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DEVIATION PROBABILITY BOUND FOR MARTINGALES
WITH APPLICATIONS TO STATISTICAL ESTIMATION

LIPTSER, R. AND SPOKOINY, V.

Dept. Electrical Engineering-Systems,
Tel Aviv University,
69978 Tel Aviv, Israel

and

Weierstrass Institute for Applied Analysis and Stochastics,
Mohrenstr. 89, 10117 Berlin, Germany

ABSTRACT. Let M; be a vector martingale and (M); denote its predictable
quadratic variation. In this paper we present a bound for the probability that
2*(M); * My > M/ 2*(M); 'z with a fixed vector z and discuss some its applica-
tions to statistical estimation in autoregressive and linear diffusion models. Our
approach is non-asymptotic and does not require any ergodic assumption on the

underlying model.

1. INTRODUCTION. STATISTICAL EXAMPLES

Let observations Yi,...,Yr be generated by the linear regression model:
Y,=X0+¢, t=1,...,T, (1.1)
where 6 € RP is unknown vector of parameters, X;, t = 1,... T, are deterministic

design points from RP, and (e;);>1 is a sequence of i.i.d. zero mean Gaussian

2

random variables with the variance o“. Hereafter, all vectors are assumed to be

vector-columns and a* (resp. ||a||) means the transpose (resp. the Euclidean

norm) of the vector a.

1991 Mathematics Subject Classification. 62G05; Secondary 62M99.
Key words and phrases. martingale, deviation probability, maximum likelihood estimate, au-

toregression, linear diffusion.
The research was carried out within SFB 373 at Humboldt University, Berlin and was printed
using funds made available by the Deutsche Forschungsgemeinschaft .
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2 LIPTSER, R. AND SPOKOINY, V.

For estimating the vector 6, one usually applies the maximum likelihood esti-
mate (MLE) 9

T -1 7
9= (Z tht*) > XY (1.2)
t=1 t=1

(the matrix Zle X X[ is assumed to be non singular). The estimation error

T -l -1 7
0—0= (Z XtXt*> ZXt Y, — X;0) (Z X, X ) > Xier  (13)
t=1 t=1

is a zero mean GGaussian vector. Its covariance matrix, which is often called often

the information matriz, reads as follows:

W =E(@®-0)0-—0) (th )

By wiw, k, k' =1,...,p we denote the elements of the matrix W. The property
00 ~ N(0,W) implies: for every A >1 and k=1,...,p

P (10— 0] > My’ < N2 me s (1.4)

The aim of this paper is to establish a similar exponential bound for probability
of deviations 8 — 6 for more complicated statistical models arising in time series

analysis. Below we present two typical examples.

Ezample 1.1. [Autoregression model] Let observations Yi,Ys,...,Yr follow the

autoregression equation
Vi=0Yi 1 +...+0,Y,, +¢, (1.5)

where one sets Y;,Y_,...,Y;_, =0 and (g);>1 arei.i.d. Gaussian random errors
with parameters (0,0?) .

Introduce a vector 6 of the unknown coefficients 6§ = (6,,...,6,)* € R? and
define X; = (Yi—1,...,Y;—,)* € RP. Then, the original autoregression equation

given in (1.5) admits the ‘regression-like’ representation (compare (1.1)):
Y; X 0+ Et.

Moreover, formula (1.2) (resp. (1.3)) for the MLE 0 (resp. for the deviation 5—0)
remains valid for the autoregression case as well. Despite of this similarity, there is
an essential difference between regression and autoregression models. For the au-

toregression case, the ‘design’ points X, Xo,... are random and heavy correlated
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with the observations Y7,Ys,.... Therefore, the matrix W = (Zthl XtXt*>1,
which is often called the conditional covariance or conditional information matriz,
is also random and heavy correlated with the observations. Hence, the estimation
error  — @ is no more a Gaussian vector and the bound (1.4) does not apply.

To analyze properties of the deviation 0—0 for this situation, introduce a valued

in R? process
M=) Xe, t>1

Since X; dependsonlyon Yj,...,Y; 1, andsince ¢; isindependent of Y;i,... Y, 1,
the process (M;)¢>1 is a vector square integrable martingale with respect to the fil-
tration generated by (;);>1. The predictable quadratic variation of this martingale

reads as follows
t
(M)y =0 XX, t>1,
s=1

so that W = (M)r. With this notation, on the set where (M)r is non singular,
we have

0 — 0= (M) My

Therefore, the original statistical problem leads to evaluation of

P (|z*<M);1MT| > )\\/z*(M);lz> (1.6)

where z is a deterministic vector. Here and in the sequel we assume both |2*(M)5' My |
and z*(M);'z equal to infinity on the set where the random matrix (M) is de-

generated, so that the studied event does not meet.

Ezample 1.2 (Diffusion model). Let the observed process X; follow the It6 equa-

tion (with respect to Wiener process w;)
dXt = H*ft dt + oy dwt s X() =0. (17)

Here 6 € RP is an unknown vector, f; € R’ and o; € R, are observed random
processes such that for every ¢ > 0, it holds f(f | fsl|?o,2ds < oo. The specific
examples of (1.7) are: the Orstein-Uhlenbeck model (p = 1)

dXt = 9Xt dt + d’LUt,
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a nonlinear autoregression model
dXt = Gh(Xt) dt + S(Xt) dwt

and a model with delay, when Ah(X;) and s(X;) are replaced by h(X;_A) and
s(X;-a), A being the delay parameter.
The MLE estimate 6 of 6 from (1.7) reads as follows:

R T -1 T
0 = (/ ftft*O't_Z dt) / ftO't_Q dXt
0 0

so that the error of estimation # — @ can be represented in the form

~ T ! T
9—0=</‘ﬁﬁ%fdg l/QMﬁqur-ﬁ9ﬁ%=Uﬂfﬂﬂa (1.8)
0 0

where
¢
M, = / f50'5_1 dwy, t>0,
0

is a continuous vector martingale and

t
mm:/ﬁ:@%s (1.9)
0
is its predictable quadratic variation.

We see that for both examples, the study of the properties of the MLE 9 leads
to establishing a proper bound for probability of the form (1.6).

Some other examples where similar problems arise can be found in Liptser and
Spokoiny (1997) in context of adaptive nonparametric estimation of the drift func-
tion for two-scaled diffusion systems and in Hardle, Spokoiny and Teyssiere (1999)
for estimation of parameters for time inhomogeneous financial data.

The majority of general martingale results (see e.g. Liptser and Shiryaev (1986),
Jacod and Shiryaev (1987)) concern only with asymptotic properties of My, as
T — oo, under some conditions on the behaviour of (M)r. Particularly, if for
some deterministic factors by — 0 as T — oo, random matrices br(M)r converge
to a non singular deterministic matrix X, and also, for the discrete time case, the

Lindeberg condition holds: for every ¢ > 0

T
lim brE Y (M, — My_1) (M, — My_y| > €) =0,
t=1

T—00
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then b;/ *Mr is asymptotically, as 7" — oo, normal with zero mean and the co-
variance matrix ¥ and the bound (1.4) holds in the following asymptotic sense
(0 = 0,(T), wif = wiéQ(T)): for every fixed A >0

im P ([5(T) - 0] > hugf(T)) < X /2/r ¥ (1.10)

T—oo

If by (M)7 converges in probability to a random matrix ¥, then the vector blT/ > My
is asymptotically mixed normal in the sense that the pairs (b;/ > My, bp(M)r) con-
verge in distribution to the pair (XY2U,%) where U is an independent of ¥
standard Gaussian vector (see, e.g. Liptser and Shiryaev, 1988, Ch. 5). This
again leads to the same asymptotic statement as in (1.10). Unfortunately, these
results hold only under rather strong conditions on asymptotic behaviour of (M)r
as 1T'— oo and do not serve effectively the case of a finite 7" or a large .

In the case of a scalar unknown parameter, the time-scale arguments, see e.g.
Rootzen (1983), help to get some non-asymptotic results but only for the case
of scalar parameter # and for specially introduced random time moments 7T .
An application of this idea to statistical problems for autoregressive and diffusion
models leads to the so called sequential estimation, when the underlying parameter
is estimated from the sample Y;,... Y, with a specially defined stopping time 7,
see e.g. Novikov (1972) for the case of a linear diffusion model and Grambsch
(1983), Lai and Siegmund (1983), Shiryaev and Spokoiny (1997) for the Ornstein-
Uhlenbeck model. Some generalizations to the vector autoregression in the special
context of guaranteed estimation can be found in Konev and Pergamanshchikov
(1996).

There exists also vast literature devoted specifically to the problem of estimat-
ing the parameter 6 for autoregressive and linear diffusion models. Here again,
the asymptotic approach based on a preliminary study of asymptotic properties
of the process (M), as t — oo, is usually used. For instance, for the first or-
der autoregression (1.6), one distinguishes between three essentially different cases
depending on the value of the unknown parameter 6;: ergodic for |6;| < 1, un-
stable for 01| = 1 and explosive for |6;] > 1. In the ergodic case, the quantity
T~Y M)y =T~ Y[, ¥, converges to a fixed value and the MLE is asymptot-
ically normal. For |6;| > 1, the quadratic variation (M); grows exponentially
with T so that e~2"1%/(M) converges in probability to some random variable .

T01]

The sums My = Zthl Y;_1e; normalized by e , turns out to be asymptotically
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mixed normal in the sense
(e7M My, e 1% (M) ) = (512U, 3)

where U is standard normal and independent of Y. Hence, the normalized estima-
tion error eZ1%1(B(T) — 0) = T1%1(M);' My is also asymptotically mixed normal
and the bound (1.4) applies in the asymptotic case, see White (1958). But for
|6;| = 1, the quadratic variation (M)r grows as T? in the sense that T 2?(M)r
converges in law to some non degenerated distribution, and the deviation 7(8 — 6)
weakly converges to some special law which is neither normal nor mixed normal.
Similar results for the autoregression of order p > 1 can be found in Basawa and
Scott (1983), Chan and Wei (1988), Jeganathan (1988) or Cox and Llatas (1991).

In this paper, we aim to state an exponential upper bound for the probability
from (1.6) for a general vector case and in the non asymptotic set-up. This, of
course, makes the problem much more complicated and in particular, we are not
able to establish the required bound exactly in the form given in (1.4). Our basic

result, presented in the next section, describes a bound of the following type

P <|z*(M)T1MT| > )\\/m) < P()\)e*)\Q/Q

where P()) is a polynomial of the degree p whose coefficients are connected to
regularity conditions on the matrix (M)r.
Section 3 contains some statistical applications. The proofs are collected in

Section 4.

2. DEVIATION PROBABILITY FOR MARTINGALES

Let U be a zero mean Gaussian random vector valued in RP with a positively
definite covariance matrix V: EU = 0, EUU* = V. Then VU is also a
Gaussian random vector with parameters (0,V~!). In particular, for every fixed
vector z € RP, the scalar product z*V~'U is a zero mean Gaussian random

variable with the variance z*V 'z and therefore

P <|z*V_1U\ > )\\/z*V—lz) < /\_1\/2/71'6_%, A> 1.

In this section, we present a similar result for a random non Gaussian vector
U. More precisely, given a square integrable vector martingale (M;);>o with
My =0 ((M)y, t > 0, denotes its predictable quadratic variation), we establish
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an exponential upper bound for the probability of the event of the following type

{z*<M);1MT > /\\/z*(M);lz} :

We consider here two different cases. The first one corresponds to discrete time
martingales with conditionally Gaussian increments while the second one concerns

with continuous martingales.

2.1. The model in discrete time. Let M = (M;)n, N = {0,1,2,...},
be a square integrable martingale with M, = 0, valued in RP, p > 1, de-
fined on a probability space (€2, F, P) supplied with filtration F = (F;),en (i-e.
E (M| F1) = My, and E|M|*> < oo for all ¢t € N). The predictable qua-

dratic variation (M) of M is defined via increments & = My — M;_1:

Zt = E(gté-: | f't—l)a

(M), = ) %,

Obviously, (M), is the predictable random process (i.e. (M) is F; 1 measurable)
valued in the set of p X p symmetric non negatively definite matrices (for more
details see e.g. Liptser and Shiryaev [13], Ch.1 §8). Our main assumption is that
for each t, the increment & = M, — M, ; is conditionally, given F;, |, Gaussian

random vector with conditional parameters (0,%;): for every v € R? and ¢ > 1

E (67*&

1
Tt_l) = exp <§7*Et7> P —as. (2.1)

Note that (2.1) does not imply that M is a Gaussian process. A specific exam-
ple of a martingale, obeying (2.1), is delivered by autoregressive processes from

Example 1.1. The condition (2.1) implies that the process

1

Zy(7y) = exp (7*Mt - §V*<M>w) , teN

is a martingale. In fact,

1
Zt(’Y) = thl(’Y) exp (’Y*ft - 57*21:7)

and (2.1) provides E(Zi(y)|Fi-1) = Zi—1(7y), P-a.s. Hence EZ(y) =1 for every
t € N. This also implies for every stopping time 7T

EZr(y) <1 (2.2)
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see Problem 1.4.4. in Liptser and Shiryaev [13].

2.2. The model in continuous time. Let M = (M;);cr, be a continuous vector
martingale in R? with My = 0, defined on a probability space (2, F, P) supplied
with filtration F = (F;):>0 complying with, so called general conditions, see Liptser
and Shiryaev [13], Ch.1. By (M) = ({(M));>o we denote the predictable quadratic
variation of M , see again [13], Ch.1 §1 and §8. As in the discrete time case,

introduce the positive process

1

30) = exp (M = 37 (a0} ).

By the It6 formula d3;(vy) = 3:(7)y*dM; , and hence the process 3; is a continuous
positive local martingale and simultaneously, by Problem 1.4.4. in Liptser and
Shiryaev [13], a supermartingale. Due to the supermartingale property, for each

stopping time T’

E3r(y) < 1. (2.3)

2.3. Bound for scalar martingale. We first examine the case when (M), is
a scalar martingale. Since the proof is based only on (2.2) and (2.3), we do not
specify here whether ¢ runs over N or Ry .

The result is of independent interest and it will be essentially used when studying

the general vector case.

Theorem 2.1. Let M = (M;) be either discrete time martingale with condition-
ally Gaussian increments or continuous martingale. Let then T be fixed or stopping
time. For every b>0, S>1 and A\ > 1

P (|Mr| > \/(M)r, b < /(M)r <bS) < 4v/eA (1 +log S) e

2.4. Bound for vector martingale. For the convenience of notation, set p =
d+1 so that we consider martingale M = (M;) valued in R, d > 1. Let T be
fixed or stopping time. Define V = (M)r and let W stand for the inverse matrix
of V' on the set, where V is non singular, W = (M);1 . We deal with the random

vector

U=WMr (=(M);'Mr).
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Hereafter, the elements of the matrix W (resp. of the vector U) are denoted
by wij, 4,5 = 0,...,d (resp. U, i =0,...,d). Given a vector z from R/
we establish an upper bound for the probability of the event {\z*U | > /\\/m}
restricted to a set 2, which where the matrix V' satisfies some regularity conditions

*

given below. We start with the vector z of the form z = (1,0,...,0)* and

postpone the general case until Subsection 2.5.
With the specified z we have

{lz7U] > Wz W2} = {[Uo| > A/woo}-

For some positive constants b, S p, r, define

( b < wy <bS, )

Q[ = < on0||V||oo S r,

-~

\‘ka/wOO‘Sp, szla"'ad)

where ||V = sup ||V ]| is the norm of the matrix V.
{ERIFL:||u[|=1}
In many cases, the values b, S, p and r can be chosen such that the probability

of A is closed to 1 for sufficiently large 7', see Subsection 2.6.

Theorem 2.2. Let M = (M;) be either discrete time martingale with condition-
ally Gaussian increments or continuous martingale. Let T be fixed or stopping
time. For every b>0, S>1 p>0, r>1, and A >2

d 2
P (|Up| > AJ/wog, A) < delog(4S) (1 + 2p\/r_d)\> e

2.5. Coordinate free form. In the previous section we state the bound for the
probability from (1.6) for the special vector z = (1,0,...,0)*. Here we consider

the general case when z is an arbitrary vector from R¢*! with ||z|| = 1. Set

*Mfl
wp  OD

\yERd‘H ty|=1 z* <M>;12

7
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Theorem 2.3. Let M = (M,) be either discrete time martingale with condition-
ally Gaussian increments or continuous martingale. Let T be fixed or stopping

time. Then, for every positive constants b > 0, S > 1, p >0, r > 1, and

A>V2
d 2
P (|z*<M);1MT| > \/2H (M)7lz, Ql) < 4elog(4S) (1 + 2pMA) Ae

Proof. For z = (1,0,...,0)*, the statement holds by Theorem 2.2. The general
case can be reduced to that one simply by changing the coordinate system in the

way that z becomes the first coordinate vector. O

2.6. The ergodic case. Assume the increments of the martingale M form an

ergodic process in a sense that

(M)

P — lim =V, (2.4)
T—o0
where V is a nonsingular deterministic matrix. Denote by W = (W5, 1,7 =

0,...,d) theinverse of V. The ergodic property implies that, for sufficiently large
T, the random matrix T(M);" falls outside any small open vicinity of the limit
matrix W with a very small probability. This particularly yields that for large T
the probability of the event

f

1
2Woo

T
Woo

2
Woo

< <

bl

Ar

9

woo|[(M)r|| < 2Weol|V],

|wor|
max
\ k=1,...,d Woo

< 2 max

[Woy|

-

k=1,...d Woy J

is closed to 1 and therefore P(2%) = 1— P(2r) is small. In this case, the following

result (which is a straightforward corollary of Theorem 2.2) can be useful.

Proposition 2.1. Let M = (M,) be either discrete time martingale with condi-
tionally Gaussian increments or continuous martingale. Assume (2.4) with the

nonsingular matriz V. Then there exist constants C; and Co, depending on V
only, such that for all X > /2

P <|z*<M)T1MT| > )\\/z*(M)le) <Ci(1+ C’Q)\)d)\e*% + P(25).
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3. STATISTICAL APPLICATIONS

We revert now to the statistical examples from Section 1. First we consider the
discrete time model which generalizes Example 1.1. Assume we observe a process
Y;, t € N, and F; denotes the o-field generated by the observations Y; with

s < t. We also suppose that the observations Y; follow the equation

Y; :ft*0+0t€t, t= ]_, ,T, (31)

where the errors &; are independent standard normal random variables and f;
(resp. oy) is a RP -valued (resp. R, -valued) predictable process w.r.t. the filtra-
tion (F;)en, that is, f; and oy are completely determined by the observations
Yi,...,Y:_1. We additionally assume that

EO’;Q‘ftF < 09, Vi.

Note that the autoregressive model, see Example 1.1, is a particular case of (3.1)
with fi = (Yi—1,...,Y—p)*. Similarly to that case, the MLE estimate of the
unknown parameter # € RP from the observations Y;, ¢t < T, for the model (3.1)
reads as follows:

T -1 7
= (Z aﬂftf:> S o2y,
t=1 t=1

and it holds for the estimation error

T
5— 0= (Z O-t_thft*) Zo-t_lft‘st = <M>;1MT, (32)
t=1 t=1

where
t t
M, = Z o, fogs and (M), = Z o2 ffr. (3.3)
s=1 s=1

It is straightforward to check that (M;, t € N) is a square integrable martingale
with conditionally Gaussian increments and ((M);, t € N) is its predictable qua-
dratic variation.

The second application corresponds to the continuous time linear diffusion model
(1.7) from Example 1.2.

In the statement below, we treat both models (3.1) and (1.7) simultaneously.
Let T be a stopping time w.r.t. the filtration (F;) and 9 be the MLE of the

unknown parameter 6 from the observations Y;, ¢t < T. Let then (M) be from
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(1.9) or (3.3). Define V = (M)r and let W stand for the inverse of V. By wy
we denote the elements of the matrix W =V~ k k'=1,...,p.

We formulate the result concerning the first coordinate 51 — 0, of the vector
9 — 0. The other components of this vector can be treated in a similar way. The

assertion is the direct application of Theorem 2.2.

Theorem 3.1. Let 0 be the mazimum likelihood estimate of the parameter 6 from

observations Yy, t < T, for the model (3.1) (resp. for the model (1.7)) due to (3.2)
(resp. (1.8)). For positive constants b >0, S >1 p>0 and r > 1, introduce

the event

( b <wy <b8S, )

Q[:< U)H”V”ST, >

wig/win| <p, VE=2,...,p)
Then, with any positive \ > V2 , it holds

2

—~ -1
P (10— 1] > A, %) < 4delog(49) (1+2p/r(p— 1) A)p Ae ¥
4. PROOFS

In this section we collect the proofs of Theorems 2.1 through 2.2.

4.1. Proof of Theorem 2.1. The statement follows from

P (MT > M/ (M)r, b< /(M)r < bs) <2veA(1+logS)e ™ (4.1
and from the similar result for —My . So, it suffices to check (4.1) only.
Given a > 1, introduce the geometric series by = ba* and define random events
Cr = {bx < /(M)r < b1}, k=0,1,..., K, where K stands for the integer
part of log, S. Obviously

P (MT > WMz, b< /(M)r < bs) (4.2)
< iP (MT > /\\/ <M>T, b < V <M)T < bS, Ck> .

k>0

For every v, (2.2) (or (2.3)) implies
2

EI (MT > \/(M)r, ck) exp (VMT - %(M)T) <1.

Next, taking v, = % , we obtain
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1 > Eexp (%MT . %(M)T) I (MT > M/ (Mo, ck)
> Bexp (3v/Tr - 400y ) 1 (Mr > AW, )

by 2by,

2 2,2
> Bexpl nr (20 _2Y I(MT>/\\/(M>T, ck)
Y

b <v<bg+1

and, since “infy <,< ” is attained at the point v = b, 1 = ab,, we end up with
) b <v<bgt1 k+ )

P (MT > A\/m,ck) < exp {—/\2 <a _ %2) } .

Inserting this bound in (4.2) and using that K <log, S, we get

P(MT>A\/M,1)§ \/ngs) §(1+loga5)exp{—)\2 (a—“;)}

Finally, since the left side of this inequality does not depend on a, we may pick a
to make the right side possibly small. This leads to the choice a = 1+1/\ so that

2 1 1 1\? 1
A2<a—%)=A2{1+X—§<1+X) }=§(A2—1).

Since also log(1+1/A) > 1/(2A) for A > 1, we obtain log, S < 2AlogS and (4.1)

follows.

4.2. Proof of Theorem 2.2. Set vy = wox/we, K =1,...,d. On the set A,

we have |vg| < p. Define the random vector v = (1,vq,... ,v4)* and note that
P(‘Uo‘ > )\\/woo,m) =P (‘U*MT| > A wo_ol,Ql) .

Set also § = A%/H and introduce the discrete grid Ds ={a=ké: k €N, |a| < p}
in the interval [—p,p]. Let vy (respectively vy _ ) be the (random) point from
Ds closest to vy from above (respectively from below), i.e. v, _ < v <, and
|k — vg| < J. Denote by D(v) the collection of random vectors v of the form
(1,v4,... ,vq4)*, where vy coincides either with v, of with v, _, k=1,...,d.
Then, obviously,

max) |v* Myp| > |v*Mrp|. (4.3)

veD(v

We show now that for every v € D(v), it holds on :

wyy < vV < (14 A7) wy,. (4.4)



14 LIPTSER, R. AND SPOKOINY, V.

Let v € D(V). Then the vector A = v —v = (0,11 —v1,...,0q — vg)* fulfills
|A]|? < d6?. Recall now that W =V~ and (wqp, wor,--- ,weq) is the first row
of the matrix W, that is,

v*V = wyy (Woo, Wor, - - - > woa)V = wyy (1,0,...,0).

Hence v*Vov = wO_Ol , VA = A*Voy = 0, v*Vo = ’(UO_Ol and

V= (w+A)V(v+A) =wy + AVA.
Since A*VA >0, we get v*Vv > wy, . Moreover, on 2
’U)()QA*VA S ’U)()(]“V“ ||A||2 S ’f’d52

and (4.4) follows in view of the definition of ¢.
Next, being restricted to the set 2, the variable wqy fulfills b < wo_ol <bS, so
that on 2, we get for every v € D(v)

b<v*Vv < (1+272)bS. (4.5)

Now (4.3) and (4.4) imply

{\U*MT\ > M/ wyg Ql} - U {|1/*MT| > )\\/(1 +A2) 'V, Ql} ,

veD(v)

and the use of (4.5) with 2, = {b < a*Va < (1 + A72)bS} provides

{|U*MT\ > M/ Wy Q[} - U {\V*MT| > /\\/(1 +22) vV, Q(a}

ve€D(v)

- U {|04*MT| > )\\/(1 + 22 aVa, Qla} :

a€cDgs

Therefore,

P (|U*MT| > M/ wgs A) <3P (|a*MT| > M1+ ) aVa, Q[a) .

acDg
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For every a € Dy, the process a*M; is the scalar square integrable martingale

with (a*M)r = o*Va. Then the application of Theorem 2.1 provides

P (lo*Mr| > AT +27) TaVar, %)

A N2 1
< -2y - - — 1.
<4(1+logS(1+A7?) 1_i_)\_Zexp( 2(1+/\2)+2>

Since the number of different elements in Dj is at most (1+2pd )¢, we conclude

P (\U*MT| > A wool,Ql)

A2 1
< -1\4 -2 R ————
<4(1+20071)" (1+1log S(1 + A ))AGXP< Q(HAQ)JFQ)

Substituting here =! = v/rd A and using H’\% > AX2—1 for A72 < 1/2, we derive

22
2

d
P (\U*MT| > A w&f) < 46(1 +10g(3S/2)) (1 + 2p\/r_d)\> Ae”

A2

d
< 4elog(4S) (1 + 2p\/7‘_d)\> e 2

as required.
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