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Abstract

This paper presents a general theory that works out the relation between
coherent risk measures, valuation bounds, and certain classes of portfolio
optimization problems. It is economically general in the sense that it works
for any cash stream spaces, be it in dynamic trading settings, one-step mod-
els, or even deterministic cash streams. It is mathematically general in the
sense that the core results are established for (possibly infinite-dimensional)
linear spaces.

The valuation theory presented seems to fill a gap between arbitrage valu-
ation on the one hand and single agent utility maximization or full-fledged
equilibrium theory on the other hand. “Coherent” valuation bounds strike
a balance in that the bounds can be sharp enough to be useful in the prac-
tice of pricing and still be generic, i.e., somewhat independent of personal
preferences, in the way many coherent risk measures are somewhat generic.

Keywords: coherent risk measures, valuation bounds, portfolio optimization,
robust hedging, convex cones, dominance relations, convex duality, incomplete
markets, proportional transaction costs
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Coherent Risk Measures, Valuation Bounds, and
(i, p)- Portfolio Optimization

1 Introduction

The mathematical structure of valuation bounds in incomplete markets was first
established in the context of super-hedging and arbitrage pricing (e.g. (El Karoui
and Quenez; 1992; Jouini and Kallal; 1995a,b)). More recently it has been shown
that arbitrage bounds can be generalized to “good-deal bounds”, and most math-
ematical results from no-arbitrage pricing just carry over (Cerny and Hodges;
1999). Independently, risk measures like “Value at Risk” (VaR) appeared. De-
ficiencies of (quantile-) VaR led to the question what the characteristics of eco-
nomically sensible risk measures are. These were developed in the landmark
paper on coherent risk measures by Artzner et al. (1998). It turns out that the
mathematical structure behind coherent risk measures and good-deal bounds is
exactly the same. This leads to interesting connections between the two fields,
which started from different viewpoints.

This paper works out the relation between risk measures, valuation bounds,
and certain classes of portfolio optimization problems. It is economically general
in the sense that it provides a common framework for applications in any cash
stream spaces, be it in dynamic trading settings, one-step models, or determin-
istic cash streams. It is mathematically general in the sense that the core results
are established for general linear spaces (which may be infinite-dimensional).

The valuation theory presented seems to fill a gap between arbitrage valuation
on the one hand and single agent utility maximization or full-fledged equilibrium
theory on the other hand. Arbitrage valuation has the advantage that the de-
rived price bounds are completely independent of (estimated) probabilities and
personal preferences. Arbitrage bounds can also be robust w.r.t. model mis-
specification, as in (Brown et al.; 1998). In realistic settings with transaction
costs, however, it often leads to weak (wide) price bounds, which are not very
useful in practice. Single agent utility maximization can be used to derive much
sharper (closer) valuation bounds (as in (Hodges and Neuberger; 1989)). This,
however, comes at the cost of the valuation bounds depending on an investor’s
utility function, his initial position, and his estimate of the probability measure.
The valuation bounds that are associated with coherent risk measures strike a
balance in that the bounds can be sharp enough to be useful in the practice of
pricing and still be generic, i.e. somewhat independent of personal preferences,
as well as robust w.r.t. model misspecification and estimation error.

The paper contains some conceptual insights that seem to be new:

Coherent risk measures as functions on a space of random variables (Artz-
ner et al.; 1998) can be generalized to general spaces of economic objects like
commodities, delivery contracts, stochastic payment streams, or consumption
plans. This is like equilibrium theory, which can be formulated on abstract



spaces (Duffie; 1988), but unlike von-Neumann-Morgenstern utilities, which are
intricately linked to probability spaces.

Second, there is — except for technical conditions — a one-to-one correspon-
dence between the following economic objects:

(i) “coherent risk measures” p,
(ii) cones A of “acceptable risks” or “desirable claims”, (A = {z|p(z) < 0}),

(iii) partial orderings “z > y”, meaning “z is at least as good as y”, (z >
y = plz—y)<0),

(iv) valuation bounds 7 and =« (with p(z) = 7(—z) = —x(z)), and

(v) sets K of “admissible” price systems. (7 € K <= w(z) > 0 for all x >
0.)

The relation between (iii), (iv), and (v) was established in the arbitrage and
super-hedging thread of the literature, whereas the equivalence of (i), (ii), and
(v) was established by Artzner et al. (1998).1 (Section 2.)

Third, the two examples of generating a coherent risk measure “from stan-
dard risks” and the “largest coherent risk measure below a given function” from
(Artzner et al.; 1998) are shown to be special cases of the same principle: from
any set B, define a (possibly coherent) acceptance set A by taking the conic hull
A = cone(B). (Section 3.)

Fourth, a coherent risk measure p and a set M of “cash streams available in
a market” (i.e., cash streams that can be generated by trading without endow-
ments) define a new risk measure

pz) := inf p(z +z),
which is again coherent if M is a cone. If one replaces the natural ordering “>”
among cash streams by a general partial ordering “>", one gets generalizations
of the concepts arbitrage, super-hedging strategy, and arbitrage bounds. The gen-
eralized valuation bounds 7ys and m,, — called good-deal bounds by Cerny and
Hodges (1999) — correspond to the coherent risk measure p by p(z) = Ty (—x) =
—mpr(z). (Section 4.)

Fifth, a series of coherent risk measures and valuation bounds can be defined
for deterministic cash streams, generalizing an old idea by Hodges and Schaefer
(1977). This shows that our generalization of coherent risk measures in fact
supports interesting new classes of risk measures. (Section 4.)

Sixth, using the classical (u, o)-portfolio optimization theory of Markovitz as
a blueprint, (u, p)-portfolio optimization, where p is a coherent risk measure, can
be considered. The optimization problem defining the “good deal bound” 7y,

In their setting, linear price systems can be represented by probability measures and sets
of linear price systems are called generalized scenarios.



turns out to be a special case of the (u, p)-optimization problem. It is, however,
an extremal point, so that the strategy realizing the hedge in 7 is usually
not done in practice. By introducing a Lagrangian variable, the (u, p)-problem
can be transformed into the problem of maximizing U = u — Ap, which can be
interpreted as a utility function (since y is linear and p is convex). Altogether,
each of the following theories is a special case or limit point of the next one: super-
hedging and arbitrage theory, coherent risk measures and good-deal bounds,
(i, p)-portfolio optimization, and single-agent utility maximization. (Section 6.)

Some minor “mathematical enhancements” to the original theory are made.
Where Artzner et al. (1998), Delbaen (1998), and previous works on arbitrage
theory often use topological arguments, we point out that the closedness con-
cepts one really needs are of algebraic nature. The one-to-one correspondence
between coherent acceptance sets A and coherent risk measures p, for example,
hinges on A being radially closed, which is a weaker closedness concept and does
not correspond to a topology. Also, the separating hyperplane theorem, which
underlies the duality between acceptance sets and admissible price systems (and
any other strong duality result), can be proven in a purely algebraic setting.

A remark on notation. Important economic concepts that admit different
mathematical specializations are put in “quotes”, whereas precise mathematical
definitions are set in italic.

Remarks that the less mathematically inclined reader may skip are set in small, sans-serif paragraphs.

2 Partial Orderings, Acceptable Cash Streams, Valu-
ation Bounds, Risk Measures, and Admissible Price
Systems

In this section we are going to show that there is a one-to-one correspondence
between certain partial orderings >, sets of acceptable cash streams A, valuation
bounds 7, 7, risk measures p, and admissible price systems K.

Let L denote a generic “space of cash streams”. It should be possible to form
portfolios and be on either side of a contract, so it is natural to assume that L
is a linear space. Examples of such spaces are:

(i) The space of “stochastic cash streams” on a finite horizon [0,7"]. Let Lgy,
denote the space of simple adapted processes on a probability space (€2, F)

n
2(tw) =Y 2 x5 (@) Xir ) (1), 2
im0

with the meaning that z pays the amount z; at the random time 7; in the
event F;.

>xa denotes the indicator function of a set A, and the events {w|ri(w) < t} and E; N



(ii) The space of “deterministic cash streams” on a finite horizon [0,7"]. Let
L4, denote the space of piecewise constant functions

n
2(t) = ziXpmm (),
im1

with the meaning that z pays the amount x; at the deterministic time ;.

(iii) The space of “stochastic payments at one period”. Let Ly, denote the space
of simple random variables

o) = Y wixs ()

on some probability space (2, F). For finite 2, this is the case covered in
(Artzuer et al.; 1998).

The next item we need is a “relatively secure cash stream whose current
(time-0) value is 17, which we denote by 1%, or simply 1. 1 is a “reference cash
stream”, “benchmark cash stream”, or “numeraire cash stream”, of which there
can be many. A 1 in the above spaces can be defined, for example, as

(i) 15em(t,w) = xa(w)xjpm ),
(i) 1%am(t) = xjo,r1(t), and

(iii) 175 (w) = (1 + r)xa(w), where r is a riskless interest rate for the interval
of the one-step model.

Price systems are real-valued functions 7 : L — R. If n(z) is thought of as
a “value” of x before any kind of transaction costs are considered, instead of a
market “price”, 7 is naturally a linear function.? Let L* denote the space of all
linear price systems on L. L* is the algebraic dual of L. Call a price system 7
(time-0) normalized if w(1) = 1. For example,

(i) an important class of price systems on Ly, is generated by pairs of nu-
meraire processes Ny > 0 (e.g. the value of a money market account) and
probability measures @ by

T
No
mN,Q(7) = Eq {/0 Edmt} ;

{w|ri(w) < t} are in the information set F; of the time ¢ for all ¢ € [0,T]. n is an arbitrary
integer.

3This does not mean that transaction costs are not considered. It only means that our linear
price systems w are always defined on the whole space L and 7 (z) is to be seen as a “value”
rather than a “market price”. “Market prices” are usually not linear and may not be defined
on the whole space L.




(ii) price systems on Ly, are nothing else than term structures of interest rates,
which can be represented by discount factors v(t) for every time to maturity
t, such that

m(o) = [ " o(t)dy

(iii) price systems on L, are equivalent to finitely additive set functions @) on
(€2, F) by

mo(o) = Eole} = [ a@)Qldw).

Note that the business of pricing OTC-contracts consists in estimating a normal-
ized price system 7. 7 (z) is then the (expected) present value of the cash stream
z. So, the concept of a time-0 normalized linear price system is essentially the
same as the “present value principle”.

A relation > on L is a partial ordering if

(@) z > z and

for all z,y,z € L. A partial ordering is a vector ordering if
(¢) -y = z—y > 0and
d z-20,a>0 = az >0

for all z,y € L. It is well-known that there is a one-to-one correspondence
between vector orderings > and cones* A by z >y <= z —y € A.

A natural vector ordering > on cash stream spaces is given by “x > 0 if
every possible single payment of z is nonnegative”. The cone of nonnegative
cash streams is denoted by LT. In the above spaces this means that

1. L}, (L;’m) is the set of nondecreasing processes (functions) z with zy > 0,
and

3. L}, is the set of nonnegative random variables.

If now z > 0 has the meaning that “z is in some sense at least as good as the
zero cash stream” or “z is an acceptable risk”, or “z is a desirable claim”,® then

T(z) = inf{a|al = 2}

Ais a coneif A+ AC Aand aA C A for all a > 0.
The indicated economic meaning of 1, LT and > suggests the inclusion 1 € L+ C {z|z > 0}.
We will still explicitly say when we assume that, though.



can be considered an “upper bound” for the price (or the insurance premium) of
the cash stream z. Analogously,

n(z) = sup{a|ol < z}
can be considered a “lower bound” for the price of z. The function p defined by
p(z) = inf{a|al + z »= 0}

can be considered a “risk measure”. Obviously, p(z) = T(—2z) = —x(z) for all
z€L.S

A set A is said to be absorbing if for every £ € L exists an « > 0 such
that 'z € A. The radial interior of A is the set of all z € A such that
A — x is absorbing. A set A is radially open, if it equals its radial interior. The
complements of radially open sets are called radially closed.

Call

pa(z) = inf{a|al +2z € A} (inf @ := oo0) (1)
the risk measure associated with a set A and

Ay = {2 p(z) < 0}

the acceptance set associated with a function p. It is easily_veriﬁed that pa, = p
holds for all functions into the extended real line” p : L — R with the translation

property
(T,) plal+2z)=p(z) —a VaeRVze L.
Obviously, A C A,,. The translation property
(T4) z€A,a>0 = z+al €A

ensures that the set {a|al + z € A} is either empty, the whole line, or an
interval of the form [a, o0) or (o, 00). If A is also radially closed, the last form of
the interval cannot occur, the infimum in (1) is attained or +o00%, and A = 4,
holds. Clearly, cones A have the translation property if and only if 1 € A. If
A is a cone, py(0) = 0 if and only if —1 ¢ A and 1 € A. If A is a cone
containing 1, then p4 < oo if and only if 1 is in the radial interior of A, and
pa > —oo if and only if —1 is in the radial interior of the complement of A. If A
is a cone, the associated risk measure py4 is convex? and positively homogeneous
(p(az) = ap(z) for all z € L,a > 0). Conversely, if p has these two properties,

5 Although mathematically trivial, it seemed — at the time of writing — not widely recognized
that any valuation principle that yields price bounds also induces a risk measure and vice versa.

"R =R U{—00, 00}

8with the convention inf ) = +o0, inf R = —o0

In the definition of convexity inf-addition co — co = oo is used (as in Rockafellar and Wets
(1998)).



A, is a cone. In summary, there is a one-to-one correspondence between radially
closed cones A containing 1, and positively homogeneous, convex functions p
that have the translation property.

The relation between an acceptance set and its associated risk measure is similar to the relation
between a convex, absorbing set U and its Minkowski functional py. In fact, the risk measure pa
associated with a cone A can be represented in terms of the Minkowski functional.

Proposition 1 If A is a cone, 1 is in the radial interior of A and —1 is in the radial interior of the
complement of A, then pa equals —pp)\(a+1) on the radial interior of A, pa—1 on the radial interior
of the complement of A, and 0 on the radial boundary of A.

If > is a vector ordering, an order interval [z,y] is defined as the set {z € L|z < z < y}. An
element 1 € L is called an order unit if [—1,1] is absorbing (Schaefer; 1966). It is easily verified
that 1 is an order unit if and only if 1 is in the radial interior of A = {z|z > 0}.

Now we collect the conditions for the four “economically equivalent” objects
=, A, p, and (T, ) to be mathematically equivalent in formal definitions. We call
a vector ordering > on L a coherent partial ordering if

(Cl) {z|z > 0} is radially closed and
(M) 2>0 = z>0

for all z,y € L. We say that a set A C L is a coherent acceptance set if

(C,PH) Ais a cone,
(Cl) A is radially closed,
(T) 1€ A, and
(M) LT CA.

Usually, L™ will be radially closed and contain 1, so that it is itself a coherent set
of acceptable cash streams. Call a function p: L — R a coherent risk measure if

(C) pis convex,
(PH) p is positively homogeneous (linear in scale):
plax) = ap(z) foralla > 0, z € L,
(T) plz+al)=p(zr)—«a forala e Rz € L, and
(M) zeLt = p(z) <0.

Finally, (w,7) is a pair of coherent valuation bounds if T(—z) = —n(z) for all
z € L and —m is a coherent risk measure.

Corollary 2 There is a one-to-one correspondence between coherent partial or-
derings >, coherent sets of acceptable cash streams A, coherent risk measures p,
and pairs (w,T) of coherent valuation bounds. The correspondence remains valid
if the monotonicity condition (M) is removed from each of the definitions.



The monotonicity condition (M) ensures that m(z) > 0 for all z > 0. We call
(w,7) weakly relevant if also w(xz) < 0 for all z < 0. The equivalent condition
on the acceptance set is A N (—LT) = {0}. (This is the relevance condition in
(Artzner et al.; 1998).) We call coherent valuation bounds (, 7) strongly relevant
if 7(z) > 0 and T(z) < 0 imply z = 0. The equivalent conditions on the other
representations are

(Ry) z>yANy>=z = z =y, ie. > is antisymmetric
(Ra) AN(-A)={0}, and
(Rp) plz) <0Ap(—2) <0 = z=0.

It can be argued (as by Delbaen (1998)) that it doesn’t make much sense
economically to allow p(x) = —oo. A consequence of our earlier observations is
that a coherent acceptance set A defines a risk measure pg4 > —oo if and only
if -1 ¢ A. This is automatically fulfilled by weakly relevant acceptance sets if
1eL™.

A semi-norm that is naturally associated with a coherent risk measure p is given by
p(x) = p(—z) + p(z) = 7(z) — x().

(The sum of two convex functions is convex and p is obviously absolutely homogeneous.)
An ordered linear space (L, >) is a vector lattice if for any pair (z,y) € L x L the infimum and the
supremum of z and y (w.r.t. >) exist. Then one can define

lz| = sup(—z,z),
and observe that
Az| = [A] |z]
lz+yl =X |o]+ [yl

(Schaefer; 1966, p.207) From these properties it follows that for any coherent risk measure p on a
vector lattice
p(z) := p(—|z])

is another semi-norm.

A large part of the theory of (mathematical) finance is based on the ability
to describe sets of cash streams A through “dual sets” K C L* of price systems
in the sense that

€A <= 7(z)>0forallme K. (2)

For infinite-dimensional spaces L, the algebraic dual L* is not a handy space.
It is often more convenient to consider only price systems from a total subspace
of LX.10 L' is a total subspace of L* if w(z) = 0 for all 7 € L' implies z = 0.
The o(L')-topology on L is the coarsest topology for which the linear functionals

0For example, one wants to use o-additive measures instead of finitely additive set functions
to be able to use probability theory in the analysis of Ls, and L.



z — 7(z) are continuous for all # € L'. Similarly, the o(L)-topology on L' is the
coarsest topology for which the linear functionals 7 — 7(z) are continuous for
all z € L.

Let

A*:={neLl'|r(x) >0 Vre A}

denote the right polar cone in L' of a cone A C L and

*K:={ze€L|n(z) >0 VmeK}

the left polar cone of a cone K C L'. If A is an acceptance set, we call A* the
associated set of admissible price systems.

It is easily seen that A C *(A*) generally holds. The condition that (2) holds
with K = A* can be written as A = *(A*). It turns out that this is the case if
and only if the cone A is o(L’)-closed. This result and its consequences for the
optimization problem that is dual to (1) is formulated in the following theorem.

Theorem 3 (Duality Theorem) Let A be a cone that contains 1, K = A* its
right polar cone, and p = p4 its associated risk measure. Then

()
(i)

(iii)

A C *K. The equality holds if and only if A is o(L')-closed.

If the set of normalized admissible price systems
D:={reK|n(1) =1}

is not empty then -1 is not in A. If A is o(L')-closed, the converse also
holds.

400 ifIre K :nm(z) <0A®(1)=0
p(z) Z{ sup m(—z) else @ W (3)
meD

or, more compactly written

p(z) > sup m(—z)/m(1) (4)
TeEK
with the convention 0/0 = —oo. If 1 is in the radial interior of A, this can

be simplified to

p(z) > sup m(—z) (5)

with the convention sup® = —oo. If A is o(L')-closed, equality holds in

(3), (4) and (5).



Proof. (i) This is the bipolar theorem. (See the last section.)
(i) The first statement is trivial. The other implication is a consequence of
A=
(iii) A C *K implies

p(z) > inf{a|m(al +z) >0Vr € K} (6)

and A = *K implies the equality in (6). (3), (4) and (5) are simple conse-
quences of (6). O

In light of this theorem we call a coherent risk measure (and its equivalent
representations) o (L')-closed if the associated acceptance set is o(L')-closed. Call
K C L' a coherent set of admissible price systems if

(C,PH) K is a cone,
(Cl) K is o(L)-closed, and
(M) zeL"™ = nw(z)>0forallweK.

Corollary 4 There is a one-to-one correspondence between o(L')-closed coher-
ent (i) partial orderings =, (ii) acceptance sets A, (iii) risk measures p, (iv) pairs
(w,7) of coherent valuation bounds, and (v) coherent sets of admissible price sys-
tems K. The correspondence remains valid if the monotonicity condition (M) is
removed from each of the definitions.

The following proposition provides sufficient conditions for an acceptance set
to be closed in some o(L’)-topology:

Proposition 5 Given a radially closed cone A containing 0.
(i) If A is radial at some point, A is o(L*)-closed and A = *(A*) in L*,

(i) If A has an interior point in a vector topology T, the linear forms in A*
are T -continuous.

(Grothendieck; 1992, p.52). (See the last section.)

Many works on no-arbitrage pricing (including (Cerny and Hodges; 1999))
start with a topological vector space L and require price systems to be from
the strong dual L*. This makes the notion of price systems as well as duality
theorems appear to depend on topological properties, where in fact they do not.
In this section, we proposed an alternative route. Consider all functionals from
the algebraic dual L*. The duality A = *(A*) holds for all coherent acceptance
sets A which are radial at some point. In fact, the 1-cash streams in the spaces
Lgn, Ligm, and L, as defined above are in the radial interior of the respective
positive cones, so that any coherent acceptance set A on these spaces is o(L*)-
closed and a strong duality result holds. The admissible price systems A* — these
are the only ones actually used — are automatically continuous in every topology
in which A4 has an interior point. Alternatively, one can consider a space of price

10



systems L' suggested by economic considerations (as long as it defines a total
subspace of L*) and then use the topology o(L') for duality results.

A completely different story is if one wants to define coherent risk measures
on the space of all random variables L°(Q), if it is infinite-dimensional. The
o—additive measures on €2, which one would like to take as representations of
price systems do not define linear functionals that are defined on the whole space
L. In other words, there is no easily representable total subspace of the algebraic
dual of L°. One work-around is to first define the risk measure on L™ and then
extend it through a limiting procedure to L° (Delbaen; 1998). Another elegant
approach is to allow price systems to take the value co and use a more general
bipolar theorem then the one we used here (Brannath and Schachermayer; 1998).

3 The Construction of Risk Measures from Standard
Risks and Scenarios

If Y C€C L is a set of “standard risks” and, say a bank regulating authority,
assigns risk numbers 1 (y) to these cash streams — from section 2 we know that
this is equivalent to determining “lower bounds” —1)(y) for the value of the cash

streams y — then Ag’ = {y + ¢¥(y)1}ycy is a set of acceptable cash streams.
Positive multiples and convex combinations of acceptable risks should also be
acceptable, hence the finitely generated cone

n
cone(Ag’) = {Z Aiai | Ay > 0,a; € Ag’,n e N}
i=1
defines an “acceptance set”. Then the risk measure associated with the set
AY = cone(Ag}) +L*
is
Y(z) = inf{a|z + al — h 1) >0,hy, >0
p¥(2) {alz+ y(y +9(y)1) = 0,hy >0},
a,h ”

where the infimum is taken over all families {hy},cy with only finitely many
elements being non-zero.

Proposition 6 (compare (Artzner et al.; 1998, Prop.4.2,p.18))
For any function v : Y — R, p¥ is the largest coherent risk measure such that
p¥ < poon Y.

Proof. For every two sets A; and Ao with the translation property (T4) A1 C Aq
holds if and only if pa, > pa,. The proposition then follows from the fact
that AY is the smallest cone containing Ag) and LT. Tt is easily checked that
cone(A U LT) = cone(A) + LT for any set A. It is well known that cone(A) is
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the smallest cone containing A. (One has to show (i) that cone(A) is a cone and
(ii) that cone(A) is contained in any cone containing A. The first property is
obvious and the second is proved by induction. (Grothendieck; 1992, p.47).) O

Ezample. Consider the space of deterministic cash streams on a fixed grid of
times 0 = 79 < 74 < ... < T,- Represent cash streams by vectors z of single
payments z; and price systems by vectors v of discount factors v; for the times
7;. Assume upper and lower bounds ( ij, 7]) for the forward rates of the intervals

[7j,Tj+1]. This defines “standard acceptable risks” of the form
Hgy = (0,...,0,—1,14f;,0,...,0),
0,0+ ,0,1,—(1+ £,),0,.... ,0).

Hnyj,)
The corresponding acceptance set is
A = {H'hh>0}+ LT,
= {z|z—=H'h>0,h >0},
its polar cone
K = {v|Hv>0,v >0},
= {vlf; <wi/vis1 —1< fj0 >0},
and the corresponding coherent risk measure is given by the linear programs
p(z) = r;)l,ihn{p| (p,0,...,0) — H'h+2>0,h >0,p free}, (7)
= mq?,x{—z'v | Hv > 0,v > 0,v9 = 1}. (8)
The corresponding valuation bounds were used by Hodges and Schaefer (1977)
in their analysis of the British gilts market. This the earliest application of

coherent valuation bounds we are aware of. (The formulation of the same idea
in the spaces Ly, and Ly, is obvious.)

An alternative way of constructing a risk measure is to finitely generate the set
of admissible price systems by K = cone({m; }ic1), where we assume that the price
systems are normalized (m;(1) = 1) and non-negative (z € LT = m;(z) > 0).

Proposition 7 (Compare (Artzner et al.; 1998, Prop 3.1, p.10).) If a possibly
infinite family {m;}ic1 of normalized, non-negative price systems is given,
p(z) = inf m;(x) (9)
i€l

defines a coherent risk measure.
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Proof. m; non-negative implies the monotonicity of p, m; normalized implies the
translation property, and m; linear implies that p is positively homogeneous and
convex. a

A special case of this is when a set of scenarios 7 C €2 is given, which defines
a set of normalized price systems on the space L, by

(T Ny(w)
ro(z) = /0 o).

which is the ex-post discounted value of z under the scenario w € T. (Ny is the
price process of a numeraire.) This was developed into a powerful methodology
and implemented by Studer (1997) under the name of Mazimum Loss Optimiza-
tion.

It is remarkable that all the general methods of constructing coherent risk
measures boil down to taking the conic hull of a set.

4 Marketed Cash Streams, Arbitrages, and Good Deals

In this section we will introduce “good deals”, which are a natural generalization
of “arbitrages”. The key result is that the good-deal bounds — the valuation
bounds derived from market prices and the assumption that no good deals exist
— are again coherent valuation bounds.

In the following, we denote by M the set of “cash streams that can be gen-
erated by trading with zero initial endowment”, which we call available in the
market and assume that it is a cone. (M plays here the same role as the final
pay-outs of self-financing strategies with initial endowment of 0 do in the classical
theory (Harrison and Pliska; 1981).)

Ezample.  Consider a set of deterministic cash streams {Y;}i—1 ., that are
traded at bid and asked prices P; and P;, respectively. Then the buying of the

cash stream Y; at the asked price generates the net cash stream C; := —P;14Y;,
whereas selling at the bid price generates the net cash stream Cy,; := P;1 -Y;.
Such net cash streams we call “available in the market”. If {C1,...,Cy,} is a

set of cash streams available in the market, then any cash stream of the form
ZZQL”I z;C; can be generated by buy-and-hold positions z; > 0 in the net cash
streams Cj. If there are no trading constraints, the set of cash streams available
in the market is

M = cone({C4, ... ,Con}).

If the portfolios z are restricted to a cone other than (R?™)*, then the set of
cash streams that can be generated by such portfolios still is a cone.

Ezample. If P,(t), P;(t) are the bid and asked prices at time ¢ of a security
that provides the (dividend) cash stream D; € Lg,,, dynamic trading allows to
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generate cash streams of the form
C0(s,w) = (Di(s) = Di(t) — Pi(t)xqe,11(8)xr (@) (10)

by “buying security ¢ at time ¢ in the event F' and holding it till time 7™, where
the event F' is in the information set of time ¢ — 1. (We assumed here that the
“final value” of the security 4 is paid out as D;(T') — D;(T'—).) The analog cash
streams formed by selling are

O (s,w) = —(Di(s) — Di(t) — By(£)xpe,r1(8)xF (). (11)

If the number of traded securities, the number of trading times, and the proba-
bility space 2 are finite, then the set of cash streams available in the market is
again a finitely generated cone, generated by all cash streams of the form (10)
and (11).

Fix a coherent acceptance set A. A cash stream x € M represents an op-
portunity to “get something good for free, where the good part may or may not
come some time in the future” if z € A and = # 0. Such a cash stream we will
call a good deal of the first kind''. x € M represents an opportunity to get a
“cash-and-carry good deal” if there exists an a > 0 such that £ — a1l € A. Such
a cash stream we will call a good deal of the second kind. Since A and M are
cones, the absence of good deals of the second kind is equivalent to 1 ¢ M — A.
If A= L™, good deals are called arbitrages (Ingersoll; 1987). If —1 ¢ A then any
good deal of the second kind is also a good deal of the first kind.

We believe that the second concept is much more important practically. If
a good deal of the first kind is not a good deal of the second kind, then it is
not possible to materialize the “maybe something in the future”. Since arbi-
trage transactions in practice always involve some risks or costs that can not be
mirrored in a model, arbitrageurs will act only if the “maybe something in the
future” is substantial enough, meaning that it can be somehow expressed in units
of 1. In the following, we only talk about good deals, meaning good deals of the
second kind.

The marketed cash streams M and the coherent acceptance set A induce the
good-deal bounds

Tm(z) = aeﬁﬂfeM{a |z +al —2z¢€ A}, and (12)
my(z) = E]%upEM{oz |z —al+ 2z € A}. (13)

"1t seems that Cochrane and Sad-Requejo (1996) were the first to use the term “good deals”
with the meaning of “generalized arbitrages”, and “good-deal bounds” with the meaning of
“range of prices consistent with the absence of good deals”. Their good deals defined in terms
of the Sharpe ratio (on sets of random variables) usually fail on the monotonicity condition and
are thus not good deals in our sense. (On infinite-dimensional probability spaces 2, the cone
{w(X)/o(X) > h} contains L], only if h < 0.) Cerny and Hodges (1999), however, used the
term “good deals” essentially in the same sense as our “good deals of the first kind”, which
encourages us to also use that term.
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[mar(2),Tar(z)] is the interval of those prices for the cash stream z that are
consistent with the absence of good deals. If, for example, someone else is willing
to buy the cash stream z for a price P > ms(z), there exist a “hedge” z* € M
and a “price” o < P with z* + o*1 — z € A. Hence we can sell z at the
price P, run the trading strategy that generates * and the resulting cash stream
z* 4+ P1 — z is a good deal. Analogously, a good deal can be formed if a cash
stream z is offered for a price less then m;,(2).

Proposition 8 If A is a coherent acceptance set and M is a cone, then (Tpr, Tyy)
defined by (12), (13) is a pair of coherent valuation bounds.

Proof. It is easily seen that Tas(z) = —m,(—2) and p = —m,, is the risk measure

associated with the acceptance set A — M. A — M is a cone and contains LT, so

pPA—M = —m;; is a coherent risk measure. (If A — M is radially closed then the

relation between A — M and p4_ps is one-to-one.) O
Moreover,

pa-m(z) = inf pa(z +2).
We call

Ky = A"Nn(-M)*
t12

the set of consisten

Dy := {WEKM|7T(1) :1}

price systems.

is the set of normalized consistent price systems.

Although the mathematical structure of the good deal bounds (Tas,7,,) is
the same as that of the “raw” valuation bounds (7, ), their economic meaning
is very different. The bounds (7, ) are usually defined to yield bounds that
are somewhat independent of current market prices, whereas (T, 7,,) bounds
prices of traded securities at least to their bid and asked prices. In terms of
acceptance sets, A usually is “a bit more than LT”, whereas A — M usually is “a
bit less than a half-space”. In terms of normalized price systems, D is the set of
“all reasonable price systems”, whereas Dj; is a “small neighborhood” around a
“fitted” price system.

Ezample. (continued) Consider again the set of deterministic cash streams on a
grid 0 = 79 < ... < 7. Let H denote the matrix whose rows are the “standard
acceptable risks” defined in the Hodges-Schaefer-example. Let C denote the
matrix whose rows are the “available cash streams” from the previous example.
The upper good-deal bound is then given by the linear programs
7um(z) = min{p|(p,0,...,0)+C'z — H'h > 2z,h >0,z > 0,p free}, (14)
X

)y

= max{7z'v|Cv <0,Hv >0,v>0,v9 = 1}. (15)
v

12 «linear price systems consistent with the market prices implicit in M”
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It is apparent from the primal problem (14) that for any “standard acceptable
cash stream” H; the cash stream —H, can be interpreted as “auxiliary cash
stream” which is “available in the market”, even if not actually traded. The
variable z; represents a portfolio position in the cash stream C; available in the
market, while h; can be interpreted as a portfolio position in the auxiliary cash
stream —H;. So we have in fact three interpretations of the matrix H:

G) f; [, are assumed bounds of the future interest in the interval [7;, ;1] and
the auxiliary variables h correspond to cash management in the future.
(This was the interpretation in (Hodges and Schaefer; 1977).)

(i) f;, f. are bounds for the forward rates of the interval [r;, 7;41] and h is a
24
transaction in FRAs at time 0.

(iii) The dual constraints

vTi+1ii < Ur; — Vg < ’UTi+1?i
bound the first “derivative” of the (discrete) discount function.

All three interpretations can be used to exogenously define “standard accept-
able risks”. The last interpretation lends itself to be generalized to higher order
conditions on the term structure (Jaschke; 1999).

To see in which sense Djs is a “neighborhood” of a fitted term structure
assume that the bid and asked prices are P; + €. Then the condition “consistent
with observed market prices”, Cv < 0, becomes |P; — yiv| < ¢, for all ;. Many
non-parametric term structure estimators can be written as the optimal solution

of

min{||P — Yv|| + Aroughness(v)}
veD

for some roughness measure and some norm. (If roughness(v) = [([logv:]")?dt,
the estimator is a cubic smoothing spline.) If the pricing error P—Y v is minimized
in the co—norm, the estimator is the smoothest term structure in the set of
consistent price systems

Dy ={v|||P —Yv||eo <€v € D},
for some e related to A. (The connection between arbitrage theory under pro-
portional transaction costs and minimax-fitting also holds for dynamic trading,

which is implicit in (Jouini and Kallal; 1995b) and made more explicit in (Jaschke;
1998).)

Even if both A and M are o(L')-closed, A — M need not be o(L')-closed. So,

in general we only have weak duality. The following is a simple application of
theorem 3 to the set A — M.
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Corollary 9 (FTAP) Let A— M be a cone that contains 1, Ky = (A — M)*
its right polar cone, and p = pa_p the corresponding risk measure. Then

(i) A—M C *Ku.

(i) There is no good deal if the set of normalized consistent price systems Dy
1§ nonempty.

(iii)

p(z) = sup w(—z)/m(1) (16)
TeEKp
with the convention 0/0 = —oo.

If A— M is o(L')-closed, then (ii) becomes an equivalence and the equality holds
in (i) and (iii).

Since A — M = *Kj if and only if A — M is o(L')-closed, the business of
proving a strong version of the “fundamental theorem of asset pricing” consists
in establishing conditions under which A — M is o(L')-closed or “changing” M
somewhat in order to “complete” A — M. Once this is achieved and if also 1 is
in the radial interior of A — M, one gets

7ym(z) = sup w(z) and
wE€Dyy
ny(z) = nf n(s)

which could be called an “extended present value principle”.

The practice of pricing OTC contracts and financial derivatives in the past
consisted mainly in “calibrating” a complete market model, which yields a set Dy
that contains only one price functional @, which is then used for pricing. This
is essentially the standard present value principle. As more and more results
for incomplete markets are established, we see the future business of pricing
OTC contracts as estimating a price functional & by applying filtering techniques
and taking full account of the statistical nature of that process, and computing
valuation bounds (m,;,Tas). Since transaction costs, (conic) trading constraints
and “structural market incompleteness” enter the computation of the valuation
bounds, the difference 7as(z) — #(z) indicates how difficult it is to hedge a single
short position in z due to market incompleteness. More precisely, T (z) is
the lowest price at which we can install a trading strategy that hedges a short
position in z such that the residual risk becomes acceptable (in terms of A).
Since a trading desk offering OTC contracts usually has a whole book of contracts
partly offsetting their risks, 7a/(z) will usually be an upper bound for the asked
price of z in the OTC market place.
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5

(i)

(i)

(iii)

Examples and Counter Examples of Coherent Risk
Measures on the Space of Simple Random Variables

The set of non-negative random variables is obviously a coherent accep-
tance set. If a set M of cash streams available in the market is given, the
corresponding good deal bounds 7js, w, are called arbitrage bounds.

Given a price system 7, the half-space
A= {z|7(z) >0}

is obviously also a coherent acceptance set, although not a strongly relevant
one. In fact, ¥ = 7 = # = —p, and p is linear.

Given a probability measure P, a threshold ¢ and a power p € (1, 00),
LPM;p(X) = Ep[((X/(1 + 1) —1)" )]

is a lower partial moment of the random variable X. It can be viewed as a
“risk measure”, but is not coherent. In fact, any coherent risk measure p
of the form p(X) = E[g(X)] for some real-valued function ¢ is linear, since
the translation property implies g(a) = g(0) — a.

Certain partial orderings on sets of probability distributions are known
as stochastic dominance. They also imply partial orderings on a space
of random variables, given a probability measure P. If FX denotes the
cumulative distribution function of the random variable X under P, then
first order stochastic dominance is defined as

X>Y:=FXt)<FY(t) VteR

Second order stochastic dominance is defined as
t t
X>Y ;:/ FX(s)ds g/ FY(s)ds VteR.
—0Q —0o0

These orderings are not vector orderings on the space of simple random
variables and hence do not lead to coherent risk measures.

The following risk measures are discussed in (Artzner et al.; 1998):

(v)

(vi)

SPAN is a margin system developed by the Chicago Mercantile Exchange.
It is an example of a finitely generated set K of admissible price systems.
The associated risk measure is coherent.

The SEC rules present an example of a finitely generated acceptance set.
According to (Artzner et al.; 1998, p.12), the acceptance set is defined as
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A = cone({ai,... ,a,}) from some “standard acceptable risks” a;, but A
does not contain L. This could easily be made coherent by defining

A = cone({a1,... ,a,}) + L],
instead.

(vii) Given a probability measure P and a “confidence level” «, the value at
risk is defined as the negative of the a-quantile of the discounted random
variable:

VaRy(X) = —inf{z | P{X/(1 + 1) < z} > a},
the tail conditional expectation is defined as

TCEq(X) = —Ep[X/(1+7)]| X/(1 +7) < —VaR4(X)], and
the worst conditional expectation is

WCEq(X) = — i Ep[X/(1+7)|B].

Although VaR and TCE satisfy the translation property, positive homo-
geneity, and monotonicity, they are not coherent as they are not subaddi-
tive. WCE is a special case of (9) and hence coherent. Although TCE itself
is not coherent, it can be used as an approximation of WCE (Artzner et al.;
1998, Prop. 5.3). Example. Consider two independent random variables
X and Y taking the value -1 with probability p and 0 otherwise. (For
simplicity assume zero interest 7 = 0.) If p = a € (0,1), then VaRy(X) =
VaRo(Y) = 0, but VaRo(X +Y) = 1. TCEL(X) = TCEL(Y) = «, but
TCEL(X +Y) =2/(2 —a) > 2a.

VaR and LPM are examples of risk measures that are widely used (VaR in
banks and LPM in a series of recent papers by Cvitanic, Pham, Leukert and
others), but not coherent. They are all based on a single probability measure P.
Since P has to be estimated from data, there is a very natural way of getting
a whole family of probability measures. Instead of using the best fit in a least
squares (“calibration”) framework, use the family of probability measures that
achieves a certain goodness of fit. Instead of using the probability measure that
achieves the maximum likelihood, use the family of probability measures that is
above a certain level of likelihood. So most estimation schemes can be used to
define a family of “likely” probability measures instead of a point estimate. This
is of course related to confidence intervals. Given the wide range of estimation
techniques, this produces a wide range of coherent risk measures by (9). Note
that these risk measures do not measure financial risk but estimation or model
risk.
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6 Portfolio Optimization

In this section we will assume that a strongly relevant, coherent acceptance set
A and a set of available cash streams M is given, A — M is o(L')-closed, and
1¢ M — A. Then the strong duality theorem applies, there is no good deal and
the set of normalized consistent price systems Djs is not empty. We will also
assume that a normalized price system @« € D) is estimated. As this can be
viewed as the expected present value under an estimated (objective) probability
measure, we will call it y. Let o € L denote the cash stream generated by the
initial position of an investor. (In L, this can be an initial plan of dynamic
trading.) We will denote by p the “raw” risk measure corresponding to A.

Now

max  {u(z)|p(a) < 1} (17)
T—xoEM

max u(z) — Ap(z) (18)

_min  {p(a) (o) > 2} (19)

are three parameterized optimization problems, which are equivalent under mild
conditions on the existence of the Lagrange multiplier A. Each of these optimiza-
tion problems describes the (u, p)-efficient frontier in M, depending on zg. If zg
is a (forced) short position in a contract, then the portfolio optimization problem
is the problem of hedging the obligation from that contract. Since u is linear and
p is convex,

Ux(z) = p(z) — Ao(z)

can be interpreted as a family of utility functions.

There are a few important economic aspects to note. While both a utility
function and a coherent risk measure assign a number to every cash stream, the
economic meaning of a utility function is to define a total ordering whereas a
coherent risk measure is meant to define a partial ordering. Second, if z € A has
the economic meaning that “the risk of z is really low”, in other words “A is not
close to defining a total ordering”, then the hedging strategy that achieves the
optimum in

T (—x0) = min p(z + o) (20)
TeEM
is usually not done in practice. This can be seen from the fact that (20) is
equivalent to (19) with co = —o0.
A prominent class of utility functions in L, is that of ezpected utilities

U(z) = Blu(z)]

for some concave u : R — R For strictly concave utilities, like u(z) = log(z),
U(z) is not positively homogeneous. In other words, the (u,p) portfolio opti-
mization problem is in this aspect different from the “usual” utility maximization
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problem. The utility maximization problem is “fully personal”, while the (u, p)
portfolio optimization problem is somewhat generic in the sense that the “usual”
coherent risk measure is somewhat generic.

Conclusion and Open Questions

We believe that the coherent risk measures introduced by Artzner et al. (1998) are
a well-thought-out concept, whereas many of the more widely used risk measures,
like VaR and LPM, are not coherent. Moreover, coherent risk measures can be
generalized in the form presented here and link well with the established economic
theories of arbitrage on the one hand and utility maximization on the other hand.
In fact, it seems as if there is room for a “new” economic theory covering coherent
risk measures, the associated valuation bounds, and (u, p)-portfolio optimization.
Its applications appear to be promising because it is a compromise between the
(too) weak assumptions of the arbitrage theory and the (too) individualistic
assumptions of utility maximization.
Among the many open questions are:

e What are nontrivial coherent risk measures for stochastic cash streams that
are not obvious generalizations of risk measures for random variables?

e Hodges and Neuberger (1989) derived valuation bounds from the principle
of (single-agent) utility maximization. By varying the utility function and
considering the sup and the inf, resp., of the valuation bounds one gets
bounds that are somewhat independent of personal preferences. Under
what conditions are these bounds coherent?

e What parts of Markovitz’ theory carry over, what is different in (y, p)-
optimization?

The Math behind Coherent Risk Measures

This section is intended as a short presentation of the mathematical concepts
and results needed to deal with coherent risk measures in infinite-dimensional
spaces. The results are extracted from (Dunford and Schwartz; 1958; Kothe;
1960; Kelley and Namioka; 1963; Schaefer; 1966; Jameson; 1970; Kantorowitsch
and Akilow; 1978; Yosida; 1980; Bourbaki; 1987; Kamthan and Gupta; 1985;
Wong; 1992; Grothendieck; 1992). Where the names of mathematical objects
differed, we tended to follow the newer accounts.

6.1 Real Linear Spaces

Recall that a set A C L is convez if for any z,y € A the line segment [z : y] :=
{Az(1—A)y|A €[0,1]} is enclosed in A. Clearly, any intersection of convex sets
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is convex. The convez hull (A) of a set A is the intersection of all convex sets
containing A. If A and B are convex then the set A+ B := {a+b|a € A,b € B}
is also convex. A set A is called radial at a point x if for each y # 0 exists a
0 > 0 s.t. [z,z + dy] C A. The set of points at which A is radial is called the
radial interior of A.13 A set is called radially open if it is radial at all its points.
A set is called radially closed if its complement is radially open. A set that is
radial at 0 is also called absorbing. It is obvious that A is radial at z if and only
if A — z is absorbing. We call a set lc-open if for every = € A exists a convex,
absorbing set U s.t. £ + U C A. Equivalently, A is lc-open if A — x contains a
convex, absorbing set for all z € A. A set is called lc-closed if its complement is
lc-open.

Lemma 10 (i) Every lc-open set is radially open.

(ii) A set is radially closed if and only if its intersection with any line is closed
(in the topology induced in the line by the real numbers).

(iii) The radial interior of a convex set is convex and is its own radial interior.
(iv) A convez, radially open set is lc-open.

(v) A is lc-closed if and only if A = Ny(A+U), where the intersection is taken
over all convez, absorbing sets U.

Proof. (i) Trivial.

(ii) Easy.

(iii) (Kelley and Namioka; 1963, p.15)

(iv) If A is convex and radially open, then A — z is a convex, absorbing set for
all z € A.

(v) Since A C Ny(A + U), the r.h.s. condition does not hold if and only if

Jdr ¢ AVU convex, absorbing s.t. z € A+ U
<= dz ¢ AVU convex, absorbing s.t. —U N (A —z) # 0.

Since U is convex and absorbing if and only if —U is convex and absorbing, this
is equivalent to the fact that the complement of A is not lc-open. O

A set A is called balanced (circled, equilibré) if aA C A for all |a] < 1. The
Minkowski functional™ of a set U

py(z) := inf{a|a 'z € U a > 0}

is finite for every absorbing set U. py is positively homogeneous (py(az) =
ap(z) Ya > 0). If U is convex then py is sub-additive (py(z+y) < pu(z)+pu(y))-
If U is balanced then py is absolutely homogeneous (p(ax) = |a|p(z) Ya € R).
Hence py is a semi-norm, i.e. sub-additive and absolutely homogeneous, if U is

13This is also called the linear interior or the algebraic interior.
MThis is also called support function, distance function, or gauge.
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convex, absorbing, and balanced. On the other hand, every semi-norm p defines
a convex, absorbing, balanced set by

Up:={z € L|p(z) <1}.

If U is convex, absorbing, then {z € L|p(z) < 1} is its radial interior and
{z € L|p(z) < 1} is its radial closure.

Aisa coneif A+ AC A and A C A for all a > 0. Clearly, the intersection
of cones is a cone and every cone is convex. A cone A defines a vector ordering
=byxz -y oy y € A. Conversely, {z |z > 0} is a cone for any vector
ordering . Each linear subspace is a cone. A — A and AN (—A) are subspaces.
A is said to generate L, if A — A = L. The order defined by A is antisymmetric
(x =y,y =z = z =y) if and only if AN (—A) = {0}. A linear functional
m € L* is said to separate two sets A and B if supn(A) < infn(B). = is strictly
separating A and B if sup7(A) < inf 7(B).

For any set A C L,

A*={r e L”|nm(z) > -1 Vze A}
is called the right polar set of A. For any set K C L*, the set
*K={z€eL|n(z) >—-1 Vme K}

is called the left polar set of K. It is easily verified that A* is convex and if A is
a cone then

A*={reL”|n(zx) >0 Vze A}

holds and A* is a cone. The same holds for the left polar set and cone. Obviously,
A C *(A*) holds for any set A. For the inverse conclusion, one has to show that
z ¢ A implies z ¢ *(A*). By definition of the polar set, this is the same as that
for each z ¢ A exists a m € A* such that m(z) < —1. If z # 0, this is the same
as that = can be strictly separated from A.

Corollary 11 A = *(A*) holds if and only if every point from the complement
of A can be strictly separated from A by a linear functional and A > 0.

We cite here two separating hyperplane theorems from (Kelley and Namioka;
1963, pp.22).

Theorem 12 (Weak Separation Theorem) If F' and G are convez sets and
F is radial at some point, then F and G can be separated if and only if the
intersection of G and the radial interior of F is empty.

Theorem 13 (Strong Separation Theorem) Two convez sets F' and G can

be strictly separated if and only if there exists a convex, absorbing set U such that
(F+U)NG=0.

Applying the strong separation theorem to F' := {z} for z ¢ A and G := A in
corollary 11, we get

Corollary 14 A = *(A*) holds if and only if A is convez, lc-closed, and A > 0.
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6.2 Linear Topological Spaces

Recall that a family 7 of sets in L is a topology if T contains (i) § and L, (ii)
any union of sets in 7, and (iii) any finite intersection of sets in 7. The sets in
T are called T-open and (L,T) a topological space. A set U is a T -neigborhood
of a point z if there is such a 7-open set G, that x € G C U. A point z is in
the T -interior of a set A if A is a neighborhood of z. A set is T -closed if its
complement is 7-open. A mapping f from a topological space (L1, 71) to another
topological space (Lo, T3) is continuous if f~1(G) is Ti-open for any 7T3-open set
G. On a cartesian product Ly x L9 of two topological spaces a product topology
is defined by calling sets (71 x 72)-open if they can be represented as the union
of sets of the form Gi x 3, where G1 € 71 and G2 € T5. A topology on a
linear space is called a vector topology if the vector translation (z,y) — z+y and
the scalar multiplication («,x) — ax are continuous (in their respective product
topologies). A linear space with a vector topology is called a linear topological
space.

Because of the continuity of the vector translation, U is a neighborhood of
z if and only if U — z is a neighborhood of 0. So it is convenient to describe a
vector topology in terms of its neighborhoods of 0. A family U of neighborhoods
of 0 is called a local base if each neighborhood of 0 contains an U € U.

Theorem 15 IfU is a local base of a vector topology, then
(i) for allU € U exists a Vel : V+V CU,
(ii) for allU € U ezxists V €U s.t. Vo, |a| <1: aV CU,
(7ii) all elements in U are absorbing sets, and
(iv) for any two sets U,V € U exists a set W eUd : W CUNV.

A local base can be chosen such that instead of (ii) the sets U € U themselves
are balanced. If a family of sets containing 0 satisfies (i)-(iv), then it induces
a vector topology by defining a set G open if for all x € G exists a U € U s.t.
x4+ U C G. (The vector topology is Hausdorff if and only if Ny U = 0. )

Proof. (Kothe; 1960, p.149), (Kelley and Namioka; 1963),(Kantorowitsch and
Akilow; 1978, p.317), (Schaefer; 1966, p.14).

A linear topological space (L, T) is called locally convez, if every T-neighbor-
hood of 0 contains a convex 7T -neighborhood of 0. A closed, convex, absorbing,
balanced set is called a barrel. A locally convex space (L, T) is a barrel space if
each of its barrels is a neighborhood of 0.

Proposition 16 In a linear space L, the family of convex, absorbing sets is a
local base for a vector topology. L is a barrel space with this topology.

Proof.
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(i) U convex = U+ U CU.

(ii) V := U n (-U) is balanced, convex, and absorbing for every convex, ab-
sorbing set U.

(iii) is automatically fulfilled.

(iv) W :=UNYV is convex, absorbing for all convex, absorbing sets U and V.

O

The lc-topology is the finest locally convex topology. Since U N (—U) is

balanced, convex, and absorbing for every convex, absorbing set U, the family

of all convex, absorbing, balanced sets is also a local base for the lc-topology.

Similarly it can be shown that if i/ is a family of convex, absorbing, balanced
sets then the family of sets

{ﬂ’,;‘zl)\kUk | M >0,Up €elU,n e N}

is a local base for a locally convex vector topology (Kantorowitsch and Akilow;
1978, p.327). Because of the one-to-one correspondence between radially closed,
convex, absorbing, balanced sets and semi-norms, any family of semi-norms gen-
erates a locally convex topology. (The topology is Hausdorff if and only if the
family of semi-norms satisfies the aziom of separation: for any x # 0 exists a
semi-norm p from the family s.t. p(z) > 0. Such families of semi-norms are also
called multi-norms.) On the other hand, any locally convex topology is generated
by the family of the Minkowski functionals of the convex, absorbing, balanced
sets that are 0-neighborhoods.

Proposition 17 (i) If (L,T) is a linear topological space, then any T -open
set is radially open.

(ii) If (L,T) is a locally convex space, then any T -open set is lc-open.
Proof.

(i) A set A is radially open if and only if {6 |z + dy € A} is open for all
z,y € L,y # 0. But this set equals f '(A) for f(§) = z + y, which is
T-continuous since 7 is a vector topology.

(ii) Every T-neighborhood of 0 contains a convex 7-neighborhood V. V is
absorbing because of (i). Hence, every T-neighborhood contains a convex,
absorbing set.

In a linear topological space, the closure of a linear subspace is a linear sub-
space (Kantorowitsch and Akilow; 1978, p.319). From this follows that the null
space {z|m(z) = 0} of a non-zero linear functional 7 is either closed or dense
in L. This implies that if 7 separates two sets one of which has a non-empty
interior, then 7 is continuous. Moreover, a discontinuous linear functional takes
any value on any neigborhood of 0.
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Proposition 18 If A is a convex set in a topological vector space (L,T) and A
has a non-empty T -interior, then the radial and T -interior coincide. The same
holds for the radial and T -closure.

Proof. (Grothendieck; 1992, p.52), (Dunford and Schwartz; 1958, p.413)

Proposition 19 If A is a convex, radially closed set in a vector space and it is
radial at one of its points, then A is lc-closed.

Proof. Since A is convex and radial at one point it has a non-empty Ilc-interior.
Then the previous proposition applies. O

6.3 The Bipolar Theorem

A pair of vector spaces (L, L') and a bilinear form (.,.) represent a dual system
if (z',z) = 0 for all z € L implies 2’ = 0 and (z/,2) = 0 for all 2’ € L' implies
z=0. If L' is a total subspace of L*, i.e. m(z) = 0 for all # € L' implies = = 0,
then (L, L") is a dual system with the bilinear form (7, z) = w(z). The o(L')-
topology on L is the coarsest topology for which the linear functionals z — 7(x)
are continuous for all m € L'. Similarly, the o(L)-topology on L’ is the coarsest
topology for which the linear functionals m — 7(z) are continuous for all z € L.
As a matter of fact, the o(L')-topology is generated by the family of semi-norms
pr(z) = |m(z)|, 7 € L', so this topology is a locally convex topology.
(Re-) Define the right polar set

A*={reLl'|n(z) > -1 Vze A}
of a set A.

Theorem 20 (Bipolar Theorem) A = *(A*) holds for a set A in the dual
system (L, L") if and only if A is o(L')-closed, convex, and A > 0.

Proof. Let A = *(A*). Then for all z ¢ A,z # 0 exists a 7, € L' that strictly
separates A and {z} s.t. inf7;(A) > —1 and 7, < —1. In other words,

A= () {ylmly) > -1}

¢ Ax#0

Since A is the intersection of o(L')-closed half-spaces, A is o(L')-closed. Any
polar set is convex and contains 0, so the first part is done.

For the other direction we have to show that for all z ¢ A exists a m# € L’
that strictly separates A and {z}. Since A is o(L’)-closed, there exists a o(L')-
neighborhood U, for every z ¢ A with z € U, C A°. Since o(L') is a locally
convex topology, U, can be chosen convex. The weak separating hyperplane
theorem implies that there is a 7 € L™ weakly separating A and U,. For U, has
a non-empty o(L')-interior, 7 is in fact o(L')-continuous, i.e. m € L'. 7 strictly
separates A and {z}. O

Corollary 21 If A is convez, it is lc-closed if and only if it is o(L>)-closed.
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