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Abstract

The so—called ‘Monday effect’ has been found for various stock markets of the world. The
empirical finding that Monday returns are significantly smaller than returns measured for
the remaining days of the week calls the efficiency hypothesis for pricing processes operating
on stock markets into question. Investigating an index series measured at the Frankfurt
stock exchange the paper compares estimation results of parametric and nonparametric
autoregressive models with respect to possible weekday dependence of return data. Allowing
for heteroskedastic error distributions the wild bootstrap is used to infer against time varying
means and correlation of return data in parametric models and to obtain confidence bands
for nonparametric estimates. It is shown that time dependence is an important feature
describing the dynamics of German stock market returns in the period 1960-79. Within
two subsamples obtained from the period 1980-97 the evidence in favour of such effects is
mitigated substantially.
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1 Introduction

Time dependent dynamics of stock market data have been detected in numerous empirical
papers for various stock markets of the world. As the most popular seasonal feature of
returns observed on stock markets one may regard the so—called Monday effect, describing
that returns measured from Friday to Monday appear to be significantly negative in mean
whereas positive returns are observed for the remaining days of the week. The Monday effect
has a long history in the empirical literature (see e.g. Fields, 1931, Keim and Stambaugh,
1984) and calls the efficiency of financial markets into question. Without adjusting for risk
the efficient market hypothesis essentially implies current prices to be the best forecasters
of future prices. Pricing processes are expected to follow a so-called random walk possibly
augmented with some deterministic drift term. Assuming prices of risky assets to follow a
random walk with drift and taking calendar time into account it would appear quite natural
to observe Monday returns to be on average 3 time larger than returns measured for the
remaining days of the week. Thus the calendar time hypothesis is even more at odds with
the magnitudes of average daily returns found in the empirical literature. For the German
stock market Kramer and Runde (1996) investigate seasonal dynamics of daily returns of
the German share price index DAX and most of its individual components. Comparing four
subsamples obtained from their sample period 1960 to 1992 Kréamer and Runde (1996) find
the Monday effect to persist through time and to be of more importance for the index data
in comparison to individual shares.

A further property of empirical returns is positive autocorrelation (see e.g. Campbell et
al. (1997), Chapter 2). To some extent positive autocorrelation may be attributed to the
presence of a time varying risk premium as discussed in Engle et al. (1987). In empirical
practice, however, the fit of autoregressive models often outperforms the one of risk premium
models (see e.g. Hafner and Herwartz 1999). From the viewpoint of a time series analyst the
class of periodic time series models provides a general framework to detect time dependence
of deterministic as well as stochastic properties of a time series under study. An essential
feature of periodic models is to condition the data generating process of a time series variable
on a deterministic function of time, for example on the season when analysing seasonal data
or on the day of the week within an analysis of daily observations. In a number of papers
periodic time series models are recommended for the analysis of seasonal data (see e.g.
Cleveland and Tiao 1979, Tiao and Grupe 1980, Osborn 1991).

The issue of detecting periodic parameter variation is addressed in Liitkepohl (1992)
where the likelihood principle is used within the framework of stationary vector autoregres-
sive models. The asymptotic distribution of the likelihood ratio (LR-) statistic is derived
under the assumption of underlying error terms which are independently and identically
distributed (iid). Returns measured on financial markets, however, are known to exhibit
volatility clustering, i.e. periods of lower price fluctuations and periods of higher volatility



alternate. Time varying second order moments can be shown to involve considerable size
distortions of test statistics derived under iid assumptions as for example the LR-statistic
(see e.g. Herwartz 1998, Hafner and Herwartz 1999).

In the present paper the so—called wild bootstrap is used to infer against weekday effects
for German stock market data. The wild bootstrap procedure copes conveniently with
heteroskedasticity. In addition, nonparametric techniques are applied in order to give insight
into the conditional and unconditional stochastic behaviour of German stock market returns.
Compared to parametric models the latter approach provides a data driven framework to
uncover important dynamic features which may remain undetected by parametric modeling.

The remainder of the paper is organized as follows: In Section 2 periodic autoregressive
models and the LR-test against periodic parameter variation are briefly discussed. The wild
bootstrap is outlined in Section 3. A parametric analysis of German stock market returns
is provided in Section 4. The nonparametric autoregressive model is given in Section 5 also
containing empirical results for German return data. Section 6 offers a brief discussion of
the unconditional distributions of Monday vs. Friday returns observed on the German stock

market. Section 7 summarizes and concludes the paper.

2 Autoregressive Model Specifications

Time dependent data generating processes are often employed to characterize seasonally
varying data. The specification of time series models with seasonal dummy variables has
become a standard tool to account for time varying means of an observed series. Within an
even more general class of time series models, however, one may not only regard the expected
value of a time series variable to depend on time but also second order moments, i.e. the
autocovariance function. Models allowing for a time dependent autocovariance function
have become popular as periodic time series models (see e.g. Box and Jenkins 1970). The
class of autoregressive periodic models is easily introduced. In this case deterministic (v;)
and autoregressive parameters (¢;;) are conditioned on a deterministic function of time
(s = s(t)). Analysing seasonal data s may indicate the season, turning to a daily sampling
scheme s may denote the day of the week. Given presample values zo,z_1,..., %1, a periodic

autoregressive model of order p can be given as follows:
Ty = Vs + st,lxt—l + ¢S,2$t—2 +oee 4+ ¢s,pxt—p + Uy, t= 13 .- 'aTa § = 1a ce aS' (1)

Applied to daily log-price changes observed on stock markets (S = 5) periodic time se-
ries models imply different return dynamics for each of the five trading days per week. The
model in (1) provides a general framework to investigate dynamics of daily data. Further
generalizations of the model in (1) are feasible. In particular, one may regard the autore-

gressive order or the error variance to be time dependent (p = p, or 0 = ¢?). Assuming all



autoregressive parameters in (1) to be time invariant (¢,; = ¢, i =1,...,p, s =1,...,5)
one obtains an autoregressive model with time depending first order moments. Given a
particular autoregressive order the price to be paid for the flexibility of periodic models
is the large number of parameters compared with a time invariant autoregressive process
augmented with dummy variables to account for time dependent expectation.

A particular issue in specifying periodic time series models is to detect significant devi-
ations from a time invariant model to avoid excess parameterization of an empirical model.
The error sequence u; is assumed to be iid normally distributed (u; ~ N(0,0?%)) to derive
standard statistics as the LR-statistic for inference within a model like (1). Note that such
an assumption may hardly be justified if financial market data are investigated. The effects
of conditionally heteroskedastic error distributions introduced by Engle (1982) and general-
ized by Bollerslev (1986) on standard inference within periodic models will be of importance
in Section 3.

The expectation of z; defined in (1) depends on s and investigating the theoretical prop-

erties of r; somewhat deeper would reveal that also the autocovariance function -y,
Yk = cov(zy, 24 k), £ =0,1,2,3,...,

varies with s = s(t), i.e. v, = 5. A time dependent autocovariance function violates the
assumption of stationarity in the sense of invariant second order moments which is often made
for the empirical analysis of time series data (see e.g. Osborn 1991). The process z;, however,
may be defined to be periodically stationary by means of the so—called vector representation
which is related to (1). For this representation the observations which belong to an entire
period are stacked into a S—dimensional vector, i.e. x, = (21+,...,25,),7 =1,...,T/S,
and a vector autoregressive model is specified for x, which is in line with (1).

Assuming p = 5 to provide a reasonable autoregressive order for the analysis of daily data
the univariate model in (1) yields the following vector representation:

1 0 0 0 0 Tir 2
— a1 1 0 0 0 T2,7 vV
—¢32 —¢31 1 0 0 T3r | = | Vs
—Qu3 —Qu2 —Pan 1 0 Tar Vs
—¢sa4 —Ps3 —Ps52 —¢51 1 T5,r Vs

¢1,5 ¢1,4 ¢1,3 ¢1,2 ¢1,1 T1,7—1 Ui,r

0 ¢2,5 ¢2,4 ¢>2,3 ¢2,2 271 U2,r

+( O 0 ¢35 ¢34 P33 Tgr—1 | T | uss |- (2)
0 0 0 ¢u5 Qua Tar 1 Ugr
0 0 0 0 ¢5,5 Ts5,r-1 Us,r

More compactly the model in (2) may be given as

Oox, = v+ O1x,_1 + u,. (3)



In general the autoregressive orders of the univariate model in (1), p, and the vector autore-
gression in (3), p, are related as p = 1 + [p/S], with [.| denoting ‘the integer part of’. The
series x; is defined to be periodically stationary if the vector series x, is stationary. Let z
denote a complex variable. The vector process defined in (3) is stationary if the polynomial
det(®y — ®;2) has no roots in and on the complex unit circle (see e.g. Liitkepohl 1991), i.e.

|®y — ®12| = 0 for |2] > 1. (4)
In the case of stationarity the unconditional mean of x, exists and can be given as:
Elx.] = (® — &) 'v.

Obviously the elements of the mean vector E[x;] may be time dependent even if in (1)
deterministic components are time invariant (v = ... = vg = v). Within the class of
periodic models a time varying expectation of a time series variable may be attributed
to time dependence of autoregressive dynamics. For the detection of purely deterministic
weekday effects in financial market data the analyst has to rule out periodic autoregressive
dynamics. This is the reason why the broad class of periodic time series models is considered
here as a convenient framework for the analysis of weekday dependencies of German stock
market returns.

A key issue in empirical practice is raised in Tiao and Grupe (1980) and Osborn (1991).
It can be shown that the ‘unconditional autocovariance function’ of a periodically stationary

process,
1 S
/Yl: = EZ/YS,IC k:051a273:"'7
s=1

uniquely determines a nonperiodic autoregressive moving average (ARMA) model of appro-
priate order. Within the Box-Jenkins (1970) methodology empirical autocovariance func-
tions have become a key means to identify ARMA-type processes. Ignoring the potential of
periodicity, for example by computing and evaluating time invariant empirical autocovari-
ance functions, the analyst runs the risk to misspecify a periodic time series process to be
generated from a time invariant ARMA-representation.

For purposes like estimation or inference the model in (1) is often specified in terms of a

reference ‘season’ (s = 1):

S S S
Ty =V-+ (blxt—l +...+ ¢pxt—p + Z Vst,t + Z ¢s,1Ds,t-Tt—1 +...+ Z ¢s,st,txt—p + ut(5)

5=2 §=2 §=2
In (5) D4, s =2,...,S, denote dummy variables such that Ds; = 1 if ¢ belongs to season
s and D, = 0 otherwise. Note that a specification like (5) is helpful to infer against time
dependent deviations from a nonperiodic time series model.

A number of standard inference techniques is available if the assumption of underlying

Gaussian iid error terms (u;) is met or at least convenient. Liitkepohl (1992) proposes a
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couple of LR-statistics to test hypotheses of interest within a model like (1). Such hypotheses
may be for example Hy : ¢5; = ¢; for all ¢ = 1,...,p, or only some of them. A fully
nonperiodic model is implied by Hy : v, = v, ¢; = ¢, 1 =1,...,p. Under the assumption
of Gaussian iid error terms with time invariant variance the LR-statistic is

Qun=Tin (s ®
with RSS, and RSS, denoting the ordinary Least Squares (OLS-) estimators of the residual

sum of squared errors of the restricted and unrestricted model, respectively. T indicates

the number of observations in the sample. @Qpr is asymptotically x?(k) distributed with
k denoting the number of excess parameters under the alternative hypothesis compared to
the restricted model. The LR-statistic is a pivotal quantity since its asymptotic distribution
does not depend on any unknown parameter.

Intuitively the LR-statistic compares the accuracy of fit obtained from a nested model
relative to a more general specification. The loss of fit, measured in terms of 7'(In(RSS,) —
In(RSS,)) should be insignificant if the restricted model is the true data generating process.

As mentioned, the asymptotic distribution of the LR-statistic in (6) depends on the
assumption of underlying iid error terms, in particular u, is assumed to be homoskedastic.
This assumption, however, is often violated in empirical practice. The variance of u; may
depend on s or vary across nonoverlapping partitions of an investigated sample period. In
case of deterministic patterns of heteroskedasticity the LR-statistic in (6) can be conveniently
modified in order to obtain an asymptotic y2-distribution (see e.g. Liitkepohl 1992).

For the analysis of financial market data stochastic patterns of heteroskedasticity can
be viewed as a predominant characteristic. Second order moments of financial market data
are often specified in parametric form by means of the autoregressive conditionally het-
eroskedastic (ARCH-) process introduced by Engle (1982) and generalized by Bollerslev
(1986) defining the GARCH-model. Within this framework the variance of u; is assumed to
be governed by its own history and observed innovations us_1, u;_o,.... With w denoting a
deterministic component the GARCH(p, ¢) may be given as:

p q
uy ~ N(0,07), 07 =w+ > ouu; ;+ > Bioy ;. (7)
i=1 i=1

To ensure that the conditional variance, o7, is positive it is sufficient to assume that w >
0,a; > 0, and B > 0. «; > 0 should hold for at least one ¢ = 1,...,p. Since the
introduction of the ARCH(p) model (i.e. the GARCH model with ¢ = 0) many theoretical
and applied papers provided numerous alternative variance specifications which may be seen
as complementary to the GARCH-model or as competing devices (see e.g. Engle and Ng
1993).

As defined above the GARCH(p, ¢) is time invariant. In the spirit of periodic processes

one may also regard the variance generating process in (7) to depend on s. The periodic
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GARCH-model is introduced in Bollerslev and Ghysels (1996), an early application of time
dependent volatility processes can be found in Baillie and Bollerslev (1990). The present
study concentrates on conditional mean estimation. Since the applied inference procedures
are invariant with respect to the underlying process generating heteroskedastic error terms
time varying volatility specifications are not further investigated.

GARCH-type error sequences complicate the specification of the likelihood function of a
time series model like (5). Whereas Maximum Likelihood (ML-) estimation of the parame-
ters in (7) governing variance dynamics always requires nonlinear optimization routines the
parameters of the linear model in (5) may still be estimated by means of OLS-procedures.
However, standard inference against significance of estimated autoregressive parameters in
(5), say, is no longer valid. In the presence of conditionally heteroskedastic error terms the
LR-statistic in (6) loses its asymptotic y2-distribution and is no longer pivotal. Thus in the
presence of conditional heteroskedasticity ()1 zr may be regarded as a pseudo LR-statistic.

Within a ML- or Quasi-ML (QML-) framework heteroskedasticity consistent inference by
means of t—ratios requires to compute first and second order derivatives of the log-likelihood
function with respect to the parameters of interest (see e.g. Bollerslev and Wooldridge 1992).
A simultaneous analysis of linear and higher order dynamics might be cumbersome in applied
work for a number of reasons. First, the performance of the nonlinear optimization may be
negatively affected by large dimensions of the parameter space. In addition, increasing the
number of parameters may reduce the power of inference procedures. Second, inference
on linear dynamics within such a framework depends on the employed specification of the
variance process. Since there is a variety of such specifications there is also a variety of
t—ratios, say, that may be used to indicate significance of model parameters governing linear
dynamics.

Due to these difficulties standard OLS—techniques are often used to estimate the condi-
tional mean function of financial time series. In a second step of the analysis the interest
turns to the specification of the variance process of estimated first step residuals. OLS-
estimation has a uniform solution which is straightforward to compute. However, inference
along standard lines outlined above involves invalid empirical levels of tests derived under iid
assumptions. Bootstrap inference may be seen as a means to retain the convenience of OLS—
procedures and to overcome the invalidity of inference by mimicking the true distributions of
particular LR—statistics for example. The wild bootstrap introduced by Wu (1986) accounts
for heteroskedastic error distributions. Herwartz (1998) discusses the validity of wild boot-
strap inference applied to the LR-statistic (6) for periodic time series models in the case of
deterministic patterns of heteroskedasticity. In Herwartz and Hafner (1998) the performance
of wild bootstrap inference is investigated in the presence of GARCH-type error terms. The
wild bootstrap is recommended to mimic the distribution of the (pseudo) LR-statistic. Even

in small samples (7" = 50) heteroskedasticity consistent bootstrap inference is shown to pro-



vide empirical size estimates which come close to their nominal counterparts. It is found that
wild bootstrap inference applied to the LR—statistic has superior size properties compared
to QML-inference in small samples and if QML-statistics are derived under misspecification
of variance dynamics. Wild bootstrap inference is outlined in the next section.

3 The Wild Bootstrap

Wu (1986) introduced the wild bootstrap coping with heteroskedastic error distributions.
Mammen (1993) proved this resampling scheme to work for F-type statistics in regression
models with random explanatory variables. Neumann and Kreiss (1998) show that regres-
sion type bootstrap procedures remain valid for autoregression models if the underlying error
terms are martingale difference sequences (mds), i.e. Elug|us_1,u;_o,...] = 0. In the follow-
ing the autoregressive model given in Section 2 is regarded as a regression model with random
regressors. Since a resampling scheme is easy to implement under the null hypothesis of a
nonperiodic data generating process the bootstrap might be seen as a promising alternative
to iterative QML-inference procedures. Since the mds assumption appears to be reasonable
for error terms of the linear model applied to financial market returns the wild bootstrap
procedure is adopted to imitate the distribution of the (pseudo) LR-statistic given in (6).
Suppose one is interested in testing the hypohesis Hy : ¢,; = 0,7 = 1,...,p, within a model
like (5). Assuming presample values xg, z_1, ..., Z1_, to be given an appropriate resampling
procedure to mimic the distribution of the (pseudo) LR-statistic for this hypothesis may be

given as follows:

1. The null hypothesis implies the following data generating process:

Ty = v+ Ds,tys + qblxtfl + ¢2$t72 + o+ ¢pxtfp + Uy
= 200" + up (8)

In (8) the row vector zg; contains the set of explanatory variables under the null hy-
pothesis and ¢° is an appropriate parameter vector. Without further distributional as-
sumptions OLS provides a consistent estimate of the parameter vector (qgo), of the error
terms (ig;) and of the (restricted) residual sum of squared errors (RSS, = Y7, 42,)
under the null hypothesis. Under the alternative hypothesis of periodically varying
autoregressive parameters equation (8) is conveniently augmented obtaining:

Ty = 2000° + 210" + uy. 9)

In the present case the row vector zy; in (9) contains lagged variables z;_1, . .., z;_, mul-

tiplied by dummy variables D;; as given in (5). The dimension of the parameter vector



¢! is equal to the number of excess parameters implied by the general model compared
to the model under the null hypothesis, i.e. k& = (S — 1)p. OLS-estimation provides
an estimate of the unrestricted residual sum of squared errors (RSS, = >°/_, 42,) and
the LR-statistic in (6) can be calculated (Qrg)-

. The estimates gﬁo and 4g; obtained under the null hypothesis are used to generate a
wild bootstrap sample
itzz()t(;ﬁo—{—ﬂt, t= 1,...,T.

Error terms #; are obtained from estimates 1y, by mimicking their low order moments

as follows. Imagine for each ¢ a random variable 4, and a distribution F; such that
Eluy|F] =0, Bla;|F) = ag, Elaj|F] = g,

As a convenient specification of F; one may regard a two point distribution satisfying:
. oy (V5 +1)
rob (i, =(1—-V5)— | = —~— -2,

prob (ﬂt =1+ ﬁ)%) = 1- (\/237—21)

Since u; is obtained from a two point distribution it is easy to verify its low order

moments. One obtains:

El#l] = ((1—\/5)%>j <\/25\;%1> + ((1+\/5)%>j (1— fj;) (10)

Solving (10) for j = 1,2, 3 it is seen that @, conveniently imitates the low order moments

of a()t, i.e.

Bl = 0, E[i7] = i, E[a7] = i,
Alternative procedures to generate wild bootstrap replicates u,; are provided in Mam-
men (1993).

. The generated random variables Z;,t = 1,...,T, are used to replace z; in (8) and
(9), respectively. Analogously to step 1 the LR-statistic (Q} ) is computed for the

generated series using the initial sets of explanatory variables zyp; and zy;.

. Steps (2) and (3) are performed R times with R chosen sufficiently large. For each
bootstrap sample the LR—statistic is recorded. For the experiments discussed in Section
4 R = 1000 was used.

. The null hypothesis of interest is rejected with significance level « if Qg exceeds the

(1 — a)—quantile of Q7 .



4 Detecting Time Dependence in German Stock Mar-
ket Data

4.1 Data and parametric models

In this section the inference procedures discussed before are applied to real financial data.
Linear dynamics of the so-called DAFOX-series are investigated. This index is computed
for research purposes by the Institute of Decision Theory and Business Research of the
University of Karlsruhe, Germany (see Goppl and Schiitz 1992). The DAFOX covers almost
all stocks traded at the Frankfurt stock exchange and is conveniently adjusted for payments
out of the stock. Therefore the following analysis concentrates on weekday dependence since
other effects for example due to payments of dividends are ruled out by definition. The
sample period is Monday, January-04-1960 to Tuesday, December-30-97 and contains 9499
observations. To obtain a stationary time series first differences of the logarithm of the index
data are investigated. In order to provide a convenient framework for the comparison of the
obtained results with Krimer and Runde (1996) the sample period is divided into 4 decades
the last of which covers the period from January 1990 to December 1997. Empirical results
for the entire sample period will be given for convenience.

To detect linear dependencies within the investigated series and to infer against deter-

ministic weekday effects the following autoregressive model of order p = 5 was employed with

xy denoting current returns and s = 2,...,5 indicating weekdays from Tuesday to Friday:
5 5
=04y Dyws+ Y ¢i—i + Uy (11)
s=2 =1

From the literature on periodic time series models it is known that nonperiodic autoregressive
time series specifications as (11) may have a similar (unconditional) autocovariance function
as periodic models of lower autoregressive order (see e.g. Tiao and Grupe 1980). To allow
for time dependence of the autoregressive part and to make sure that a periodic model
has power against a nonperiodic specification the following time series model was applied

complementary to (11):

5 5 5
Ty =V+ Z Dy s + 1741 + Z Dy s 1701 + Z GiTy—i + Uy (12)

§=2 s=2 1=2

4.2 Empirical Results

Estimation results for these models applied to the DAFOX data set are given in Table 1
(model (11)) and Table 2 (model (12)). To infer against significance of single estimated pa-
rameters appropriate LR-statistics are given jointly with their respective p—values obtained

from wild bootstrap resampling. Similarly LR-statistics testing against joint significance of
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selected parameters are given in Table 3. In Tables 1 to 3 estimates which are significant at
the 5% level are indicated with an asterisk. From the parametric time series approach the

following results are obtained:

e Looking at the entire data set autoregressive dependencies cannot be rejected. An
autoregressive model of order 2 is necessary to whiten estimated model errors when
the AR(1)—parameters are allowed to be time varying. With respect to deterministic
influences it turns out that the reference (Monday) intercept term (v) is significantly
less than zero and deterministic impacts (v;) measured for Wednesday, Thursday and

Friday are significantly positive with the highest estimate obtained for Friday returns.

e p—values obtained from the bootstrap procedure are in almost all cases greater than
those obtained from a x?(1)-distribution which would be the relevant asymptotic dis-
tribution of the LR-statistic in the presence of underlying iid error terms. Taking
a significance level of 5% as a benchmark to reject a null hypothesis in question the
bootstrap procedure yields different decisions relative to standard inference in a con-
siderable number of cases. At the 5% significance level the critical value of LR-statistic
is 3.84. Cumulating across four subsamples 5 (7) coefficient estimates which are found
to be significant by standard inference for model (11) (model (12)) are insignificant

according to the p-values obtained from the bootstrap procedure.

e The rejection of linear dependencies for financial market data supports the paradigm of
efficiency. Using wild bootstrap inference which copes with heteroskedasticity in a con-
venient way mitigates the evidence in favour of higher autoregressive orders for all sub-
samples. For the last subsample linear dependencies are uniquely rejected irrespective
of the empirical model employed for the analysis. With respect to the period 1980-89 a
further interesting result is obtained: Taking the AR(5)-model as a framework for the
empirical analysis all autoregressive parameters are found to be insignificant. Within
the second specification, however, almost all time dependent AR(1)-parameters are
found to be highly significant whereas higher order autoregressive parameters are not
significant. Taking the literature on periodic time series models into account this result
may be regarded as a recommendation in favour of a time dependent AR(1) time series
model for DAFOX-returns in the period 1980-89.

e Summarizing the results of the inference exercises the hypothesis is supported that
the stock market in Germany became more and more efficient in the course of time in
the sense that DAFOX-returns became unpredictable by means of autoregressive time
series models. Deterministic weekday effects are also found to die out through time.
For the first three decades typical weekday dependencies are obtained at least partly

for example negative mean returns on Monday or highest returns in mean on Friday.

11



For the last subsample, however, deterministic effects that are significant at the 5%
level are not obtained at all.

Regarding the results of tests against joint significance of parameters of interest similar
conclusions as above are to be drawn. The hypothesis that current returns are com-
pletely unpredictable (Hyp : z; = u;) is rejected within both time series models for the
first two decades under study. Turning to the two remaining subperiods the efficient

market hypothesis cannot be rejected at the 5% significance level.

5 Nonparametric Autoregression

5.1 Methodology

Parametric autoregressive time series models as given in Section 2 essentially assume z; to
be a linear function of the observed history {z; 1,%; 2,...}. For applied work and especially
for the analysis of financial market data linearity may be regarded as a strong restriction. In
particular, the linear autoregressive model of order p = 1 implies that positive and negative
lagged returns have, on average, the same impact in absolute value on the current return of
an asset. Such a symmetry hypothesis is hardly to justify by a-priori economic reasoning
and a time series model designed for the analysis of empirical returns should at least allow
to detect deviations from the standard linear model. Other nonlinearities for example size
effects also bear some intuition for the time paths of empirical returns. A framework which
is able to nest a wide range of relations between a random variable X; and its predecessor

X;_1 is the nonparametric autoregressive model of order one:
Xe=m(Xeq)+e, t=1,...,T. (13)
In (13) e; denotes an error term which may be heteroskedastic satisfying
E(e Xy-1) =0, E(€?|X;_1) = v(Xy_1).

The conditional variance v(X;_;) is assumed to be finite. With respect to the conditional

distribution of e; it is assumed that
£(6t|Xt—17 Xt—27 . ,X()) = £(€t|Xt—1)-

The (unknown) mean function m(z) = E[X;|X; ;1 = z] and variance function v(z) =
E[e?|X;_1 = z] are conveniently estimated by nonparametric kernel estimators (see e.g.
Tjostheim 1994). Locally linear estimation (see e.g. Fan 1993) of autoregression functions
is discussed in Masry (1996). The locally linear estimator of m(x) is the first component of

the solution of the following minimizing problem with respect to m = (mg, m;)":
T 2
. . T — Ty—1 L = Tt—1
min Qz) = min ;:1 K (T) (mt — my —my T)
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where K(.) is a symmetric kernel-function and h denotes the bandwidth parameter.
The estimated mean function can be given directly as a function of weighted observa-

tions with the weights depending on the applied kernel function, the bandwidth and the

observations
T
m(z) = > w(x, h,zg,..., 20 1)z
t=1
= [(M.K,M,)"*M!K,X]. (14)

In (14) X = (z4,...,27),

1 (x—m)/h
e | e ne(552) (52 ()]
1 (z—x7-1)/h

and [m]; in (14) denotes the first element of the vector m. Due to the use of a kernel
function the mean function of interest is always evaluated in a neighbourhood of the ob-
served explanatory variables £ = z;_;. Therefore nonparametric estimates may be seen as
a local average of the underlying mean function, implying that rm(x) essentially estimates
a smoothed version of m(z). The magnitude of this bias increases with the bandwidth A.
Choosing too small a bandwidth, however, results in a very wiggly pattern of m(x). Band-
width selection is a key issue in nonparametric modeling (see e.g. Hirdle et al. 1988). For
the empirical analysis provided below the bandwidth parameter was determined by means
of a so-called plug in selection rule which is shown in Ruppert et al. (1995) to converge
conveniently fast to an optimal bandwidth solving the bias—variance trade—off mentioned
before. A generalized version of this bandwidth selection procedure is implemented by Yang
and Tschernig (1999) on the internet (http://www.blackwellpublishers.co.uk/rss).

The kernel estimate 7 (z) depends on the random sequence e;. In order to characterize
the stochastic behaviour of m(x) the time series analyst is often interested in computing
confidence bands for the estimated autoregression function. While confidence bands for
kernel estimates are straightforward to compute in the case of nonparametric regression, the
framework of nonparametric autoregression poses some additional problems evolving from
the interdependence of explanatory and dependent variables in (13) occurring in the course
of time. Neumann and Kreiss (1998) show that the nonparametric autoregression model
(13) can be treated analogously to the nonparametric regression model if a few assumptions
concerning the sequence X; can be made reasonably. Apart from S-mixing conditions for
X, it is assumed that X; is a strictly stationary Markov chain. The latter assumption may
loosely be interpreted in such a way that within an autoregressive model of order one for
example, X;_ 1 conveys all information apart from e; which is necessary to characterize in

mean the stochastic behaviour of X;. This assumption may be related to the analysis of
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weekday dependence of stock market returns such that Tuesday returns for example are
completely determined by Monday returns and some unpredictable influences occurring on
Tuesday. The analysis provided by Neumann and Kreiss (1998) allows for a wide range of
possible distributions of e; and is particularly valid in the presence of heteroskedastic error
distributions characterizing returns measured on financial markets.

The construction of confidence bands for the estimated mean function 7 (x) with a pre-
specified significance level provides a number of interesting characteristics of the data set
under study. First, the analyst gets some guidance in evaluating the adequacy of the periodic
autoregressive model of order p = 1. Such a model provides an adequate data generating
process for empirical returns if it becomes possible to fit a line (e.g. estimates #; implied
by the linear model) within a confidence band with prespecified significance level over the
entire support of explanatory variables x = z;_;. Second, it is of interest whether such a
line parallels the z;_;—axis. A candidate constant value of m(x) may be the observed mean
of 2;, (m(z) = & = 1/T X}, x;), on the one hand or zero ((x) = 0) on the other. In
the former case weekday effects are implied to be purely deterministic whereas the latter
scenario supports the hypothesis that empirical returns cannot be forecasted by means of
autoregressive models.

Confidence bands can be computed along the lines given in Neumann and Kreiss (1998).
The stochastic behaviour of the estimator m(z) = Y1, w(z, h,xo, ..., 27 1)z in (14) is
analogue to the stochastic behaviour of é(z) = Y, w(z,h,To,.-., 27 1)e;- The latter
quantity is imitated by the wild bootstrap. Starting point for the bootstrap procedure is the

estimation of model errors é; = x; — m(x;_1). The variance of m/(z) is estimated as:

T
d(z) =Y w’(z, h, T, ..., T7_1)6;".
t

From the estimated errors it is straightforward to obtain wild bootstrap replicates as de-
scribed in Section 3. In the following two approaches are distinguished: First the analyst
may be interested in pointwise confidence intervals which have the assumed significance
level for single points x = z;_;. On the other hand one may be interested in a confidence
band with valid significance level on a compact interval of observations a < z = x; | < b.

Asymptotically valid procedures can be detailed as follows:

e Obtain R wild bootstrap samples é;, t =1,...,T.

e Compute for each sample

T -
) w(z, h,xg,...,20-1)€

D*(x
(z) @)

e 1. Pointwise confidence intervals at single points z = z;_1: Let t,(x) denote the

(1 — a)—quantile of |D*(z)|. A confidence interval with asymptotically valid size
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for an interval around x = z;_; is obtained as:
m(z) — to(z)1/0(z), Mm(x) + ta(z)y/?(2).

2. Simultaneously valid confidence bands for the entire range of x = x;_1: Let t,
denote the (1 — a)—quantile of

sup {|D*(z)[}.

a<lz<b

A confidence interval with asymptotically valid size for the autoregression function

() — tar/0(x), m(z) + tor/o(x).

To apply the nonparametric estimation to DAFOX-returns the sample was divided into five

is obtained as:

subsamples for each day of the week. In contrast to the nonparametric estimation discussed
above it was ensured that Tuesday returns (z;) for example are always explained by Monday
returns (x = z;_1). Note that such a pairing of dependent and explanatory variables requires
DAFOX measures at three consecutive trading days to be available. Nontrading days other
than Saturday and Sunday cause some observations to be deleted from the sample.

The locally linear estimation was performed using the Gaussian kernel (see e.g. Silverman

1986):
K(u) = \/12_7Texp (—%u2> . (15)

As mentioned, the bandwidth parameter h was selected using an automated plug-in selection

rule. It turned out that the selected bandwidth depended heavily on the range of explanatory
variables £ = z;_;. Boundary effects for bandwidth selection are discussed for example in
Ruppert et al. (1995) advocating to estimate the function m(x) on a compact interval of
explanatory variables [a < z = z; 1 < b] covering 1006% of all available observations, with ¢
chosen suitably small. An example illustrating boundary effects for bandwidth selection will
be given below. To cope with boundary effects the nonparametric autoregression function
was estimated for observed lagged returns between -1.5% and 1.5%. Depending on the
investigated weekday and period this range covered between 87.95% (Tuesday return function
in the period 1990-97) and 97.60% (Monday return function in the period 1970-79) of all
available observations (see Table 4). Instead of the ”optimal” bandwidth A, a smaller
bandwidth, 0.8h,,: was chosen in order to reduce to some extend the bias problem mentioned
above. It turned out, however, that the obtained results did not differ qualitatively with

respect to the choice of hgy or 0.8hp;.
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5.2 Empirical results

To provide an illustrative example of the empirical nonparametric analysis Figure 1 shows the
estimated mean function (solid line) of Monday returns, 1., (z), for the period 1960-69 which
are assumed to depend on previous Friday returns. Including boundary explanatory variables
the sample covers 463 observations and the selected optimal bandwidth is h,p,=7.27e-03. A
95% confidence band (dashed lines) which has asymptotically the valid size for the entire
range of x;_; simultaneously (second approach given in Section 5.1) is shown jointly with
Mo (). To make the nonparametric estimation problem more explicit the observed Monday
returns are also displayed in the left hand panel of Figure 1. Note that providing single return
coordinates (z; 1, x;) may easily cause the scale of the graphs to be inconvenient. Therefore
the results discussed in the remainder of this section concentrate on the estimated mean
functions. To give some intuition of the implications inherent in the linear autoregressive
model the implied OLS-estimates &; are also provided (dotted line). A number of interesting
features of the data set under study is obtained: the estimated mean—function is increasing
in z;_; and apart from its behaviour at the boundaries almost linear. As one may expect the
computed confidence bands are very close to m,,, () in those regions where many observations
are available and become wider for explanatory Friday returns which are large in absolute
value and thus rarely observed. Due to the significant slope there is no meaningful constant
(mean value of Monday returns x; or zero) falling into the computed confidence band for
all observed values of Friday returns = z;_;. Comparing implied linear estimates and
the obtained nonparametric confidence bands supports the linear AR(1)-model for this data
set at the 5% significance level. All Z; computed from the linear model are contained in
the estimated confidence band. Employing an undersmoothing bandwidth 0.8A,,; instead
of hoye almost identical results are obtained. The corresponding graphs are omitted here to
economize on space. Results discussed below are obtained using a bandwidth h = 0.8h.

As argued above the remaining empirical analysis adopting the nonparametric autore-
gressive model in (13) concentrates on typical ranges of observed explanatory variables,
—0.015 < z = x;_1; < 0.015 for estimation and —0.010 < x = z;_; < 0.010 with respect to
graphical presentation of the results. To get some intuition on the relevance of these ranges
Table 4 provides the relevant effective numbers of observations for each subsample and in-
terval in absolute terms (obs.) and relative (rel.) to the number of available observations.
For the data set discussed before (Monday return function, 1960-69) it turns out that within
this subsample a bandwidth h,,;=3.36e-03 is selected. Neglecting about 5% of explanatory
return variables at the margins reduces the optimal bandwidth by a factor of almost 0.5
for this particular sample. Therefore the following analysis investigates censored samples
obtained from ‘typical realisations’ of explanatory return variables.

To characterize weekday effects in stock market returns it is now interesting to compare

estimated return functions across weekdays and decades. The computed confidence bands
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provide an intuitively appealing benchmark to test informally for weekday dependence of
return functions. The nonparametric framework allows for different time dependence of
current returns for example with respect to negative and positive lagged returns. In addition,
the analyst may get some impression whether weekday effects occur at the tails of the
empirical distribution of z;_; (values of z;_; which are large in absolute value) or whether
such effects are observed even in the center of this distribution (values of z; _; which are closer
to zero). Table 4 also contains statistics of interest which are informally already introduced
above: Conditional on the particular investigated range of x;_; the relative coverage of the
linear model and two constants of interest, m(z) = T and 7(z) = 0, are given.

For the interval —0.01 < z = 2, ; < 0.01 Figure 2 and Figure 3 provide estimation
results for consecutive decades. From Table 4 it is available that depending on the weekday
and period of interest between 75.11% (Tuesday return function in the period 1990-97) and
87.48% (Friday return function in the period 1970-79) of all available observations fall into
this range. Therefore weekday dependence as discussed in the following is an important

characteristic for typical realisations of daily returns. The following results are obtained:

e The estimated mean return functions show considerable nonlinearties for most of the
investigated 20 samples. On the 5% significance level, however, only for the Wednesday
return function in the period 1960-69 implied OLS-estimates Z; are not entirely covered
by the estimated nonparametric confidence bands. In this case 72.9% of estimated
returns implied by the parametric model are contained in the nonparametric confidence
band. For all remaining samples the nonparametric model supports the parametric
specification in the sense that implied returns are contained in the 95% confidence

band of the nonparametrically estimated function.

e With respect to the first two decades all nonparametric estimates exhibit significant
slopes such that none of the investigated constant values is within the estimated con-
fidence bands for the entire interval —0.01 < z;_; < 0.01. Confidence bands of the
Monday return function for example contain zero returns for only 27.6% (1960-69)
and 20.8% (1970-79) of observed variables x;_;. Turning to the two remaining in-
vestigated sample periods the corresponding statistics are 70.3% (1980-89) and 73.7%
(1990-97) indicating that empirical returns have become more and more unpredictable
in the course of time. Note that an analogous result was already obtained from the

parametric approach in Section 4.

e For the last subsample period (1990-97) three of five estimated mean functions exhibit
negative slopes for large (positive) values of explanatory return variables. Note that
the second half of the period 1990-97 is characterized by a marked upward trending
behaviour of stock prices which has been observed for numerous stock markets of
industrial economies. The estimates given in the lower panels of Figure 3 might indicate
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the presence of ‘technical’ price adjustment in the sense that, on average, large positive

lagged returns are followed by smaller or even negative price changes.

e For positive values of z;_; weekday dependencies of estimated mean return functions
are not observed. Conditioning the analysis on negative values of lagged returns,
however, weekday effects are observed comparing for example estimated Monday and
Wednesday return functions in the period 1960-69. For lagged returns close to -0.01
the confidence bands obtained for these two return functions are disjoint such that one
may regard m,,,(z) to be significantly less than 7, (x) for values of lagged returns in
the neighbourhood of —0.01. Similar conclusions can be drawn from a comparison of
Monday and Friday returns in the period 1970-79. In the last but one decade under
study mean Monday and Friday returns evaluated conditional on large negative lagged
returns still appear to differ considerably but the estimated 95% confidence bands fail
to be disjoint.

6 Characterizing Unconditional Distributions

Reviewing the results discussed in Section 5 and given in the empirical literature (see e.g.
Kramer and Runde 1996) one may hold the view that a direct comparison of Monday vs.
Friday stock market returns provides the strongest evidence in favour of weekday effects.
From parametric models discussed in Section 4 the highest differences in estimated mean
returns were obtained from a comparison of Monday and Friday returns for the first two
decades. For the third decade under study Monday returns differ in mean almost equally
from Friday and Wednesday returns. A priori the obtained differences may be attributed to
a distribution of Friday returns which is completely located to the right of the distribution
of Monday returns. However other scenarios may also generate the observed difference. For
example a higher density of extremely negative Monday returns explains the same effect.

To characterize the unconditional distributions of Monday and Friday stock market re-
turns kernel density estimates are discussed in the following. For kernel density estimation
the observed sample is assumed to be independent and identically distributed. Taking the
results reported above into account the iid assumption of empirical returns may be violated.
Robinson (1983) proves the adequacy of kernel density estimation even for the case of de-
pendent observations. Neumann (1998) proves that assuming some mixing conditions to
hold the construction of confidence bands for kernel density estimates by means of iid—type
bootstrap procedures is also valid in the case of weakly dependent (time series) data. Fol-
lowing Neumann (1998) the estimation and inference procedures adopted in this study can
be detailed as follows:

e Assume a sample of possibly weakly dependent univariate random variables (z1, . .., z7)
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to be available having unconditional density f(z), € IR. With K (u) and h denoting

a kernel function and the bandwidth parameter, respectively, an estimator of f(x) is

0=k (5 1

The variance of the density estimate in (16) can be estimated as:
2
1 1 Z T — T 1 Z T — Tt
=g (52)- [ (5]}
o) = 72 {T%: h lTXt:

e Obtain from sampling with replacement R bootstrap samples (z7, x5, ..., z4).

e Compute for each bootstrap sample a density estimate

and obtain

e 1. Confidence intervals at single points z: Let t,(z) denote the (1 — a)—quantile of
D*(x). A confidence interval with asymptotically valid size within a small interval

around z is obtained as:

2)\/3(2), f(2) + tal)\/0(2).

2. Simultaneously valid confidence bands for the entire support of z: Let ¢, denote
the (1 — a)—quantile of

sup {D*(z)} .
zelR

A confidence interval with asymptotically valid size is obtained as:

) — tay/0(2), f (@) + tay/D().

Note that due to the application of kernel techniques again the estimated density functions

are biased. For the computation of weekday return densities the bandwidth h was chosen to

be equal for Monday and Friday returns in order to avoid ‘weekday’ effects emerging from

time dependent bandwidth selection. To characterize weekday dependence of unconditional

returns informally confidence bands at single points f(z) were constructed (first approach

given above). With respect to the second approach (simultaneous confidence bands for

the range of all observed returns) no significant differences between the estimated density

functions were obtained at all. The density functions of interest were estimated and evaluated
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for a range of returns covering the interval —0.03 < z < 0.03 such that a few outliers
were excluded from the sample. The optimal bandwidth h was selected as the so-called
rule-of-thumb bandwidth (see e.g. Silverman 1986), h = 1.060,°2, where o, denotes the
standard deviation obtained from a sample containing both, Monday and Friday returns.
The Gaussian kernel given in (15) was employed for density estimation.

As shown in Figure 4 the estimated unconditional densities of all Monday and Friday
returns observed in the period 1960-97 reveal only minor differences. Compared to the
distribution of Monday returns (solid curve) the distribution of Friday returns (dashed curve)
appears to be shifted somewhat to the right explaining that Friday returns are higher in mean
than Monday returns. With respect to the first three investigated single decades (1960-89)
essentially the same results are obtained. In the period 1990-97 large returns of either sign
are more frequently observed on Mondays than on Fridays. Again only minor differences
are observed for the estimated distributions. However for the first and last subsample small
but positive returns have a considerably higher density for Friday returns in comparison
to the Monday returns. Negative returns which are large in absolute value have a higher
density in the distribution of Monday returns relative to the distribution of Friday returns.
For positive returns of large absolute value an analogous result is not obtained, i.e. such
returns have almost the same estimated densities for both trading days in all subsamples
1960-89. The 95% confidence intervals provided in Figure 5 show that at least the higher
density associated with small positive values of Friday returns relative to Monday returns in
the period 1960-69 is significant. For the remaining density estimates significant differences,

measured in terms of nonoverlapping confidence bands, however, are not observed.

7 Conclusions

Depending on the period of interest German stock market returns show significant correla-
tion. Allowing for time varying autoregressive dynamics periodic time series models provide
a general framework to account for time dependent expectations. The wild bootstrap is
adopted for inference in parametric models in the case of heteroskedastic errors which is
relevant for the analysis of empirical return data. Estimation of the nonparametric au-
toregressive model is essentially data driven and provides evidence in favour of significant
autocorrelation of German stock market returns.

Applying the nonparametric model the adequacy of linear return functions is called into
question for 1 of 20 investigated subsamples (Wednesday return function in the period 1960-
69). Weekday effects are shown to be present for typical ranges of lagged (explanatory)
returns. Such effects measured by means of nonparametric confidence bands are of impor-
tance conditional on negative lagged returns and are not found if lagged returns are positive.

Weekday effects and autocorrelation of German return data are more evident within the
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first half of the investigated sample period (1960-79). Employing wild bootstrap inference

within parametric autoregressive models for the period 1980-97 supports the hypothesis of

completely unpredictable returns observed on the German stock market.

Investigating daily returns unconditionally by means of kernel density estimators yields

only minor support for day dependent return distributions. Negative returns which are large

in absolute value measured on Mondays have a higher estimated density compared to Friday

returns.
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Table 1: Estimation of the AR(5)-model with time varying expectation

60-69 70-79 80-89 90-97 60-97

est. LR est. LR est. LR est. LR est. LR

v | -49-03 1.769 -.11e-02 11.23 -.45e-03 1.022 .52e-03 1.298 -.37e-03 3.394
(.24) (.00)* (.42) (.36) (.13)

vy | -.46e-06 0.008 .12e-02 7.408 .49e-03 0.600 -.45¢-03 0.509 .22¢-03 0.635
(:93) (.00)* (-50) (-54) (.48)

vy | .15e-02 8753 11e-02 6.573 .17e-02 6.962 .31e-03 0.240 .11e-02 16.45
(.01)* (.01)* (.01)* (.66) (.00)*

vy | .64e-03 1.545 13e-02 8.093 .12e-02 3.624 .20e-03 0.100 .81e-03 8.281
(.23) (.00)* (.08) (.77) (.01)*

vs | .14e-02 7.454  .20e-02 19.41 .16e-02 6.614 -.94e-03 2.128 .11e-02 14.32
(.01)* (.00)* (.01)* (-20) (.00)*

o3 .3126 233.2 2277 126.8 .0635 10.03 0273 1497 1394 182.9
(.00)* (.00)* (.26) (.44) (.00)*

¢o | -.1098 2740 -.1091  28.33  -.0552  7.565 .0011  0.003 -.0517 24.86
(.00)* (.00)* (.19) (.97) (.01)*

P3 .0182 0.750 .0592 8.321 .0149 0.548 .0261 1.373  .0208 4.040
(.53) (.04)* (.71) (.48) (.25)

o4 .0074 0.126 .0505 6.113 0121 0.364 -.0050 0.051 .0148 2.040
(.80) (.06) (.73) (.87) (.40)

o5 .0220 1.213  -.0393  3.892 .0323 2.593 -.0325 2.122  .0057 0.313
(.40) (:21) (:32) (:27) (.72)

Estimation results (est.) and LR-statistics for the parametric model AR(5)-model with time
invariant autoregressive parameters and weekday dependent deterministic influences (x; = v +
2222 D, v, +E?:1 ¢izi_;+ug). p-values obtained from wild bootstrap procedures in parentheses.

* indicates significance at the 5% level.
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Table 2: Estimation of the AR(5)-model with time varying AR(1)-parameter

60-69 70-79 80-89 90-97 60-97
est. LR est. LR est. LR est. LR est. LR
v -.73e-03 3.938 -.11e-02 13.08 -.81e-03 3.306 .55e-03 1.443 -.51e-03 6.504
(.08) (.00)* (.15) (.33) (.04)*
Vs .19e-03 0.144  .13e-02 8.274 .77¢-03 1.518 -.48¢-03 0.554 .34e-03 1.552
(.71) (.00)* (-28) (-53) (-28)
V3 A7e-02  11.01  .12e-02 7.575 .20e-02 10.28 .29¢-03 0.199 .12¢-02 20.45
(.00)* (.00)* (.00)* (.68) (-00)*
I 90e-03 3.0056 .14e-02 9.272 .15e-02 5.533 .21e-03 0.109 .96e-03 11.44
(.10) (.00)* (.03)* (.78) (.00)*
Vs .16e-02  10.16  .25e-02 21.15 .20e-02 10.16 -.99e-03 2.336 .12¢-02 18.29
(.00)* (.00)* (.00)* (.18) (.00)*
d1 .0691 133.7 .3226 55.81 .3428 48.60 1185 4.829 3239 173.6
(.00)* (.00)* (.00)* (.15) (.00)*
¢21 | -.3384 31.82 -.1210 4.057 -4032 4242 -1059 2461 -.2610 70.01
(.02)* (.25) (.01)* (.42) (.00)*
¢31 | -.3502 29.31 -1361 4934 -3369 2593 -1332 3.260 -.2450 53.51
(.01)* (.18) (.01)* (.37) (.00)*
¢41 | -2748 16.85 -.1180  3.768 -.2297 11.57 -.1323 3.062 -.1860  29.63
(.03)* (.27 (.09) (.22) (.01)*
¢s51 | -2297 1299  -1028 2.714 -3257 2248 -.0632 0.648 -.1752  26.13
(.03)* (:34) (.00)* (-56) (.01)*
b2 -.1168 31.22 -.1075 27.51 -.0490 6.021 .0008 0.001 -.0516  25.00
(.00)* (.00)* (:27) (.98) (.01)*
o3 .0230 1.208 .0602 8.606 .0234 1.363 0258  1.332 .0238 5.303
(-39) (.04)* (.56) (.48) (.18)
o .0028 0.018 .0507 6.182 .0160 0.643 -.0041 0.033 .0151 2.147
(:92) (.06) (.63) (-90) (:37)
o5 .0197 0.991  -.0390 3.804 .0371 3.487 -.0348 2.421 .0051 0.244
(.46) (:22) (-26) (-23) (.75)

Estimation results (est.) and LR-statistics for the parametric model AR(5)-model with
time depending AR(1) parameter and deterministic components (z; = v + 2522 D, vs +
Ez=1 D sz + Zf:2 ¢iTt—; + ug). p-values obtained from wild bootstrap procedures in

*

parentheses. * indicates significance at the 5% level.
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Table 3: Hypothesis Testing in parametric AR-models

Time invariant AR(5)-Model AR(5)-Model with ¢, time dependent

Null hypothesis 60-69 T70-79 80-89 9097 60-97 | 6069 70-79 80-89 90-97 60-97
Hy:vs =0 16.99 20.04 10.76 5.231 26.52 | 19.14 21.96 15.21 5.523 31.53
(.00)* (.00)* (.03)* (.26) (.00)* | (.00)* (.00)* (.00)* (.26) (.00)*

Hy:¢4;,=0 236.9 150.8 20.08 5.036 198.2 | 275.8 157.3 66.87 4.527 79.66
(.00)* (.00)* (.44) (.84) (.00)* | (.00)* (.00)* (.19) (.77)  (.00)*

Hy:xp =y 254.7 165.8 40.33 12.82 237.7 | 293.6 1723 87.12 9.563 277.8
(00)* (.00)* (.16) (.63) (.00)* | (00)* (.00)* (.09) (.91) (.00)*

Hy:¢s51=0 3892 6496 46.79 9.759 106.2
(.03)* (.b1) (.15)  (.68) (.00)*

Ho:vs =0,¢51=0 55.91 26.54 57.556 17.35 3174
(01)*  (07)  (10)  (.80) (.00)*

LR-statistics against joint significance of selected parameters within the investigated time series models.
p-values obtained from bootstrap procedures in parentheses. * indicates significance at the 5% level.
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Table 4: Coverage frequencies of nonparametric confidence bands

obs. rel. OLS 0 T obs. rel. OLS 0 T
—0.015 < 2 = 2,1 < 0.015
60-69 70-79
Mo | 439 095 1.00 0.30 0.21 | 448 0.99 1.00 0.27 0.29
Tu | 433 091 0.96 0.22 022|450 0.95 1.00 0.67 0.52
We | 437 093 0.77 0.57 0.29 | 454 096 1.00 0.45 0.40
Th | 443 093 0.99 0.55 0.69 | 455 0.96 1.00 0.76 0.74
Fr | 445 095 1.00 0.38 0.29 | 450 0.97 1.00 0.37 0.39
80-89 90-97
Mo | 411 091 1.00 0.65 0.64 | 340 0.93 1.00 0.74 0.75
Tu | 442 093 1.00 1.00 0.97 | 336 0.88 1.00 0.89 1.00
We | 429 091 1.00 0.79 0.88 | 357 0.94 1.00 1.00 1.00
Th | 436 093 1.00 0.46 1.00 | 352 0.93 1.00 0.85 1.00
Fr | 417 091 1.00 0.80 0.86 | 346 0.93 1.00 0.98 0.99
—0.010 <z = x4 1 <0.010
60-69 70-79
Mo | 399 0.86 1.00 0.28 0.20 | 391 0.85 1.00 0.21 0.28
Tu | 378 0.79 1.00 0.23 0.27 | 408 0.86 1.00 0.68 0.41
We | 377 080 0.73 0.55 0.24 | 403 0.86 1.00 0.46 0.42
Th | 398 0.84 1.00 0.55 0.53 | 404 0.85 1.00 0.85 0.89
Fr | 407 0.87 1.00 0.40 0.27 | 406 0.87 1.00 0.35 0.35
80-89 90-97
Mo | 364 0.80 1.00 0.70 0.72 | 303 0.83 1.00 0.74 0.85
Tu | 376 0.79 1.00 1.00 0.95 | 287 0.75 1.00 0.88 1.00
We | 377 080 1.00 0.83 0.95| 313 0.83 1.00 1.00 1.00
Th | 371 0.79 1.00 0.50 0.93 | 308 0.81 1.00 0.83 1.00
Fr | 367 0.80 1.00 0.84 0.92 | 318 0.85 1.00 1.00 1.00

Effective numbers (obs.) of available observations for complete samples

and typical ranges of lagged returns. ‘rel.” denotes ‘obs.’” relative to all

available observations. ‘OLS’, ‘0’, and ‘Z’ denote the relative number of

sample points where the OLS-estimates of x¢, zero, and the (subsample)

mean of z; is contained in a 95% confidence interval of the relevant mean

return function.
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Figure 1: Estimated mean function for Monday returns (1ivm,(z)) (solid line) with simultaneously valid
95% confidence bands (dashed lines), and OLS-estimates (dotted line) for the period 1960-69.
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Figure 2: Estimated mean return functions, 95% confidence bands, and OLS-estimates for 1960-69 (upper
panels) and 1970-79 (lower panels). The relevant range of lagged returns is —0.01 < z;_1 < 0.01. The scale
of both axes is multiplied by 102.
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Figure 3: Estimated mean return functions, 95% confidence bands and OLS—estimates for 1980-89 (upper

panels) and 1990-97 (lower panels). The relevant range of lagged returns is —0.01 < z;—1 < 0.01. The scale

of both axes is multiplied by 102.
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Figure 4: Estimated unconditional distribution of Monday fmo(z) (solid lines) and Friday returns
fe:(z) (dashed lines). The relevant range of returns is —0.03 < z < 0.03. The scale of the z—axis is
multiplied by 102.
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Figure 5: Estimated unconditional distribution of Monday fuo(2) (solid lines) and Friday returns fi.(z)
with 95% confidence bands (dotted curves). The relevant range of returns is —0.03 < = < 0.03. The
scale of the z—axis is multiplied by 102.
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