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Abstract

This paper proposes linear higher order conditions on the term structure
that allow to compute valuation bounds for any deterministic cash stream.
Starting from bounds on the forward rate curve and its derivatives, which
are nonlinear in the discount factors, we derive linear conditions that are
only slightly less restrictive than the nonlinear conditions. The lineariza-
tion of the term structure constraints has two advantages. First, the
valuation bounds can be computed by highly developed LP solvers. Sec-
ond, the constraints have an economic meaning as auxiliary cash streams.
Thus, price discrepancies can be easily translated into profitable trading
strategies.

Depending on the choice of the constraints on the forward rate curve
the valuation bounds for cash streams can be very wide or very close.
Arbitrage bounds are a special case of our general valuation bounds. On
the other end of the extreme, the valuation bounds on the term structure
itself behave like quadratic splines in the forward rate curve if the third
order parameters are chosen in a restrictive way.

The higher order conditions on the term structure are related to extremal
event statistics of short-term interest rates. This puts the resulting val-
uation bounds conceptually close to risk measures like value at risk. In
fact, the proposed method is an example of a coherent risk measure in a
sense slightly more general as in the seminal paper by Artzner, Delbaen,
Eber, and Heath (1998).

Methods that “calibrate” a single price system to observed prices abound.
Needed are valuation bounds that are based solely on economic assump-
tions. The valuation bounds under the linear higher order conditions
on the term structure generalize arbitrage bounds and provide a sharper
method when the arbitrage principle is too weak.

Keywords: term structure of interest rates, smoothing splines, forward rates,
arbitrage, dominance, linear programming

JEL classification: E43, C14, C61

Mathematics Subject Classification: primary: 90-08, 90A12; secondary:
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Higher Order Forward Rate Agreements and the
Smoothness of the Term Structure

1 Introduction

1.1 Practical Problems

The term structure of interest rates is the functional relation between time
to maturity 7 and the current market price V(1) of a guaranteed payment of
1 unit in 7 years time. Instead of the discount function V (1), the term structure
can equivalently be given as the zero-bond yield curve r(1) = —log(V (1))/T or
the forward rate curve f(r) = —% log(V(7)). The term structure of interest
rates defines a linear price system for the set of deterministic cash streams by
virtue of the present value equation. If z = (2o, ..., z,) denotes a cash stream
of payments due at the times 79 < ... < 7,, then

() =3 V() 1)
=1

is the present value of z with respect to V.

In many practical problems in fixed income markets the term structure
of interest rates plays a pivotal role. One of the most important problems
is the valuation of cash streams, which may not be traded, relative to the
prices of liquidly traded securities, so called benchmark securities. Given the
prices of the benchmark securities, one estimates the term structure (by linear
regression in the present value equation) and uses that to value all other cash
streams.

Another application is cheap/dear-analysis, where one fits a term structure
to all or a subset of the traded securities and then interprets the difference
between the observed price and the present value under the estimated term
structure as an indication whether a security is relatively dear or cheap.

There are many ways to estimate the term structure. Here is an overview:

1. Parametric Methods These include polynomial approximations of the
forward rate curve (Chambers et al.; 1984), a piecewise constant forward
rate curve with fixed knots (Coleman et al.; 1992), and several special
methods with relatively few parameters (Nelson and Siegel (1987) and
Svensson (1994)).

2. Non-parametric Methods

(a) Regression Splines McCulloch (1971, 1975) uses quadratic and
cubic regression splines for the discount function. The number of
knots is a function of the number of observations. The term struc-
ture is estimated by ordinary least squares (linear) regression.



(b) Orthogonal Polynomials Schaefer (1982) uses Bernstein poly-
nomials to estimate the derivative of the discount function.

(c) Smoothing Splines Tanggaard (1995); Fisher et al. (1995); Bek-
dache and Baum (1994); Waggoner (1997) use smoothing splines to
estimate the forward rate curve. The bandwidth (smoothing pa-
rameter) may be selected by cross validation.

Pichler (1995), Anderson et al. (1996), and Schich (1996) give a good overview
of the many different methods in use.

Different estimation methods, especially different bandwidth choices in
non-parametric estimation, give different answers to the question whether a
security is “relatively cheap”. In practice, one often uses several methods and
believes that a bond is “cheap” only if all methods agree on that. An al-
ternative to the use of different term structure estimators with many hidden
statistical assumptions is to employ one method that provides valuation bounds
that are based on explicit economic assumptions only.

Depending on the economic assumptions one is willing to make, the valua-
tion bounds are more or less stringent. Independently of their exact economic
nature, valuation bounds have a certain mathematical structure in common:
they can be defined in terms of a dominance relation for cash streams and term
structure packets.

1.2 Dominance Relations and Term Structure Packets

Let 0 =19 < 71 < ... < 7, be a sequence of payment dates, which are not
necessarily equidistant. Cash streams are vectors z = (zy, ..., z,) that pay the
amount z; at time 7;. A dominance relation = is a partial ordering on the set
of cash streams that is compatible with the vector space structure and such
that the set {z|z = 0} is a nonempty closed convex polyhedral cone.! Read
“y = 27 as “y is strictly preferred to 2”7, or “y is better than z, independently
of personal preferences”.

A price system on the set of all cash streams on (7y,...,7,) is now given
by a vector v = (V(19),...,V(m,)). As we keep the set of payment dates
fixed, we call such a discretized discount function also a term structure. A
term structure u is admissible if u'z = E?:o ujzj > 0 for all z = 0. Note
that the set of admissible term structures is a closed convex polyhedral cone,

!A partial ordering on a set E is a subset M of the cross product E x E such that (i)
x € E implies (z,z) € M and (ii) (z,y) € M and (y,z) € M imply (z,z) € M. Instead
of (r,y) € M one usually writes z > y. = > y is defined as ‘z = y and not y = z’. A
partial ordering on a vector space is compatible with the vector space structure if (i) z = y
if and only if z —y > 0 and (ii) z > 0 implies ax > 0 for all @« > 0. As a matter of

fact, any closed convex cone K C FE defines a vector space-compatible partial ordering by

xT>=y f y € K. Although the theory works with closed convex cones in general, we

restrict ourselves to polyhedral cones here since this is the only kind we use for the practical
implementation.



which we denote by K. Obviously, {z|z < 0} and K are polar cones?. So,
a dominance relation for cash streams can also be defined by starting with

a closed convex polyhedral cone K of admissible term structures and setting

xtydﬁf u(zx—y)>0 VueK.

Consider now a set of fixed income securities indexed by 7 that pay the
amount F;; at time 7;. Given buying prices S;, each security defines a cash
stream (—S;, Pj1,..., Py,). (S; may include transaction costs.) If short-selling
is possible, the security also defines the cash stream (s;, —P;1, ..., —Pj,), where
s; is the net receipt from short-selling the security. These cash streams define
-S| P

s | =P

A transaction is a vector x > 0, with the meaning that z; units of the
cash stream 7 are bought. C’z is the cash stream that is generated by the
transaction z. We call z a good deal of the first type if C'z = 0. We call = a
good deal of the second type® if C'z = 0 and (C'z)y > 0 (i.e., free lunch at time
0 and no future obligations.) We say that NGD holds, if there is no good deal
of the second type.

An important example of a dominance relation is the arbitrage relation
that is defined by K, = {u|ug > u1 > ... > u, > 0}, and which is implicit in
the works of Schaefer (1981, 1982) and the arbitrage theory of Dermody and
Rockafellar (1991, 1995). NGD corresponds to their WNA (weak no arbitrage).
Another important example is the dominance relation that is defined by K =
{u| ij <wjfuj —1< fj V4,u > 0}, which was used by Hodges and Schaefer
(1977) and Ronn (1987). ( ij and f; are bounds on the implied forward rate
for the interval [7;, 7j41].)

The traded cash streams C' and the dominance relation = imply good deal
bounds for the time-0 price of any cash stream z:

7(2) = min{p| (p,0,...,0) + C'a = 2,5 > 0,p € R}, (2)

a cash flow matrix C = <

n(2) = max{p|(p.0,...,0) = C's < 2,2 > 0,p €R}. (3)

If somebody offers to buy the cash stream z for a price 7(z) > 7(z), we can
form a good deal by selling z and hedging that obligation with a transaction
x that realizes the minimum in (2). We earn the immediate gain 7(z) — 7(z)
and own a cash stream (7(2),0,...,0) + C'z — z that is at least as good as the
zero cash stream in the sense of =. Analogously, we can form a good deal, if
somebody offers to sell the cash stream z for a lower price than z(z).

Define the set of term structures that are consistent with the traded cash
streams C' and the dominance relation defined by K as the set

D ={u|Cu<0,u€ K,uy=1,u > 0}.

2The polar cone K+ of a cone K is defined as K+ = {y|y'z < 0Vz € K}. For any closed
convex cone K (K*)* = K holds. See for example (Bertsekas; 1995, p.580)
3The wording is patterned after (Ingersoll; 1987, p.53).



Note that the condition Cu < 0 is the same as s < Pu < S (with up = 1).
In words, a term structure is consistent if for each security the “theoretical”
price (under u) lies between the prices for short-selling and buying.

Theorem 1 Fundamental Theorem
1.) NGD holds if and only if D is nonempty.
2.) In this case, the good deal bounds can also be computed as the mazimal and
minimal present values of z with respect to the term structure packet D:

m(z) = maxu'z and 7(z) = minu'z.

u€D ueD

Proof. This is just the duality theorem of linear programming. One merely
has to check that 7(z) = max,ecp u'z is in fact the dual of the problem (2) (see
(4) and (5) in the next section).

1.3 Applications of the Arbitrage Principle

Hodges and Schaefer (1977), Schaefer (1982), and Rasch (1996) use the ar-
bitrage principle to prove that “there is something wrong with the present
value equation”. More precisely, heterogeneous taxation and short-selling con-
straints lead to the effect that certain bonds are held only by certain investors
(their clientele), and there is no term structure (price system) that values all
cash streams correctly — not even approximately. In other words, the arbitrage
principle can be used to prove that there is a clientele effect in both quantities
and prices (Dybvig and Ross; 1986). Standard regression approaches cannot
be used for this, since they are invariably based on statistical assumptions and
there is no economic reasoning to decide when residuals are “too large”.*

A second application is portfolio optimization under consideration of taxes
as done by Hodges and Schaefer (1977). If there are tax clientele effects, it may
not be obvious that certain portfolios are suboptimal. The arbitrage principle
can also be used to identify bonds that a certain investor should definitely not
hold (“dominated bonds”).

A third application is to estimate tax-specific term structures, as in (Schae-
fer; 1981).

There are, however, several problems and short-comings of the arbitrage
principle in applications. The arbitrage bounds for a cash stream z may be
too wide to be useful as a valuation tool. This is the case when the cash
streams that can be generated ({C'z |z > 0}) do not compare well with the
cash stream z in terms of >. As a consequence, the arbitrage principle may
fail to uncover relative mispricing. As a special case, it may fail to identify tax
clientele effects for bonds that have a very low coupon (Rasch; 1996).

It is an old idea (Hodges and Schaefer; 1977; Ronn; 1987) to sharpen the
arbitrage relation by introducing bounds on implied forward rates. The mission

“There is, however, a relation between minimax regression and arbitrage theory, as de-
scribed in (Jaschke; 1998).



of this paper is to propose higher order conditions that are approximately the
same as placing bounds on the first and the second derivative of the forward
rate curve. It turns out that these conditions are wvery effective in the sense
that the resulting valuation bounds are much closer than arbitrage bounds.
Still, these bounds are non-parametric, free of any statistical assumptions and
based on explicit economic assumptions only. Although the computational cost
of these bounds is much higher than for traditional term structure methods,
the fact that they boil down to linear programming problems and the recent
advances in LP solver technology (CPLEX, PCx, SoPlex) allow to compute
these valuation bounds in a few seconds.

Section 2 motivates higher order forward rate agreements and explains how
they are related to bounds on the derivatives of the forward rate curve. Sec-
tion 3 derives the exact higher order conditions based on the conditions on
short-term rate movements as opposed to the approximate relation that was
used in section 2 to motivate higher order FRAs. Section 4 addresses some nu-
merical issues. Section 5 presents descriptive statistics of German short-term
interest rates. These are needed to determine sensible bounds for the forward
rate curve and its derivatives. Section 6 explores applications of higher order
forward rate conditions to various valuation problems.

2 Higher Order Forward Rate Agreements

The primal and dual optimization problems for the upper good deal bound
can be written as

w(z) = mi%{p‘(p,(),...,())—i—C'x—l—A'hzz,x20,h20,pfree} (4)
p,x7
, C
= maxquz || uw<0,u>0,uy=1 (5)

for any polyhedral cone K of the form K = {u|Au < 0,u > 0}. The cone of
admissible term structures

KO = {u|i] <wifuipr — 1< 7]-, u >0}
that was implicitly used by Hodges and Schaefer (1977) can be written as
KM = {u| AWy <0,u >0}

with

1 —(1471;)

(1)
A= -1 1+] : (6)

0

This can now be interpreted in three ways.



1. ij and fj are bounds on the interest R; for the future interval
(7, Tj 1]
If the primal variable hj, that corresponds to the row (..., —1,1 +ij, ol)
in A is positive in an optimal solution of (4), this means that then
one should invest hj units in a money market account at time 7;. One
gets back (1 + Rj)hj; and can consume hy(R; — ij) since only hg(1 +

ij) is needed to cover z;. Analogously, the row (...,1,—(1 + fj), ..
corresponds to the borrowing of money from 7; to 7;11. In other words,
h is interpreted as a roll-over strategy in a money market account.

If one wants to believe that ij <R; < 7j holds with probability one,
the resulting good deals could still be called arbitrage transactions.

2. The rows in A can be interpreted as auxiliary cash streams.
The matrix (i) can be interpreted as a new cash flow matrix where C
contains the traded cash streams that we can readily get in a liquid mar-
ket. The matrix A contains auxiliary cash streams that are not traded,
but that we are confident we can somehow get in the OTC market. In
the case of A1), the cash streams are forward rate agreements (FRAs).
It might be, for example, that there are no liquidly traded FRAs for a
certain market segment, say, US dollars from year 2027 to year 2028, but
we are confident we can find a counter-party for an FRA if we offer to
borrow at 15% p.a. or lend at 0.5% p.a.

This interpretation allows sharper bounds than the first interpretation.
We may be successful in closing an over-the-counter deal borrowing 15%
from 2027 to 2028, but we may not believe that the money market rate
in that future time interval will be below 15% with probability one.

3. The condition AMu < 0 places bounds on the first derivative
of the (discrete) discount function. This is approximately the
same as the condition that the forward rate curve 7; — f(7;) is
bounded by [ and I
Assume for a moment equidistant payment dates (7; = j) and define the
“discrete forward rate curve”

f(j) =loguj —logujqq.

Since ¥ =~ 1 4+ z for x near 0, the original condition
L+ f, <V <14,

is approximately the same as

ijﬁf(j)ﬁfj-



Since forward rates are related to the first derivative of the discount
function, we call A(Nw < 0 the first order conditions of the term structure.

With the third interpretation in mind, the second and third order condi-
tions Ay < 0 for equidistant payment dates are easily written as

0
+(2)
1 2 —(1+7f;
AR — A (1+f}(23 and (7)
1
0
0
+(3)
3 _ 1 =3 3 —(1+f;")
4 -1 +3 =3 1+fW ®)
0

A®y <0 is equivalent to
2 j+1 1)+ £ 2 .,
1+i§~) < 9efUHY) _ ofGHD)HIG) < 1+ f57, ¥4,
which is approximately the same as
O <G+ - £G) < T2V
AB)y <0 is equivalent to

14 fO) < 3e/U+2D) _ 3ol UH+DHIG+1) 4 of GHDHIGHIHIG) < 1 +7§,3>, V7,
_] - -
which is approximately the same as
O <G =206 )+ FG) < TV

In this sense, the second and third order conditions A®y < 0,k = 2,3 are
approximately the same as placing bounds on the first and second derivative
of the forward rate curve.

In view of the second interpretation, the rows of A and A®) can be
interpreted as higher order forward rate agreements. The cash streams can be
constructed by going long and short in FRAs of consecutive periods. If higher
order FRAs would be traded directly, the higher order forward rate f](?’) that

makes the present value of the cash stream (...,1,—-3,3,—(1+ fJ(S)), ...) Zero,
would measure the third derivative of the discount function V' (7) at 7 = j.

In terms of the first interpretation, one can show in a similar fashion as
above that the second order condition is approximately the same as

i§2) < Rj+1 - R] < 75’2)7 VJ,

10



i.e., changes in future short-term rates are bounded. The third order condition
is approximately the same as

—=3) .
i§-3) < Rjt2—2Rjn+ R; < f;7, V5,
i.e., changes in future short-term rate changes are bounded.

In order to determine appropriate bounds (f gk),fgk))kzl,;;),, one can pro-
ceed in two ways. One possibility is to fix a grid size, say 3 months, and
compute empirical distributions of the accumulated values of the cash streams
(1,-1), (1,-2,1), and (1,-3,3,—1) with respect to historic 3-month inter-
est rates. The empirical distributions can then be used to directly specify the

bounds ( i;k),fg-k)) k=1,2,3. Preliminary tests with equidistant grids showed that
with moderate grid sizes (> 30 days), the resulting term structure packets may
contain highly non-smooth curves. (They are “smooth on the grid”, but non-

smooth in between.) For smaller grid sizes (< 15 days), the computational cost

becomes significant. When the bounds ( i;.k),fg-k)
one also has to ensure consistency ({u|ug = 1,u > 0, A%y <0,k =1,2,3} #
(), whose preconditions are not obvious.

The second approach is to start with bounds on the first and second deriva-
tive of the forward rate curve and then derive ezact® bounds for the higher

order forward rates on general grids.

)Jk=1,2,3 are specified directly,

3 Exact Bounds for Higher Order Forward Rates

3.1 Conditions on Future Interest Rates

Fix a sequence of payment dates 0 = 79 < 71 < ... < 7,,. (Think of 7; as time
to maturity in years.) Define A; = 7;,1 — 7. Let r; denote the normalized
forward rate for the interval 7, 7j41]: r; = A%- f:jj+1 f(s)ds. In terms of the
first interpretation, r; can also be thought of as the continuously compounded
rate for the interval [7;, 7j11], i.e., 1 unit invested at time 7; becomes e®iTi at

time 7;1.
The conditions
ag-l) < T < bg-l), 9)
Tiy1 — T
V'S wnragp St md (10
_a(_?’) < g(r' 7 7 ) < b(3) (11)
j = JH+1 T g+2, 1543 =Yy
with
R b S 2 B |
G(rrs1smirasrieg) = (Bire T A)/2 (B + 4))/2
O (Ajy2+Aj1 +4y)/3

5The precision of the approximation e® ~ 1 4 x is not sufficient for applications. It was
only used to motivate higher order forward rate agreements.

11



are discretized versions of

o) < fls) <oV, (12)
—a® < fl(s) <b?, and (13)
—a) < f(s) <Y (14)

We call (9), (10), and (11) the nonlinear higher order conditions since they are
nonlinear in the discount factors uj;. (Aj;r; = log(uj) — log(uj4+1)). The first
order conditions (9) are easily transformed to linear conditions A(Nu < 0 with

0
D)
1 —lib

A —
1 Ny

0

The nonlinear second and third order conditions cannot be transformed to
linear conditions. The rest of this section deals with the derivation of linear
conditions A@y < 0 and A®u < 0 such that the term structure packets
defined by the nonlinear conditions are contained in the packets defined by the
linear conditions, but the difference is minimal.

3.2 Second Order Auxiliary Cash Streams

Given a cash stream (...,1,2j42,0,...), we are looking for the extremal values
of its time-7;3 accumulated value

V(Zj 1251, mj2) 1= (€MTFIIH 4 25 g) et RTie2 (15)

subject to the first and second order conditions (9), (10). The resulting second
order auxiliary cash streams are then

eoy 1, 2509, — max v(zj49;7i41,7i42), ...) and

( y Ly 2542, it e ( J+2: T g+1s 7 5+ )a )

(s =1, —zjy2,  min v(2j42;7541,7542)s - --)-
Ti+1,Tj+2

The rest of this subsection deals with the computation of the extremal
values of (15). For the ease of notation, we set j =0, A1z = (A1 + Ag)/2, and

assume that ag-k) and b(-k)

;| are independent of j.

Proposition 2 Under the conditions

a® > 0,6 >0, Vk, (16)
z9g < —eAlb(l), and (17)
a®Ap < b~ (18)

12



there are only two candidates for max,, r, v(22;71,72):

(@) ro—1r1=—-aPDAy, ri =00, (19)

b))  ro—r=—aPAs, rp=al. (20)
Under the conditions (16), (17), and

b Ay < b — V) (21)
there are only three candidates for min,, ,, v(z9;71,79):

() ra—ri=bPAp, r=a, (22)

d) -1 =b@ A, A= _%’ (23)

(e) ro—ri=bD A, ro =00, (24)

If the point defined by (d) is feasible it is optimal.

All proofs are in the last section.

We have now some freedom to choose z2. For the auxiliary cash
stream (1, 29, — maxv), we propose to choose z; = 2%, which is defined by
v(2%; ¢, r8) = v(2%; b r8). (r® and r? are defined by (19) and (20), respec-
tively.) As a matter of fact,

€A12(2a(1)+a(2)A1) _ 6A12(2b(1) —a(Z)AQ)

zab —

eAz(b(l)fa(Q)An) . eAza(l)

For the cash stream (—1,—2z9, minv), we propose to choose zs such that
the minimum is attained in case (d), for example

’I“T == 05(0(1) + b(l) - b(2)A12) V a(l) AN (b(l) - b(2)A12)

A12 AU‘*
—2——e~1"1,
Ay

z5 =

3.3 Third Order Auxiliary Cash Streams

Given a cash stream (...,1,2z;49,2;,.3,0,...), we are looking for the extremal
)y Ly #)+2y#9+35 Yy ) g
values of its time-7; 4 accumulated value v(2j42,2j43; 7j4+1,7j+2,Tj+3)

_ ((eAj+1rj+1 + Zj+2)eAj+21"j+2 + Zj+3)eAj+37‘j+3 (25)

subject to the first, second, and third order conditions (9), (10), (11). The
resulting second order auxiliary cash streams are then

o 1,z 2 — max v(z; 213,75 T T
(- 1, zj42, Zj43, B (Zj42, 25435 74157542, Tj43)5 - - -)
and

(- =1, —2zj12, —2j43, min V(242 2j+33 Tj+1,Tj+2,Tj+3) )5 - -)-

Tj+1:Tj4+2,Tj+3

13



The rest of this subsection deals with the computation of the extremal
values of (25). For the ease of notation, we set j = 0 and Ao = (A; +
A2)[2, Aoz = (Ag + A3)/2, Ata3 = (A1 + Az + A3)/3.

Proposition 3 Under the conditions (16), (17) (from the previous proposi-
tion) and

z3 > At (22 + eAla(l)), (26)

Agsb@ < b — g, (27)
Apa® < V) — o) (28)
Agza® < bV — M) (29)
Apb® < b — ), (30)
Ag3b® < 0@ @), (31)
Ag3a® < 0@ 452, (32)
AgsAr23b®) < a®(Arg + Agy), (33)
A1pA3b® < 0P (A + Ags), (34)
ApsAiz3a® < 6@ (Arg + Agg), and (35)
A12A1230®) < aP(Agp + Agg) (36)

the mazimum of (25) subject to (9), (10), and (11) is attained on the face
defined by {g(r1,ro,r3) = b}, The minimum is attained on the face defined

by {9(7"1,7‘2,7”3) = _a’(3)}'

Proposition 4 Under the conditions of the previous proposition and

ze 7Y AJ(A% 4+ Adzpe ) 4 25(Ag — BA3)? <0 (37)
with A
A=Ap(==+2
12(A23 )
and

B = A3 —A1A13/ g

v is strictly concave on the planes {(r1,72,73)|g(r1,72,73) = const.}. The
unique maximum of v is determined by

AT = g/, (38)
eDiritiory 23/, (39)
g(ri,ra,r3) = b (40)

with
x = —A/Ay and (41)
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provided that this defines a feasible solution. The minimum is attained at one
of the & points that are determined by

(a) ro = b(l), r3s —Tro = —A23G(2), (43)

(b) ry = a(l), r3 —ro = —A23a(2), (44)

(c) re =13 = alV, (45)

(d) ri=a, ry—r =A@, or (46)

(6) 9 = b(l), ro —r1 = —A12b(2) (47)
and g(ry,ro,1r3) = —al®.

We have now some freedom to choose (22, z3). For the maximum, we pro-
pose to take some “intermediate” rates (r},r3,r3) like

5 = (@ +b6M) 2 A (61 = 0.5A19303) (Ara V Ags))
’f';: = 719+ A23A1236(3)/2,
ri = e+ A1pQiagb® /2

and compute (22, 23) by (38) and (39).
For the minimum, we solve the optimization problem

max{—v(z2, z3;7],75,73) + min v(z9,23;7r1,72,73)} (48)
22,23 r1,72,73

Since ming, y, r, v(22,23;71,72,73) is piecewise linear in (22, z3) and the condi-
tions (17) and (26) are linear in (22, z3), the problem (48) can be written as a
linear optimization problem (of dimension 6x3) and easily solved at run time.
The hyperbolic condition (37) is automatically fulfilled in most cases.

4 Numerical Issues

The previous section showed how to compute the auxiliary cash flow matrices

0
A _ -1 - +2 mlnv(z%_i_Q,...) and
1 2f, —maxv(zfi,;...)
0
0
—1 —4t — i i i
4B 1 —2iio —Zjy3 minv(2j, 9, 25155 -)
a a a a . ?
L 28, zfpy —maxw(2fiy, )55 )
0
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given the grid of payment dates 0 = 79 < 71 < ... < 7, and the parameters
(a(k) b(k))‘ﬁ

S S
The valuation problems for an arbitrary cash stream z

max u'z and minu'z (49)
ueD ueD
with

D={u|Cu<0,AMu<0(k=1,2,3),u =1,u>0}

are, unfortunately, notoriously ill-conditioned if the grid of payment dates con-
tains very small distances A; = 7,1 — 7; like A; = 1 day. In such cases both
SoPlex and PCx have difficulties solving the valuation problems (49).

In order to get a feeling of how ill-conditioned the problems are we com-
pared the maximum of v(z;1 20 2435 - .) under the nonlinear first, second, and
third order conditions to the maximum of v(z;‘ 425 %155 .) under the linear first
and second order conditions A®)u < 0 (k = 1,2). In other words, how much is
gained my adding a specific third order auxiliary cash stream? The difference
of the two maxima, divided by the “size” of the cash stream (14 |z;42|4+|2;+3]),
can be called the relative improvement of the corresponding third order cash
stream.

On a series of practical problems, the relative improvement of third order
cash streams was between 10~® and 10~2. By dropping the third order cash
streams with a relative improvement below 107¢ we could verify that the nu-
merical problems stem in fact from those cash streams with a small relative
improvement. (But dropping these conditions is not a feasible solution to the
numerical problem.) From the sampled data it could also be seen that the rela-
tive improvement of a third order cash stream on the dates (7, 711, 7j12, Tj+3)
is roughly proportionate to

AjAG114j+2
Aj+Dj+ Ajya’

thus small distances in the grid of payment dates are the reason for the nu-
merical problems.

A solution that has been working very well in practice is to compute
the third order auxiliary cash streams on quadruples (7;,,7},, 7j,, 7j,) of pay-
ment dates with 7;,., — 7;, > 30 days instead of neighboring payment dates
(Tj, Tj+1,Tj+2,Tj+3). This increases the relative improvement of third order
cash streams to about 107, which suffices to avoid numerical instabilities.

The relative improvement of second order cash streams over first order
conditions is between 104 and 10~!, so no special treatment is needed for the
second order conditions.

See (15) and (25) for the definition of v(...). In words, v(...) is the time-7j4+3 accu-
mulated value of the cash stream (...,1,zj42,0,...) for the second order and the time-7j44
accumulated value of the cash stream (..., 1, zj 42, 2zj+3,0, .. .) for the third order, respectively.
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Figure 1: Empirical Distribution of 12-month DM-LIBOR Rates
The LIBOR rates are transformed to continuously compounded rates. The density is esti-
mated using the S-Plus function ksmooth with kernel="parzen" and bandwidth=1.

5 Descriptive Statistics of German Short-Term In-
terest Rates

In this section, we use daily 12-month DM-LIBOR rates from 1975 to 19967
to establish some empirical facts about German short-term interest rates. The
dataset contains 5551 trading dates. Corresponding to our use of continuously
compounded rates, we transform the LIBOR rates as

ry = log(1 + 12month-LIBORy).

The empirical distribution of short-term interest rates (figure 1) shows two
pronounced modes at 5% and 8.5%. The rates above 10% come from a rather
short period in 1981.

The following table shows the minimum, the maximum, and several quan-
tiles of the interest rates, yearly changes in the interest rates, and changes in
yearly interest rate changes:

"Thanks to Wolfgang Schmidt, Deutsche Morgan Grenfell.

17



| min 1% 5% [95% 99%  max |
Ty 302 321 362943 11.78 1233
Terl — Tt -458 -396 -3.06|326 420 5.6
reyo —2riq1+1y | -843 718 -376 | 362 452 564

Extremal second order changes are a bit asymmetric. It happened (around
1981), that interest rates went up 4% in one year and came down 4% in the
following year. An equally sharp dip down and bounce back never happened.

The statistics give a rough feeling of how quickly interest rates can change.
They provide rule-of-thumb values for the parameters (a(*), b)) if one thinks
in terms of the first interpretation.

6 Applications

In this section we explore two areas of application of good deal bounds where
standard arbitrage bounds are too weak to be practically useful:

1. good deal bounds for zero-bonds and forward rate agreements relative to
the prices of benchmark securities and

2. identification of tax-clientele effects, when Schaefer’s method fails to de-
tect them.

6.1 Good Deal Bounds for the Term Structure

One way to assess the effectiveness of valuation bounds is to compute bounds
for the prices of a series of zero-bonds (with increasing time to maturity),
translate the prices to yields, and then display the resulting bounds for the
zero-bond yield curve. Another way is to compute valuation bounds for a series
of 6-month forward rate agreements and then display bounds for the curve of
6-month forward rates.

Jaschke (1998) showed that the arbitrage bounds for the zero-bond yield
curve are quite close up to 10 years time to maturity, provided that the arbi-
trage bounds are computed with respect to all outstanding German govern-
ment bonds (over 100). The problem with this approach is that many of those
bonds are not liquidly traded, so “fresh”, indicative quotes are put into one
basket with non-indicative quotes. When the term structure is estimated for
the purpose of market making, practitioners base their estimates solely on the
most recent quotes of the most actively traded securities — so-called benchmark
securities — because only those quotes contain the latest interest-rate-relevant
information.

Bloomberg and Reuters, for example, publish prices of US treasury bench-
mark bonds on the pages http://www.bloomberg.com/markets/C13.html
and http://quotes.reuters.com/qUSBMK.html, respectively. On May 12,
1998, both pages contained the same set of bonds, namely the current 6-month
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security id | time to maturity | daily trading
in years volume
113505 9.7 89
113506 30.0 85
114125 4.5 71
113681 1.9 50
114118 2.8 48
113503 9.2 36

Table 1: Most Actively Traded Government Bonds
The trading volume is the average daily trading volume on the German stock exchanges in million
DM face value in the period April 6 - April 30, 1998.

and 1-year T-bills, the current 2-, 3-, 5-, and 10-year T-notes, and the current
30-year bond, except that Bloomberg also included the 3-month T-bill. It
turns out that the same maturities are most actively traded in the German
government bond market. Table 1 shows the average daily trading volume of
the 6 most actively traded German government bonds in the period April 6
- April 30, 1998.%8 113505, 113506, 114125, and 113681 are the current (on-
the-run) securities with 10, 30, 5, and 2 years time to maturity. 114118 is
a bobl (5-year bond) that obviously served as a kind of a 3-year benchmark.
113503 is the old® 10-year bond and leads a long list of bonds that are traded
in quantities of about 30 million DM per day.

In the following, we explore the good deal bounds for zero-bonds and FRAs
relative to the five most actively traded bonds from table 1. Prices are from
the Frankfurt stock exchange of April 28, 1998.

Figure 2 shows the arbitrage bounds!'? for the zero-bond yield curve. Unlike
the arbitrage bounds that are computed w.r.t. the prices of all outstanding
government bonds, the arbitrage bounds relative to the benchmark bonds are
not close enough to be anyhow useful.

In the next step, we impose an upper bound on the implied forward rates as
in Hodges and Schaefer (1977), setting b = 0.2. Figure 3 shows the resulting
bounds for the zero-bond yield curve as well as the bounds for the 6-month
forward rate curve.

Adding the second order conditions with a(® = b(?) = 0.04 improves the
bounds for the term structure significantly, especially the bounds for the for-
ward rate curve (figure 4). Adding the third order conditions with a® = b(3) =
0.04 again improves the bounds (figure 5).

Up to now, the conditions (a(¥), b(*)) that we used were rather conservative,

¥We have no data on BuBills as they are are not traded at the stock exchange.

9The bond that was issued just before the current on-the-run bond of a certain maturity
is called the “old” bond.

Vre, a® =0 and b =a® =p® = 00,k = 2,3.
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Figure 2: Arbitrage Bounds for the Zero-Bond Yield Curve

so the resulting bounds (figure 5) can still be interpreted as being supported by
“almost arbitrage” strategies that may loose only in some rare cases of extreme
interest rate movements — in the sense of the first interpretation and with the
statistical results of section 5. Looking at figure 5 and taking the viewpoint of
the second interpretation we might convince ourselves that we would be able
to enter into higher order forward rate agreements according to

(@D, 61y = (2.5%,8%)
(@®,6) = (2%,2%)
@®, 63y = (1%,1%).

The resulting bounds are shown in figure 6.

Now, we are going to pull all stops and ask (in the spirit of the third
interpretation) what the closest reasonable bounds for the forward rate curve
and its derivatives are. One can see from figure 6 that the forward rate curve
is increasing at about 0.5% per year at the short end. So we are on the save
side when we set b(2) = 1%. But the forward rate cannot increase at that rate
over 30 years, so we make the upper bound on the first derivative dependent
on time to maturity:

bg?) _ 1% i 2—8/10’

where s is measured in years. (This means that f’ is smaller than 0.125% at
the long end.) Since it looks as if the forward rate curve is upward sloping, we
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Figure 3: Good Deal Bounds for the Term Structure under First
Order Conditions

The upper graph shows the good deal bounds for the zero-bond yield curve. The lower graph
shows the bounds for the 6-month forward rate curve. The bounds are computed w.r.t. the
5 benchmark bonds and the first order conditions with ¥ = 0, ) = 20%. The lower
bounds for the forward rate curve is zero. b = 20% means 20% continuously compounded
rate whereas the graphs always show annualized rates. This explains why the upper bound
is above 20%.

21



10 T T T T T
X
£
]
2
>
©
Q
N
©
>
c
c
©
3 - -
2 - -
1 - -
O 1 1 1 1 1
0 5 10 15 20 25 30
time to maturity in years
25 T T T T T
20 —
X
£ 15| E
e}
2
>
e}
Q
N
g
c 10 E
c
©
5 - -
O 1 1 1 1
0 5 10 15 20 25 30

time to maturity in years

Figure 4: Good Deal Bounds for the Term Structure under Second
Order Conditions

The upper graph shows the good deal bounds for the zero-bond yield curve. The lower graph
shows the bounds for the 6-month forward rate curve. The bounds are computed w.r.t. the
5 benchmark bonds and the first and second order conditions with o = 0, b = 20%,
a® = 4%, b = 4%.
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Figure 5: Good Deal Bounds for the Term Structure under Third
Order Conditions

The upper graph shows the good deal bounds for the zero-bond yield curve. The lower graph
shows the bounds for the 6-month forward rate curve. The bounds are computed w.r.t. the 5
benchmark bonds and the first, second, and third order conditions with oM = 0, b = 20%,
a® = 4%, b = 4%, a® = 4%, and b® = 4%.
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Figure 6: Good Deal Bounds for the Term Structure under Third
Order Conditions

The upper graph shows the good deal bounds for the zero-bond yield curve. The lower graph
shows the bounds for the 6-month forward rate curve. The bounds are computed w.r.t.
the 5 benchmark bonds and the first, second, and third order conditions with oV = 2.5%,
b = 8%, a® = 2%, b® = 2%, a®® = 1%, and b® = 1%.
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set a(?) rather small:
a? =0.1% - 27°/10,

a® = 0.1% would mean that we allow the forward rate curve to tilt from its
f'(0) = 0.5% at the short end to f'(5) = 0 at 5 years time to maturity. This
would be a rather high curvature, so

al®) =0.1% - 27%/10

cannot be considered overly restrictive. Since it looks as if the forward rate
curve is concave, we set b®) rather low:

b3 = 0.01% - 27%/19,

The resulting bounds for the term structure are shown in figure 7.

6.2 Identification of Tax Clientele Effects

If capital gains and coupons are taxed differently and investors with different
tax rates exist, then there may be tax clientele effects in the sense that certain
securities are rationally held only by investors of certain tax classes. In order
to show that a bond is definitely not held by investors of a specific tax class
k, Schaefer (1982) computes the upper arbitrage bound of its class-k after-tax
cash stream 7(—SF, CK ..., Ck)

Sk

7 (2
. 10 ...0 P ck 1
—rglwn{pw o ) <x> = ,xZO,pER} (50)
k

m
If that value is negative, the bond is called dominated for class k. Short-selling
is assumed to be infinitely expensive, that is, the cash flow matrix contains
only the “long” after-tax cash streams: C*¥ = (—S* | P¥).

It was pointed out especially by Rasch (1996) that the above method is
asymmetric in its ability to detect tax clienteles. Bonds with high coupons can
be very well super-replicated by a series of low-coupon bonds with decreasing
time to maturity, in the sense that the two cash streams in the >=,-comparison
are almost the same. In order to super-replicate a bond with a very low
coupon, however, one has to match its principal payment with the principal
payment of a bond with a higher coupon. The higher the coupon of the super-
replicating bond, the more is “lost” in the >=,-comparison. Note that this
is not a mathematical fact, but a heuristic explanation why in practice most
least-cost super-replicating portfolios are of the following structure:

11>, is the arbitrage dominance relation corresponding to K, = {u|u1 > us > ... > up >

0}.
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Figure 7: Good Deal Bounds for the Term Structure under Time
Dependent Third Order Conditions

The upper graph shows the good deal bounds for the zero-bond yield curve. The lower graph
shows the bounds for the 6-month forward rate curve. The bounds are computed w.r.t. the 5
benchmark bonds, the first order conditions, and the time-dependent second and third order
conditions.
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e All bonds in the super-replicating portfolio have the same or a shorter
time to maturity than the dominated bond.

e The bond in the super-replicating portfolio that “provides the principal
payment” has the same or a lower coupon than the dominated bond.

This limits the effectiveness of the standard arbitrage approach in finding bonds
that are overvalued in a common sense of the word (from the viewpoint of a
specific tax class).

Bond 110083 in August 1981 provides an example for a bond that is signifi-
cantly overvalued (from a tax-free viewpoint) under moderate first and second
order conditions, but is not dominated in Schaefer’s sense. The following table
shows how much more expensive than its least-cost super-replicating portfolio
the bond 110083 was on August 28, 1981, under increasingly stricter conditions
on the admissible term structures:

dominance relation —7(110083) | bonds in the super-
replicating portfolio

arbitrage 0 | 110083

lLorder: ¢ =0, b)) = 20% 1.63% | 113401

1. & 2.order: a? = p@ = 4% 3.11% | 113401, 113402

1.,2. & 3.order: ¢ = b3 = 4% 3.12% | 113401, 113402

The cash flow matrix includes all German government bonds except Post and
Bahn bonds that were traded at the Frankfurt stock exchange on that day.

WKN'? | maturity date | coupon | issue volume | issue year
110100 01/01/90 7.75 1500 80
113400 04/01/90 10.00 1100 80
110083 05/01/90 5.75 500 78
113401 07/01/90 8.25 1500 80
113402 11/01/90 8.25 1500 80

Table 2: Parameters of Bonds 110100, 113400, 110083, 113401, and
113402

The overvaluation of bond 110083 from a tax-free viewpoint is very plau-
sibly explained by tax effects, since it is the only low-coupon bond with a
maturity of about 9 years. (See table 2.) Although the overvaluation com-
pared to 113401 and 113402 is significant, this is not detected by the arbitrage
dominance relation. There are three reasons for this. First, 113401 and 113402
mature later than 110083, consequently they are no good candidates for the
super-replicating portfolio. 113400 has an extremely high coupon, thus neither
113400 is a good candidate. Third, 113400 is itself a bit overvalued. Under
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third order conditions, 113400 is dominated by 0.87% of face value. Its super-
replicating portfolio contains 113401 and 110100 as well as some bonds with
shorter time to maturity in lower quantities.!

Conclusion

The linear higher order conditions on the term structure allow to compute val-
uation bounds for any deterministic cash stream. The higher order conditions
have 2 economic and 1 “graphic” interpretation:

1. Future short-term interest rate movements are restricted.
2. Certain auxiliary cash streams (higher order FRAs) are available.

3. The lower order derivatives of the discount function are bounded. This
is approximately the condition that the forward rate curve and its (lower
order) derivatives are bounded.

Starting from the easily interpretable bounds on the forward rate curve and
its derivatives, which are nonlinear in the discount factors, we derive linear
conditions that are only slightly less restrictive than the nonlinear conditions.
(The term structure packet defined by the nonlinear conditions is contained in
the term structure packet defined by the linear conditions, but the difference
is small.) The linearization of the term structure constraints has two advan-
tages. First, the valuation bounds can be computed by the highly developed
LP solvers. Second, the constraints have an economic meaning as auxiliary
cash streams. Thus, price discrepancies can be easily translated into trading
strategies.

The higher order conditions on the term structure are related to extremal
event statistics of short-term interest rates. This puts the resulting valuation
bounds conceptually (but not mathematically) close to methods like value at
risk.

Depending on the choice of the constraints on the forward rate curve the
valuation bounds can be very wide or very close. Arbitrage bounds are con-
tained as a special case. On the other end of the extreme, the valuation bounds
on the term structure itself behave like quadratic splines in the forward rate
curve if the third order parameters are chosen very small.

Statistical methods that derive a single price system from observed prices
abound. These can be complemented by methods that compute valuation
bounds. Valuation bounds that are free of parametric and distributional as-
sumptions have an advantage over statistical methods when one suspects that
a certain regression equation — for example the present value equation — or a

13 According to a bond dealer, the overvaluation of 113400 could be due to the fact that
financial institutions sometimes use bonds with a very high coupon for window dressing
purposes in their accounting.
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certain method — like smoothing splines (Fisher et al.; 1995) — are not suitable
in a specific market. Schaefer’s (1982) work is a prominent example of the use
of arbitrage bounds for proving that the assumption that all bonds are priced
according to the present value equation under a single term structure is wrong.
The ability of the arbitrage dominance principle to detect price discrepancies
in bond markets, is however, limited. The valuation bounds under the linear
higher order conditions on the term structure generalize arbitrage bounds and
provide a sharper method when the arbitrage principle is too weak.

Proofs

Proof of Proposition 2. %v > 0, which implies that a local extremum

cannot be attained in the interior of the feasible set and not in the relative
interior of the edges defined by {ry = aM} and {ry = bM}. (17) ensures

3(2 v < 0, which implies that an extremum cannot be attained in the relative

interior of the edges {r; = aM} and {r; = bM} either. After sorting out
(r1,r9) = (M, 6M) and (r1,75) = (¢, aM) as being Suboptimal, the maxi-
mum is attained somewhere on the edge defined by {ry —r = A} and
the minimum is attained somewhere on the edge defined by {r, —r; = @A}
(18) and (21) ensure that these edges exist (that the relative interior of the
feasible set w.r.t. the lines defined by these boundary conditions is nonempty),
and the points (r1,72) = (b, aM) and (r1,72) = (aV), b)) are infeasible.
The directional second derivative of v on the line {ro — ry = const.} is
positive, so the maximum is attained at one of the endpoints (a) or (b), and
the minimum is attained at the point (d), where the directional first derivative
is zero, or at one of the endpoints (c), (e). O

Proof of Proposition 3. The proof consists in going through all combina-
tions of which of the boundary conditions (excluding {g(r1,r9,73) = —a(®} and
{g(ri,m2,73) = b®} ) are binding and showing that either the corresponding
subspace has no point in common with the feasible set or one of the necessary
conditions for a local extremum does not hold

Conditions (17) and (26) ensure that 3_“ > 0, ar v < 0, and —v > 0.
This implies that there cannot be a local extremum in

e the interior of the feasible set,
e the relative interior of the faces {r; = const.},

e the relative interior of the faces {rs — ro = const.} ( -v > 0),

e the relative interior of the faces {ro —r; = const.} (3%31) > 0).

This excludes the relative interior of all faces except {g(r1,r2,73) = const.}.
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subspace increase decrease
{r1 = const., r3 = const.} (0,-1,0) (0,1,0)
{ro =c1,mi = c2}iz1 3,01 #0» infeasible: (27), (28), (29), (30)
{ro =¢,r1 =¢} (0,0,1) (0,0,-1)
{ro =¢,r3 =c} (1,0,0) (-1,0,0)
{rs —ro =ci,ro — 11 = C2}ei 200 infeasible: (31), (32)

{rs —ry = —=Ag3a® 1y — 1 = —Aa@} (0,0,1) (-1,0,0)
{rs — 1y = Aogzb® 1y — 1) = Appb)} (1,0,0) (0,0,-1)
{ri = const.,ry — ry = const.};=1 2 (0,0,1) (0,0,-1)
{r; = const.,rs — ry = const.};—23 (1,0,0) (-1,0,0)
{rs = aV ry — 1 = Algb(2)} infeasible: (35)

{ry = bW ry — 1) = Apb®} (1,0,0) | (001
{r3 =bM) ry —r) = —A19a?} infeasible: (33)

{rs=aW,ry — 1 = —Apa?} 00-1) | (100
{r = b rg — 1y = Aggb@)} infeasible: (34)

{r1 = a1y —ry = Apsb®} (1,0,0) | (001
{ri =aW,ry —ry = —Ag3a?} infeasible: (36)

{ri = bW ry — 1y = —Ag3a®} 001 | (100

Table 3: One-Dimensional Subspaces

The first column defines one or more 1-dimensional subspaces. The other columns contain
either directions that improve the objective function or a reason why these lines have no
point in common with the feasible set.

Table 3 covers all points in the relative interior of the edges. The first col-
umn defines one or more 1-dimensional subspaces. The other columns contain
either directions that improve the objective function or a reason why these
lines have no point in common with the feasible set.

From %v > 0, %U < 0, and %v > 0 follows that only the following
conditions can be binding at a local maximum:

(r1 = bV or ry—py = —Alga@)) and (51)
(ro = aV or ro—1ri = —-Apa? or T3 — Ty = Ang@)) and (52)
(’)"3 = b(l) or T3 —7To = A23b(2)). (53)

The resulting points are listed in table 4 and shown to be infeasible.
From %v > 0, %v < 0, and %v > 0 follows that only the following
conditions can be binding at a local minimum:

(r1 = aV or ry—r = A12b(2)) and (54)
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defining boundaries cond.
ri = bl ry = al) any other (28)
ry = b rg —r1 = —Ajpa® 3 =M (33)
ry = b rg —r1 = —A12a® 13— 1y = Ag3b? (31)
ri = bl r3 —ro = Ag3b® ry = bM) (34)
ro —r1 = —Apa®  ry =gl ry = bM) (27)
ry — 1 = —A1pa? gy =al) r3 — 19 = Ag3b (31)
ry — 11 = —Appal?  ry—ry = Ay3b®@ ry = b (31)

Table 4: Candidates for a Maximum
The last column shows the reason why the point defined by the three boundary conditions
is infeasible.

defining boundaries cond.
ry = a) ry = b any other (30)
r = a ro —r1 = A1ab?@ r3 = at) (35)
r = al) ry — 11 = Appb? r3 — 1y = —Ag3a® | (32)
r = al) r3 — 19 = —Agza® 13 =qal) (36)
ry — 11 = Apb®  ry =) rg = alt) (29)
ro —r1 = A1pb@  py = M) r3 — 1y = —Ag3a® | (32)
ry — 11 = A1ob®  r3—ry = —Agza®  ry3=all) (32)

Table 5: Candidates for a Minimum
The last column shows the reason why the point defined by the three boundary conditions
is infeasible.

(ro = b or ry—r =Apb®  or rg—ry = —Azga(Z)) and (55)
(rs =aV or r3—ry=—NAs3a?). (56)
The resulting points are listed in table 5 and shown to be infeasible.

We have now proved that one of the conditions {g(r1,r2,73) = const.} is
binding at a local extremum. Taking the direction (1,—1,1), it is seen that
the maximum can only be attained on {g(r1,7,73) = b®} and the minimum
on {g(r1,re,73) = —a®}. O

Proof of Proposition 4. On the face {g(r1,72,73) = ¢}, we substitute r; by
1
Ao

to get a function v(re,r3) = v(r1,r9,7r3). With

(A123A12A03¢ + (Ajg + Agz)rg — Aqars)

L=

F o= 6A17“1+A27"2+A3T3’ (57)
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Fy = e®tasm  and (58)

Fy = ¢bem (59)
we get
0

—0 = AF|+ AyFyzy and (60)
87“2
0

87’() = BF1+A3(F222+F323). (61)
3

With z := Fyzy/Fy, y := F323/F}, the first order condition Vo = 0 can be
written as

z = —A/Ay, (62)
y+x = —BJ/As, (63)
which has a unique solution in (z,y). Since (17) and (26) imply 4+ 1 < 0 and
x+y+1 > 0, respectively, this corresponds to a unique solution in (r2,r3) (for

fixed (29, 23)).
The second derivatives are:

82
—217 = A2F1 + A%FQZQ, (64)

ors

32
Wﬁ = B?F| + A%(Fyzy + F323), (65)

3

32

Oraor 0 = ABF) + AyA3Fy2 (66)

2073
A sufficient condition for the Hessian being negative definite is 36—:217 g—;ﬁ —

2 3

( &fzgrgf))Q < 0. This condition can be simplified to

yA2(A% + A3z) + z(AA3 — BAy)? < 0.
At the local extremum defined by Vo = 0, the condition simplifies to
zy(zx +y+1) <O0.

We see that the Hessian is always negative definite at the local extremum, but
maybe not for all values of (2, z3) under the conditions (17), (26). So we need
the additional condition (37).

That v is strictly concave ensures that the minimum can only be attained
at extremal points (corners) of the simplex defined by (9), (10), and (11). From
airlv > 0, airzv < 0, and 3%3” > 0 follows that only the following conditions
can be binding at a local minimum:

(r1 = alV or ro —r1 = Alzb(z) or g(r1,r2,73) = —A123a(3)) (67)
and (68)
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defining boundaries feasible?
ro = by r3 = aq (29)
ro = by ry —ro = —Agzal? *
re —r1 = A1ab?® r3 = ay (35)
ro —r1 = A1ob® r3 — 1y = —Agsal? (32)
rs —ry = —Ag3a?  r3=0q *
L =a rs =a1 *
] =aj T3 —T2= —AZSG(Q) (36)
T = a1 o = b(l) (36)
T = a1 ro — 11 = Aypb? *
ry — 11 = Ay ry = b *

Table 6: Candidates for a Minimum

The points are defined by the two conditions shown and g(ri,r2,r3) = —A123a(3). The last
column shows the reason why the point is infeasible or a star when the point remains as a
candidate for a minimum.

(ro =01 or ry—r = Apd® (69)

or r3—ry=—Ng3a® or g(ri,re,r3) = —A123a®))  (70)

and (71)

(rs=a" or r3—ry=—A9a® or g(ri,rars) =—Ap3a®)).  (72)

The resulting points are listed in table 6. ad
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