescribed by the optimal solution. Subjects
in this group also show very irrational behavior. For example one subject chose only DM
0.10 in the first period of round 4. Another subject had DM 3.00 left in two rounds in
which (s)he reached the sixth period with the red die.

o Wait-and-see policy

The subjects in this group act cautiously but reasonably during the first two periods.
They almost entirely ignore the information concerning the exclusion of the first die and
it seems as if they wait until the uncertainty about the termination probability is resolved.
Then they strongly react to the information regarding the remaining die via the x3 - choice.

o “27_heuristic

This heuristic simply prescribes 2] = 25 = x5 = z} = x; = 2.00 and z§ = 1.92 disre-
garding the possible sequences of initial chance moves and probabilities. This heuristic
is based on the observation that if one experiences 6 periods in one round it would be
optimal (ex post) to choose 11.92/6 ~ 1.99 in every period. (See also Table 3.1.)

5In the fourth period of round 7 this subject chose only 2.90 instead of 2.98 in the fourth period
implying a payoff of only 76.74.

"For those readers interested in such details: This subject decided before the game to be paid according
to a randomly chosen round and although he earned the highest average payoff (DM 40.88) his actual
payment was only DM 2.73.
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This simple strategy is of significance with regard to observed behavior. There is one sub-
ject who applied this strategy in all 12 rounds of the game.® Furthermore, if one relaxes
the above conditions and allows for 1.90 < zq, 29, 23, 24, T5, g < 2.10 one observes that
this strategy is used in 43 cases by 18 different subjects including the one who used this
strategy throughout the experiment.’ Altogether, this strategy was used in 7.2 % of all
cases.

e 'I'rial policy

Subjects in this group give the impression that they did not fully understand the rules
of the game or that it was too much for them to deal with the problem reasonably at
least at the beginning of each round. The standard deviations of the decisions in the first
two periods confirm what immediately seems to be the case: These subjects’ behavior
varies much more as compared to all of the other subjects!’. It seems as if they simply
try out certain kinds of behavior and that they are still experimenting in the second cycle.

Other patterns observed include a strong reaction to the first excluded die by choosing
above-average r, values or mixing up the probabilities of the dice. In the latter case
subjects save more than twice as much for the uncertain periods in case the red die
(highest termination probability) remains than in case the green die (lowest termination
probability) remains. Another policy observed is that some subjects allocate their money
during the first three periods in such a way that they have a certain (and different) amount
left for each of the three different remaining termination probabilities.

The patterns'! described above suggest that subjects do not work backwards through
the decision tree in order to solve the problem but rather apply some forward-looking
strategies and /or heuristics. Recall that with regard to the 6,5 - measure (see subsection
6.4.1) the strategy ENP fits average observed data about three (four) times better than
the optimal BI solution. It is true that we could not find strong evidence that subjects
used ENP properly. There are several possible explanations for that. It might be that
subjects were simply not willing to spend the effort necessary to compute the expected
number of remaining periods exactly. They may have used rough estimates of these
numbers that varied from round to round. However, lacking another serious alternative it
is useful to examine how well the two competing strategies—BI and ENP—-do against the
data. For each subject the predictions provided by the two strategies for periods 2 to 5
were calculated using the observed decisions of earlier periods i.e., it was calculated what
the strategies would have prescribed for a certain decision node given the actual wealth.
For periods 2 to 5 the adjustment equation given in Table 4.3 was estimated for the pooled
sample with all but two subjects. The decisions of the two subjects who adopted the “go-
for the maximum” and the pure “2” strategy, resp., (as described above) were removed

81n the first period he actually chose DM 1.99 when called upon to act.

9This kind of strategy can be clearly observed in sequences where the green die remained (29 cases).
It was used in 9 cases when the yellow red die remained and in 5 cases when the red die remained.

10The mean of the standard deviations of the decisions in the first two periods for all subjects is .34,
and excluding that group .24, whereas it is 1.49 for the group of these four subjects alone.

L The number of subjects belonging to the groups described above are usually small (2 to4 members).
The only exception is the group ” Consistent but not qualitatively optimal behavior” that consists of 8
subjects.

12



Estimating equation:
xgbsz/60+/61xtENP+/62xtBI+€; t:2:"75

Bo /61** B adj. R?
b=2: Eif)?)) (5336) '(fgn AT
3 Ty oy (o) O
I At
b=5: '(?16?}3) (526770) (2????2) 846

Table 4.3: Results of the regression.
Note: ** (*) significant at 1 % (5 %) level. Standard deviations in parentheses. Subject
dummies were used.

from the data set since these strategies do not react on information about the exclusion
of dice. Furthermore, only decisions made in the second cycle, i.e. in rounds 7 to 12 were
included. The independent variable in the adjustment equation given in Table 4.3, 2%,
is the observed decision in round ¢ (¢t = 2,..,5). The two explanatory variables included
are the decisions predicted by ENP, zENP and BI, zBI. The coefficients in Table 4.3
indicate how important the explanatory variables are for each period.

Note first of all that the explanatory variables become more and more relevant the higher
the number of periods which is indicated by the adjusted R? measure. Furthermore, the
coefficient 3,—measuring the relative importance of the ENP strategy—is always positive
and much higher than the coefficient 3, suggesting that subjects use at least a variant
of the forward-looking strategy ENP rather than the backwards working strategy BI.
The coefficient f4is especially high (and rather close to 1) in the third period. In later
periods this coefficient decreases and in the fifth period the optimal solution becomes
more important for explaining observed behavior.

This section’s findings are summarized by formulating

Result 1. Most subjects do not work backwards through the decision tree in order to
solve the decision problem but apply some forward-looking strategies or heuristics. Re-
gression results emphasize that subjects use ENP rather than BI for generating their
decisions.

5. Attitudes towards risk

5.1. Aggregated behavior

This section will address the question of whether risk-aversion can at least explain the
direction of deviations from the optimal solution observed in subjects’ average decisions.
For example, Figure 3.1 shows that when the red die remains the optimal solution pre-
scribes the investment of all the money left in the fifth period when the residual fund falls

13



X1:

—yellow ~zred

X2: [2.55]
—yellow, —red —green —red —~greeft —yellow
X3: 3,56 | [ 2,51 3,67]2.02] [267][207]
# @ ? * P
\ \
xa: [1.88][1.85] [201][1.82] [202]1.88]
x5: [073][1.25] [083][1.60] [1.41][1.66]

x6: [024][080] [029][1.36] [093]1.42]

Figure 5.1: Optimal solution for o = .5

below a certain level (see below for the derivation of this result). Should one expect a
risk-averse subject to choose such an extreme action? After all this choice would result in
a zero payoff if the subject experiences the sixth period. Thus one may expect that the
optimal solution that allows for risk-aversion would never prescribe the investment of all
remaining money until the last period is reached!?.

In order to see which consequences risk aversion has, the optimal solution was recom-
puted'? using the utility function u(z) = z” which exhibits constant relative risk-aversion
(or decreasing absolute risk-aversion). This can be seen if we note that u/'(x) = az”™
w'(z) = oo — 12" implying rg(z,u) := —2u”(z)/u/(x) = 1 — a, i.e. the coefficient of
relative risk-aversion at z, rg(z,u), equals the constant 1 — a. Figure 5.1 shows the result
of the computation for o = 0.5.

and

The line above or below each box in Figure 5.1 again indicates whether the corresponding
value lies above or below the optimal value as shown in Figure 3.1. If one compares
these deviations from optimality with the deviations from optimality indicated in Figure
4.1 that summarizes average observed behavior, it turns out that there is a complete
correspondence, i.e. whenever risk aversion predicts to spend less (more) at a given
decision node than is prescribed by the optimal solution (Figure 3.1) a deviation in the
same direction can be observed in Figure 4.1 showing average observed behavior. As
computer simulations have shown, this is true for all o € [0,1). Thus we can state

Result 2. Risk-aversion predicts the direction of deviations of average observed behavior
from the optimal path, i.e. from the optimal solution that assumes risk-neutral behavior.

It is interesting to note that the optimal solution that allows for risk-aversion (using the
utility function over money u(z) = z”) converges to the ENP solution shown in Figure

2There were 9 out of 600 cases where a subject experienced a period without having money left.
131 thank Martin Strobel for adapting the computer program.

14



sequence first second I pe(la=0) ... ppla=1)
chance move chance move (obs.)

1 —green —yellow 0.73 0.75 ... 0.80
2 —yellow —green 0.72 0.74 ... 0.76
3 —green —red 0.69 0.69 ... 0.66
4 —red —green 0.65 0.67 ... 0.59
5 —yellow —red 0.63 0.62 ... 0.58
6 —red —yellow 0.60 0.61 ... 0.56

Table 5.1: Ranked sequences

3.2 as a goes to 0 and it converges to the strategy that was characterized as “go-for-the-
maximum”-policy as « goes to oc.!4

With the help of Result 2 an observation mentioned in Anderhub et al. (1997) can be
explained, namely that with regard to the optimal solution there is underconsumption
during the first three certain periods in case the red die remains and overconsumption
otherwise.

To be more precise, recall that there are six possible sequences of initial chance moves
((—green, —yellow) or (—green, —red) or ...). Now, let p = 122423 denote the relative
amount consumed during the three certain periods ¢ = 1,2, 3. Using the utility function
over money u(z) = x", a € [0, 1], and recomputing the optimal solution one can construct
the functions p, () that assign to each a the corresponding values of p,. Here k =1, ...,6
indicates the sequence of initial chance moves. Table 5.1 shows the means i, (k =1, ...,6)
of the observed values together with the range of the functions p;(«). (Note that the
functions g () vary monotonically from z4,(0) to g, (1). This is what the dots in Table
5.1 indicate. The values for o« = 1 correspond to risk-neutral behavior.)

The two results that immediately follow are

Result 3. The observed means Ji;, are ranked in the same order as the values p,(a) (for
any fixed value of a € [0,1])."

and

Result 4. Risk-aversion predicts underconsumption (when compared to the optimal so-
lution, i.e. for o = 1) during the first three certain periods when the red die remains and
otherwise it predicts overconsumption.

5.2. Behavior in the fifth period

The last subsection focused on the relevance of risk aversion for explaining deviations of
average observed behavior from the optimal solution. In this paragraph attention is paid
to individual decisions. We will, however, restrict ourselves to the decision problem in the
fifth period. The reason for that is simple: allowing for risk aversion makes the derivation
of analytical results even more complicated. For the most simple case, i.e. the decision

14 Actually, the latter is already the case for o = 5.86 without any changes for greater values of a.
15This result is already mentioned in Anderhub et al. (1997).

15



in the fifth period, it is, however, still possible to derive at least some comparative static

results.

Consider an individual having utility function over money v = u(x) with «/(z) > 0 for

all z > 0. Given C := xjxexszy > 0, termination probability w € (0,1) and S5 =
11.92 — 3%, :cz) > 0 (wealth at the beginning of period 5) the decision problem in the

fifth period is to maximize

U(zs) = wu(C-x5) + (1 —w)u ((C - x5) (S5 — x5)) -
If xf is optimal it must satisfy the necessary condition

wu' (C - x5) + (1 — w)(Ss — 2z5)u’ ((C - x5) (S5 — x5)) =0 (5.1)

or equivalently

w ' (C - xy)
(I —w) ((C-25) (S5 — 75))

Since, according to our assumptions, u/(z) > 0 for all z > 0 it follows from (5.2) that
Sy —2zf < 0or xf > % must hold, 1.e. choices with z} < % are not compatible with

utility maximization of any kind. This observation together with the budget constraint
lead to

85—225;:—

(5.2)

Remark 1. For any kind of utility maximizing behavior in the fifth period it must hold
that £ < z3(S5) < Ss.

Note that the condition given in Remark 1 must be fulfilled no matter whether (and to
which degree) an individual is risk-averse or risk-loving. In our experiment we observe in
24 out of 273 cases that the condition of Remark 1 is violated.

In order to make sharper predictions about the behavior in the fifth period that is com-
patible with utility maximization one has to further specify the utility function u = u(z).
A class of utility functions that is amenable to some comparative static analysis is the
class of utility functions that exhibit constant relative risk-aversion given by

[ Q—a)z' fora#1
u(z) = { Inz for a = 1.

According to this utility function an agent is risk-averse, risk-neutral, risk-loving, respec-
tively, for a > 0, a = 0, a < 0, respectively. From now on let us assume a > 0 such that
the necessary condition (5.1) that now reads

w4+ (1—w)(Ss —z5) “(Ss —2x5) =0, a#1 (5.3)

is also sufficient.
From (5.3) it follows that for a risk-neutral individual, i.e. for & = 0 the optimal policy
in the fifth period is given by

22(Ss,w) = min {% (55 + ﬁ) , 55} . (5.4)
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Note that % (55 + ﬁ) < S5 if and only if (13]—10) < Ss.
For a slight degree of risk-averse or risk-loving behavior, respectively, i.e. for a in a small
neighborhood of 0, equation (5.3) is not explicitly solvable for z5.'® A comparative static

analysis, however, is possible. For that purpose write equation (5.3) as

F(Ss,w,a,z5) =0 (5.5)

where
F(Ss,w,c,x5) =w+ (1 —w) (Ss — x5)” " (S5 — 225), a # 1,

and assume that x5 < Sy and S5 > ﬁ Note that the partial derivatives of the func-
tion F' = F'(Ss,w,a,x5) are continuous with respect to all variables. Consider now the
case where a = 0. We then know that equation (5.5) is satisfied by points of the form
(Ss5,w,0,z%(Ss,w,0)). Furthermore, the partial derivative of the function F' with respect
to x5 evaluated at this point equals 2(w —1) < 0. Thus, according to the implicit-function
theorem it is justified to write x5 = 25(Ss, w, o) emphasizing that in a neighborhood of
the point (S5, w, 0) the optimal policy «f is an implicit function of the variables Sy, w and
. Moreover, one has

O 9F (cyw,S5,75)
5 - da

Ba aF(aawysS ,:1)5)
(S5aw=0) (9{115

(S5.w.0,23 (S5..0))

— (In— w
2(-1+w) 2 14w

implying

Remark 2. For the optimal policy in the fifth period it holds that

. > 0 for %= < 55 < %:—5

83335 = ¢ 0 for Sy = f:—i

@ (S55w70) < 0 fOI‘ S5 > %:—Z'
Thus a slightly risk-averse (risk-loving) individual who still “lives” in the fifth period will
tend to spend more (less) than a risk-neutral individual when = < S5 < f:—z and will

tend to spend less (more) than a risk-neutral individual when S5 > %:—Z The intuition
behind this result is clearly that saving might also be risky since the money is lost should
the round end in the fifth period.

In order to relate the observed decisions made in the fifth period to the theoretical results
derived above, note that for x5 # Ss, %5, Ss — 1 it follows from equation (5.3) that

_1.'(1 ((55*295:)](*14‘“))) (5 6)
In (55 - $5) ' )

With the help of equation (5.6) one can check which observed (s, Ss)-combinations can
be rationalized by risk-aversion. This is shown in Figures 5.2 - 5.4 in which we can see

o =

¥For a = 1 the optimal policy is given by z%(w, S5) = 2—‘355
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Figure 5.2: Observed (x5, Ss)-decisions in case of w = 1/2 (red die).

the regions'” that correspond to risk-averse choices (grey shaded areas) together with all
observed (zs, Ss)-combinations.'®

When determining the number of (zs5, Ss)-combinations that are compatible with utility
maximization by risk-averse subjects with the help of equation (5.6), one has to exclude
certain (xy, Ss)-combinations. This is due to singularities in equation (5.6) that arise if
Ty = Sy, 5 = S5/2 or x5 = S5 — 1. Altogether there are 273 cases in which subjects had
to decide in the fifth period. But from Remark 1 it follows that values x5 with x5 < %’L
cannot be rationalized by any utility function. As mentioned above there are 24 such
cases. Moreover, there are 12 cases with 25 = S5 (including 5 cases in which it was
optimal to set x5 = Ss), 27 cases with z5 = %, 23 cases with x5 + 1 = S5 and 15 cases
where the two latter conditions apply at the same time, namely, cases with S5 = 2 and
x5 = 1 (see Table 5.2).

From the remaining 172 (x5, Ss)-combinations 89 cases are compatible with utility maxi-
mization plus risk-aversion and 83 cases are not compatible. This is also shown in Table
5.2. Note that in the case of the red die being applied almost all cases (from those listed
in the last two rows in Table 5.2) can be rationalized by risk-aversion. This is not true
in the case of the green die. In this case only 38 % (35 out of 92) of the choices can be
rationalized by risk-aversion. This implies that subjects either did not have the assumed
preferences or that their attitudes towards risk vary with the termination probability

17See Appendix A.

1%7'he results concerning the areas of risk aversion as shown in Figure 5.2 - 5.4 are also true for another
class of utility functions. Consider the utility function over money u(z) = — exp(—azx), a > 0, that depict
constant absolute risk-aversion. The necessary and sufficient condition (5.1) now reads

wexp(—aczs) + (1 — w) (S5 — 225) exp (—acxs (S5 — x5)) =0

In (t = sere)
015(8571‘571) :

or equivalently (for z5 # Ss, %ﬁ, Ss—1) a=—

In( et In{ m—2r—0
One now easily sees that the following is true sgn (— ((SIZE;:5);;3+W) ) ) = sgn (— (6(555(7;:5)1(:5”) ) ) .
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Figure 5.3: Observed (x5, Ss)-decisions in case of w = 1/3 (yellow die).
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Red Yellow  Green Y

(w=3) (w=3) (w=3g)
#(25 = S5) 5 4 3 12
#(.’175 = 85/2 and Ty 7é S5 - 1) 3 8 16 27
#(.Tg, = S5 —1 and Iy 7£ 55/2) 2 12 9 23
Ty = 85/2 and Iy = S5— 1

#(:)}%:1755:2 2 4 9 15
#(not rationalizable) 4 7 13 24
dGCl.SlOIlS rat%onahzable 94 30 35 89

by risk-aversion
#(other cases) 2 24 57 83

Table 5.2: Observed decisions in the fifth period.

which is puzzling from a normative point of view. This is summarized by

Result 5. If the subjects’ preferences can be described by the class of utility functions
that exhibit constant relative or constant absolute risk-aversion, then subjects do not
act consistently across situations in the sense that they do not show the same attitude
towards risk across situations represented by different termination probabilities.

How can this result be explained? Consider the decision problem to be solved in the fifth
period. The choices in periods 1 to 4 may have led to the capital stock C' := z1z92324.
By the choice of x5 a subject creates his own lottery in which he is willing to participate.
For given w € (0,1) and S5 > 0 the choice of x5 < Sy leads to the following lottery: with
probability p; = w the prize is Iy := z1x9x37475 and with probability ps = 1 — w the
prize is Ly := x129x32475(Ss — x5). For example, as mentioned above, in 38 out of 273
cases (14 %) subjects chose x5 = Sy — 1 and thus made sure they did not lose any of the
money accumulated during periods 1to 5 (L; = Ly). Now note that in the case of the red
and green die the amount of money left for the fifth period is on average 1.62 and 2.77
DM, respectively (see Figure 4.1). Thus in the case of the green die a subject can choose
a lottery such that Ly > Ly > C, i.e. in this case a subject can successively (strictly)
increase the payoff in every period.

This is not possible with the red die since on average Sy < 2 in this case. Here a subject
realizes that he can only participate in lotteries with either Iy > C and Ly < Ly or L1 < C
and Ly > Ly, i.e. it is possible that the payoff shrinks from one period to another. Thus
with the green die the experimental situation might usually be perceived as an opportunity
to earn successively more money which would make subjects more risk-loving. However,
with the red die the possibility of loosing some of the accumulated wealth leads subjects
to be more risk-averse.

Thus a possible explanation for the Result 5 is that the experimental situation in period
5 is perceived differently depending on the termination probability (or depending on the
order of die exclusion and the remaining wealth). This triggers different attitudes towards
risk not only across but also within subjects.
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6. Summary

The main motivation for this study was the wish to uncover how people tackle dynamic
decision problems and to understand what role risk aversion plays in these situations. For
that purpose an experimental situation was designed comprised of consumption and sav-
ings decisions. The combination of an uncertain time horizon with the successive revealing
of the termination probability is the specific characteristic of this experimental situation.
Anderhub et al. (1997) who also investigate this setup find that on average subjects up-
date their termination probabilities in a qualitatively correct way, i.e. qualitatively in the
same way as the optimal solution. Despite these regularities found in average decisions be-
havior on the individual level is quite dispersed. However, by closely inspecting individual
decisions one is able to make out a number of behavioral patterns that range from consis-
tent and thought-out to very inconsistent and irrational behavior and from very risky to
cautious behavior. Other findings concerning behavioral rules found in the data are that
some individuals systematically neglect information concerning the exclusion of dice and
thereby reduce the complexity of the decision tree. Or that subjects start out investing
only a small part of their wealth at the beginning of a period and reacting strongly to the
information regarding the remaining die. Subjects applying the latter behavioral policy
seem to wait until the uncertainty about the termination probability has been removed.
We find that most subjects perform reasonably well by applying several interacting heuris-
tics. However, these cannot be easily separated. The interacting heuristics and reasoning
processes by which most of the decisions are generated can be best approximated by the
strategy that sets current consumption equal to current wealth divided by the expected
number of periods. This insight is suggested by a distance measure that relates strategies
and heuristics to average observed behavior and by results of regressions that are based
on individual decisions. We find, furthermore, that risk-aversion completely predicts the
direction of deviations of average observed behavior from the optimal path. Moreover,
risk-aversion correctly predicts underconsumption (when compared to the solution assum-
ing risk-neutrality) when the actual termination probability is high and overconsumption
when the actual termination probability is on a medium or a low level. The inspection of
the decision in the fifth period suggests that subjects do not act consistently across situa-
tions in the sense that they do not show the same attitude towards risk across situations
represented by different termination probabilities.
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APPENDIX A

Areas of risk-aversion

Remark 3. lLet a = —

ln((ss —Qz;;(—1+w))
In(S5—z5)

and w € (0,1) then it holds that

4 . 1 w w
iff 33525(55—{-@) andS5>m
=0 [0<S5<ﬁ and %S5<335<S5 or
o ] i <S<2 and JS<z < (S+s) o
S0 ) 2<Ss<EZ and S;—1<m< 3(Si+1%) or
Ss > 2= and %(S5+ﬁ>§$5<55_1

APPENDIX B

Translated Instructions

Your task in every round is to distribute an amount of money as good as possible to
several periods. The better you do this, the higher is your payoff. Altogether you play 12
rounds. In the beginning of the experiment you can choose, whether we should draw lots
to select one round for which you are paid. Otherwise you will receive the mean of your
payoffs of all rounds. In any case you get your payoff in cash after evaluation of the data.
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The general task of one round is to distribute a certain amount of money to several
periods. Your payoff of one round is calculated by the product of the amounts allocated
to the single periods. The difficulty is, that there is no certainty about the number of
periods you have to distribute your money. The game can last for three, four, five, or six
periods. Every round will last at least for three periods. Whether you reach the fourth,
fifth or sixth period, will be determined by throwing a die. There are altogether three
different dices with the colors red, yellow and green. The following table shows, in which
cases you reach a next period.

COLOR OF DIE NO FURTHER PERIOD NEW PERIOD

IF DIE SHOWS IF DIE SHOWS
RED 1,2,3 4,56
YELLOW 1,2 3,4,5,6
GREEN 1 2,3,4,5,6

The number of periods of one round can not be higher than six. In the beginning of a
round you do not know which dice is used for you. You get this information after you
have made some decisions. The general course of the game is as follows:

1st period) You will get a total amount of money S, which you can spend in the coming
periods. Altogether you can only spend this total amount. You can choose an amount x,
which you want to spend in the first period. Think very careful, how much you want to
spend and how much you want to save for the following periods. After your decision one
of the three dices is excluded. Now you know, that only the two other dices are candidates
for the chance move if you reach the fourth, fifth and sixth period.

2nd period) You are choosing an amount z5, which you want to spend in the second
period. You can not spend more than you have left from the total amount after the first
period. After your decision another die is excluded. Now you know, which dice remains
to be thrown for the fourth, fifth and sixth period.

3rd period) You are choosing an amount x3, which you want to spend in the third
period. After this decision the computer will throw the remaining dice in order to decide
whether you reach the fourth period. If you do not reach the fourth period, the round
ends here. The amount which is not spent until now is lost.

4th period) If you have reached the fourth period, you choose an amount z4. For
reaching the fifth period, the die will be thrown again.

5th period) If you have reached the fifth period, you choose an amount z5. For reaching
the sixth period, the die will be thrown again.

6th period) If your have reached the sixth period, you do not have to make a decision,
because all remaining money is spent automatically.

Your payoff is calculated by the product of all amounts you spent in the periods you
reached. For instance if you experienced exactly four periods, your payoff is determined
by G = x1 X 29 X 3 X £4. When you have reached for instance all six periods, your payoff
is determined by G = 1 X 9 X 3 X x4 X Ty X Tg Where xg is the amount you have left
after the fifth period. Please think about the following: If you spend in one period an
amount of 0, your payoff will be also 0, because one of the factors is 0. This can happen,
for instance, if you spend all money in the fourth period and reach the fifth period. Then
you have to spend 0 in the fifth and perhaps also in the sixth period and therefore you
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get the payoff 0. You have to weigh up between the risk of spending all your money early
or making your money useless if the game ends.
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