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Abstract

Unit root tests for time series with level shifts are considered. The level shift is assumed to
occur at a known time point. In contrast to some other proposals the level shift is modeled as
part of the intercept term of the stationary component of the data generation process which
is separated from the unit root component. In this framework simple shift functions result in
a smooth transition from one state to another both under the null and under the alternative
hypothesis. In order to test for a unit root in this context the nuisance parameters are
estimated in a first step and a standard unit root test e.g. of the Dickey-Fuller type is then
applied to the residuals. The resulting test is shown to have a known asymptotic distribution
under the null hypothesis of a unit root and nearly optimal asymptotic power under local
alternatives. An empirical comparison with previous proposals is performed.
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1 Introduction

A number of studies consider testing for unit roots in univariate time series which have a level
shift. Examples are Perron (1989, 1990), Perron & Vogelsang (1992), Banerjee, Lumsdaine
& Stock (1992), Zivot & Andrews (1992), Amsler & Lee (1995), Leybourne, Newbold &
Vougas (1998), Montaniés & Reyes (1998) and Saikkonen & Liitkepohl (1999). These tests
are important because the trending properties of a set of time series determine to some
extent which model and statistical procedures are suitable for analyzing their relationship.
In the aforementioned studies different models and assumptions for the structural shift are
considered. In some of the studies the timing of the break point is assumed to be known
whereas in others a shift in an unknown period is considered. There seems to be general
consensus, however, that if the break point is known, this is useful information which should
be taken into account in the subsequent analysis and in particular in testing for unit roots.
Therefore we will focus on the latter case in the following. In practice, knowledge of a known
break point is quite common. For instance, many (German macroeconomic time series are
known to have a shift in 1990 where the German reunification took place.

For the case of a known break point we will propose a framework which generalizes
previously considered models. In this framework the shift is modeled as part of the intercept
term of the stationary part of the data generation process (DGP) which is clearly separated
from the unit root part. Our model has the convenient feature that even simple shift functions
result in a smooth transition from one state to another both under the null of a unit root
and under the alternative hypothesis of stationarity. Such a behaviour is often more realistic
than an abrupt one-time shift. For instance, in some German macroeconomic time series
such as GNP there is a clear shift in 1990 where the German reunification has occurred.
However, the eastern part of the economy was in a quite different economic situation than
West Germany at that time and entered into a long lasting adjustment process. Hence, a
gradual adjustment after an initial shift may be a more realistic model in this case.

We will compare our new model to previously proposed models in an empirical compar-
ison of different frameworks. A major advantage of the present approach relative to other
approaches is that estimation of the nuisance parameters reduces to a fairly simple nonlinear
least squares (LS) problem (see Amemiya (1983) for a review of nonlinear regression). In

special cases estimation can even be done by linear LS although the shift from one regime



to another is nonlinear.

The structure of this study is as follows. In the next section the general setup is presented
and in Section 3 the tests are considered. Empirical examples are discussed in Section 4
and conclusions are given in Section 5. The proof of a theorem regarding the asymptotic
properties of the test statistic is provided in the appendix.

The following notation is used. The lag and differencing operators are denoted by L
and A, respectively, so that for a time series variable vy;, Ly; = y;—1 and Ay, = y, —
y;—1. Convergence in probability and in distribution are denoted by = and —d>, respectively.
Independently, identically distributed will be abbreviated as iid(-,-), where the first and
second moments are indicated in parentheses. Furthermore, O(-), o(-), O,(-) and o,(-) are
the usual symbols for the order of convergence and convergence in probability, respectively,
of a sequence. The symbol A,;,(A) is reserved to denote the minimal eigenvalue of a matrix
A. Moreover, || - || denotes the Euclidean norm. The abbreviations sup and inf are used
as usual for supremum and infimum, respectively. The n-dimensional Euclidean space is

signified as R".

2 Models for Time Series with Level Shifts

Saikkonen & Liitkepohl (1999) (henceforth S&L) consider the following general model for a

time series with a unit root and a level shift:

yt:,U’0+,u'1t+ft(9)I,Y+xt7 = 1:27"'7 (21)

where the scalars po and py, the (m x 1) vector 6 and the (k x 1) vector  are unknown
parameters and f;() is a (k x 1) vector of deterministic sequences depending on the param-
eters 6. The quantity x; represents an unobservable stochastic error term which is assumed

to have a finite order autoregressive (AR) representation,
a(L)x; = &y, (2.2)

where a(L) =1—a;L—---—a,1 LPT! is a polynomial in the lag operator and &; ~ iid(0, 0?).
For simplicity, we assume that a suitable number of presample values of the observed series
y; is available. Obviously, if the DGP of z; has a unit root, then the same is true for ;.

Therefore, S&L derive a test for a unit root in a(L).
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A simple version of a function f;(f) that has been considered in the literature is one

which represents a single shift in the mean,

0, t <1y
fi(0) = diy = (2.3)
1, t>T

that is, dy; is a shift dummy variable which does not depend on any unknown parameters. In
other words, the parameter vector # does not appear in this case. The dummy dy; represents
a shift in the mean of the series in period 7} which is assumed to be known. Smooth
transitions from one level to another can also be accommodated in the above model by an
appropriate definition of f;(f). An alternative way to generate smooth level shifts over a

longer period of time is possible in a model of the form
b(L)yt = /1'0+/j'1t+fydlt+vta = 152,"': (24)

where the operator b(L) =1 — b L —--- — b,L? is assumed to have all its zeros outside the

unit circle, the error term v, is assumed to be an AR process of order 1,
vy = pui_1 + &y, (2.5)

where again ; ~ iid(0,0%) and —1 < p < 1 with p = 1 implying a unit root in y;. In
the model (2.4) the shift dummy variable generates a smooth transition to a new level via
vb(L)~'dyy. Defining b(L)™" =1+ 32, oy L', we get for t > T,

t—Ty

b(L) =1+ .

i=1
Thus, in this model a smooth transition of the level of ¥, is generated although just a shift
dummy variable appears in the deterministic term. More flexibility of this kind of model
can be obtained by replacing dy; by a more general sequence f;(6) as in (2.1).

In this study we will consider models of the general type
b(L)ye = po + put + fi(0) v+ v,  t=1,2,..., (2.6)

where all symbols are as defined in (2.1), (2.4) and (2.5). The parameters pg, ¢ and 7 in
the model (2.6) are supposed to be unrestricted. Conditions required for the parameters 6

and the sequence f;(6) are collected in the following set of assumptions from S&L.



Assumption 1

(a) The parameter space of 6, denoted by ©, is a compact subset of R™.

(b) Foreach t =1,2,..., fi(f) is a continuous function of # and
T
sup >_sup [|Afy(6)]] < oo
T ;—10€0

where fo(0) = 0.
(c) Defining ¢:(8) = [1: f:(8)'] for t = 1,2,..., and Agi(0) = [1 : f1(#)'], there exists a
real number ¢ > 0 and an integer 7, such that, for all 7" > T,

T

t=1

This assumption is discussed in more detail in S&L. It is not very restrictive for our
purposes because it is satisfied by the sequences f;(#) we will consider in the following. For
instance, it is easy to check that the assumption is satisfied if f; = di;. The assumption
guarantees estimators of the parameters with suitable properties.

We will present unit root tests within this model framework. More precisely, we will

present a test of the pair of hypotheses
Hy:p=1 Vs. H :p<l1

in the next section.

It is not clear a priori which one of the two general models (2.1) or (2.6) is best suited
for testing for unit roots in time series with level shifts. In fact, this is an empirical question
and therefore we will use both model types in Section 4 to analyze the unit root properties
of a number of time series with a level shift at a known point in time. We will compare the
resulting tests for some real life macroeconomic time series.

For completeness we mention that seasonal dummies may be added to both models (2.1)
and (2.6) without changing the theoretical analysis in any substantive way. For instance, in
that case model (2.6) becomes

q
b(L)yt:,u'O+u1t+ZViDit+ft(9)17+Uta 1= 1727"'7

i=1



where the y; are scalar parameters and the D; (i = 1,...,q) represent seasonal dummy
variables. For example, for quarterly data, D;; assumes the value 1 if £ is associated with the
1th quarter and zero otherwise. For quarterly data ¢ = 3 is used because an intercept term
is included in the model. This modification does not affect the asymptotic properties of the
subsequently considered test. Therefore we do not include seasonal dummies at this stage

to avoid notational complications. They will be used in the empirical analysis in Section 4.

3 A Unit Root Test

The basic idea underlying our test procedure is to estimate the nuisance parameters in
(2.6) first and then apply a Dickey-Fuller type test to the residuals @;. Our approach for
estimating the nuisance parameters pg, pi, 0, v and by, ..., b, is similar to that in Elliott,
Rothenberg & Stock (1996) and Hwang & Schmidt (1996). These authors use a generalized
LS procedure which does not necessarily assume validity of the null hypothesis but is based
on appropriate local alternatives to be specified by the analyst. Thus, suppose that the error
process v; specified in (2.5) is near integrated so that

‘

- (3.1)

p=pr=1+
where ¢ < 0 is a fixed real number. Then the generating process of v; can be written as
vy = Prvs_1 + &4, t=1,2,... (3.2)

For simplicity we make the initial value assumption vy = 0 although our asymptotic results
also hold under more general conditions (cf. Elliott et al. (1996) for a discussion of the

implications of initial value assumptions). It follows from the stated assumptions that
T~ vy % 0B,(s), (3.3)

where B.(s) = [; exp{c(s — u)}dBy(u) with By(u) a standard Brownian motion (cf. Elliott
et al. (1996)).

Our estimation procedure employs an empirical counterpart of the parameter c¢. This
means that we shall replace ¢ by a chosen value ¢ and pretend that ¢ = ¢ although we do

not assume that this presumption is actually true. The choice of ¢ will be discussed later.



Now, if pr = 14 %, the idea is to first transform the variables in (2.6) by the filter 1 — pp L.

For convenience we will use matrix notation and define

Y=yi:(ye—pry):---: (yr — ﬁTl/Tfl)]’ﬂ
Zi=[1:@=pr) e (T = pr(T 1)

and '
1 1_ﬁT 1_/5T

Zy(0) =
f10)  fo(0) — prfi(0) --- fr(0) — prfr1(0)

Here, for simplicity, the notation ignores the dependence of the quantities on the chosen

value ¢. Using this notation, the transformed form of (2.6) can be written as
Y =W(@®)5+E, (3.4)

where W(0) = [V : Z(0)] with Z(0) = [Z, : Z»(f)] and V the (T X p) matrix containing
lagged values of the regressand. Furthermore, 3 =1[b': 1 : po:7']'and € =[e; : ---:er] is

an error term such that e; = v; — prvy_1. It follows from the definitions that
€t =&+ Tﬁl(c — (_:)’Utfl. (35)

The second term on the r.h.s. of this equation is asymptotically negligible because, as a
consequence of (3.3), T~ max,<i<r |v;| = O,(T~/?). Thus, we shall consider a nonlinear
LS estimation of (3.4) by proceeding in the same way as in the case ¢ = 0, that is, e, = &
or under the null hypothesis. The reason why we still do not assume ¢ = 0 is that choosing
¢ < 0 yields more powerful tests (see Elliott et al. (1996)). Our estimators are thus obtained

by minimizing the sum of squares function
Sr(0,8) = (Y —W(6)5)'(Y — W(0)5). (3.6)

Assuming that the matrix W () is of full column rank for all values of # € © one can repeat
the argument used by S&L for Model (2.1), and conclude that a minimizer of Sr(6,3),
denoted by [0~’ : B’]’ , exists when Assumption 1 holds. It is seen in the appendix that this is
the case for all 7" large enough.

The estimator of # can be written as



Of course, the computation of 3 requires iterative methods if a parameter 6 actually appears
in the model. However, if preliminary estimators of § are available they can be used on
the r.h.s. of (3.7) in place of # to yield an LS estimator of § conditional on the given
§. If computationally simple alternatives to a full minimization of Sr(f, ) are desired
conventional two-step estimators may be considered. The asymptotic properties of our test
procedures are the same even if these estimators are employed. However, in finite samples
it may be worthwhile to use proper (nonlinear) LS estimation which is still very simple.
Obviously, if W () is independent of 6, like in (2.4), the above estimation procedure reduces
to linear regression. When W (#) is not independent of #, a grid search over the values of
f may provide a convenient estimation procedure if # is scalar or possibly even if it is two-
dimensional but takes values in a reasonably small set. Alternatively, one of the available
nonlinear estimation algorithms may be applied (see, e.g., Amemiya (1983, 1985, Section 4.4),
Judge et al. (1985, Appendix B) or Seber & Wild (1989, Chapters 13 and 14)). Asymptotic
properties of the nonlinear LS estimators are given in the appendix.

Once the nuisance parameters in (2.6) have been estimated, the residual series 7, =
b(L)y, — jio — jut — fi(6)'4 may be used to obtain unit root tests. There are several possible
choices. One possibility is to use Dickey-Fuller (DF) tests like, for instance, Elliott et al.
(1996). In the following we shall also consider these tests.

Consider the auxiliary regression model
ﬁt:pﬁtfl +€:, izl,...,T, (38)

where 9y = 0. If 9, is replaced by v; the error term in (3.8) becomes ¢, so that we can use
simple LS to obtain a test statistic. Specifically, define the LS estimator

T
p= (L) T (3.9
t=1 t=1
with associated error variance estimator
&7 =T "> (0 — por_1)? (3.10)

and introduce the test statistic

= (X )/ (5-1)/s (3.11)



The notation 7, is used here to distinguish the statistic from the one given in S&L and to
indicate that it is based on an alternative model. The statistic 7 of S&L will be denoted by
Tsgr in the following. The limiting distribution of the test statistic 7, is given in the next

theorem.

Theorem 1. Suppose that Assumption 1 holds and that the matrix W () is of full column
rank forall 7" > k+p+ 2 and all § € ©. Then,

1 1 —-1/2
ran 5 ([ Gelsiods)  (Geltiep — 1),
2 \Jo

where
Ge(s:7) = Buls) — s (AB.() = 30— ) [ 1 $B.(s)ds)

and A = (1—¢)/(1 — ¢+ %/3). 0

We have included the condition for the rank of the matrix W (#) in the theorem because
it is plausible and simplifies the exposition. It is seen in the proof given in the appendix
that, as a consequence of Assumption 1(c), this condition always holds for 7" large enough.
The limiting distribution in Theorem 1 is the same as that obtained by S&L for their test
statistic 7sg and also the one Elliott et al. (1996) obtained for their ¢-statistic in a model
whose deterministic part only contained a mean and linear trend term. The limiting null
distribution, obtained by setting ¢ = 0, is free of unknown nuisance parameters but depends
on the quantity ¢. Elliott et al. (1996) suggest using ¢ = —13.5 and give some critical values
for this choice. They show that with this choice of ¢ the asymptotic local power of their ¢-test
is nearly optimal for all values of c¢. From their results and Theorem 1 we can conclude that
this is also the case for our test. Since our alternative is a stationary process v; (i.e., |p| < 1),
small values of 7, are critical. It is shown in the appendix that the limiting distribution of
Tat 18 unaffected by including seasonal dummies in the model.

In the same way as in Elliott et al. (1996) we could derive point optimal tests. These
tests would be based on the statistics 5%(1) and 6%(pr) defined by replacing 5 in (3.10) by
unity and pr, respectively. According to the simulation results of Elliott et al. (1996) the
overall properties of their DF t-statistic appeared somewhat better than those of the point

optimal tests. Therefore we use the DF test version 7, in the following. Finally, note that



if we have the a priori restriction that there is no linear trend term so that u; = 0, the above
test remains essentially the same except for the limiting distribution which is then the same
as in a model without any deterministic terms. Furthermore Elliott et al. (1996) recommend

¢ = —7 in this case.

4 Empirical Comparison of Tests

As mentioned earlier, which model to use for a time series with a shift in mean is primarily an
empirical question because it is usually not clear a priori what kind of adjustment is required
to capture the level shift in an adequate way. Therefore we have applied the different tests
to some economic time series. In particular, we use a set of German macroeconomic series
which was also used by S&L consisting of quarterly, seasonally unadjusted log GNP (1975(1)
- 1996(4)), money stock M1 (1960(1) - 1997(1)) and M3 (1972(1) - 1996(4)). In addition
we use Polish log Industrial Production (IP) (1982(1) - 1995(4)).* S&L used the 7gg1, test

based on the following three shift functions:

() = duy,

() = 0, t<T
) =
1—exp{—0(t—T1)}, t>T,
and /
@ | A dig
17 0) = ll—HL ' 1—0L] '

The first one of these shift functions in conjunction with model (2.1) corresponds to an
abrupt shift whereas f* (#) and ft(?’)(G) allow for a smooth transition to a new level. All
three functions result in a nonlinear optimization problem in computing the 7sg statistic.

In contrast, even ft(l)(H) can generate a smooth adjustment to a new level if the framework

*The data sources are: GNP — quarterly, seasonally unadjusted data, 1975(1) - 1990(2) West Ger-
many, 1990(3) - 1996(4) all of Germany, Deutsches Institut fiir Wirtschaftsforschung, Volkswirtschaftliche
Gesamtrechnung.

M1 - quarterly, seasonally unadjusted data, 1960(1) - 1990(1) West Germany, 1990(2) - 1997(1) all of Ger-
many, OECD.

M3 — quarterly, seasonally unadjusted data, 1972(1) - 1990(2) West Germany, 1990(3) - 1996(4) all of Ger-
many, Monatsbericht der Deutschen Bundesbank.

IP — quarterly, seasonally unadjusted data from Poland 1982(1) - 1995(4), International Monetary Fund.



of the 7, statistic is used. Moreover, in computing 7,; for ft(l) (#) linear regression is needed
only. Since ft(z) (#) and ft(?’)(ﬁ) involve just a single parameter #, the nonlinear LS estimators
for these functions are conveniently obtained by a grid search.

In Figures 1 - 4 the series and the estimated shift functions b(L)™" £ ()4 (i = 1,2,3) are
plotted. All four series have obvious shifts. In the three German series it occurs in 1990 and
is due to the German unification. Before the unification the series refer to West Germany
only and after the unification they are defined for all of Germany. Hence, the shift is due to
a change in the definition of the series. In Poland the introduction of a market economy in
the first quarter of 1989 had a substantial and quite visible impact on the IP series. Whereas
the change in the definition of the German series resulted in a quite abrupt shift, the shift
in Polish IP is spread out over a number of periods. Thus, one would expect that the model
in (2.1) may be better suited for capturing the shift in the German series whereas it may be
necessary to allow for a gradual adjustment in the Polish series and, hence, the model (2.6)
may be advantageous for this series.

The expectation with respect to the German series is supported by the abrupt shifts
found by S&L in these series by fitting model (2.1) with the three shift functions mentioned
earlier. They were in fact quite similar to the shifts depicted in Figures 1 - 3 for these series.
It turns out that the estimated parameters in b(L) are all very close to zero and, hence,
b(L)~ D (6)4 is very similar to f{”(8)'4 (i = 1,2,3). It may be worth noting that there
remains some autocorrelation in the residuals of the estimated model (2.6) although quite
large orders of b(L) are considered and using the same orders for a(L) in (2.1) largely removes
the residual autocorrelation. This observation indicates that the steep shift dominates the
series to such an extent that even the parameter estimates in b(L) from (2.6) are distorted.
They are shrunk towards zero to enforce an abrupt shift in the model and, consequently,
they cannot take care of the residual autocorrelation. In contrast the estimated shift in the
Polish series in Figure 4 is more gradual and, hence, for this series the model in (2.6) may
be more suitable.

In Table 1 the results for unit root tests for all four series are given. In addition to
the 7gg7 and 7, tests we also show the results of ordinary ADF tests which allow for a
deterministic trend and do not include a shift term. For all series the results for AR order

p = 4 are given which is a reasonable order for quarterly data. However, S&L also use
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Table 1. Unit Root Tests

AR | ADF Tsgr test® Tar test?
Variable order | test® | f00) f2@) 2©0) | fP0) 20) f20)
log GNP 4 | —228| —159 —159 -1.79 | —2.33 —2.33 —2.51
5 | —252| —1.80 —1.80 —219 | —2.44 —244 —2.60
log M1 4 | —319| —2.37 —253 —2.70 | —2.36 —2.22 —2.22
6 | —1.82] —2.61 -2.36 -243 | —2.37 -2.24 -—2.24
log M3 4 | -240| —0.80 —0.80 -1.15| —-1.17 —1.17 —1.38
6 |-218| —0.80 —080 —1.15| -1.23 —123 —1.35
log TP 2 | —1.68| —2.02 —3.08 -—2.88 | —1.68 —341 —3.41
4 | -1.80| —2.07 —226 —207 | -1.60 —3.12 —3.10

@Critical values: —3.96 (1%), —3.41 (5%), —3.12 (10%)
(see Fuller (1976), Table 8.5.2, 7, n = 00).
bCritical values: —3.48 (1%), —2.89 (5%), —2.57 (10%)
(see Elliott et al. (1996), Table I.C, T' = c0).

11




different orders in their study which eliminates residual autocorrelation in the model (2.1).
These orders are also used in the table for the German series. Similarly, p = 2 is sufficient in
model (2.1) for log IP to remove the residual autocorrelation and therefore results for that
order are also given in Table 1 for the Polish series.

S&L found clear support for a unit root in log GNP and log M3 and weak evidence
against a unit root in log M1. In Table 1 it can be seen that similar results are obtained
based on 7, although the evidence against a unit root in log GNP is somewhat stronger
when the latter test is used. Still, for log GNP none of the statistics is significant at the 5%
level.

A different picture emerges for log IP. Again the ADF test which does not allow for a
shift is not significant at any reasonable level. Hence, an uncritical application of this test
leads to the conclusion that there is a unit root in log IP. Taking into account the shift by
applying 7Tgg 7, Or Tq; tests based on the shift functions ft(z)(é) (1 = 2,3) the unit root null
hypothesis is clearly rejected at the 10% level and in most cases also at the 5% level if a
model with order p = 2 is used. The fact that 7gg7 is not significant for p = 4 may be a
reflection of the potential power loss due to overfitting the model. Also it may indicate that
the model (2.1) is not as adequate as model (2.6) for this series. Moreover, the insignificant
test values based on ft(l) suggest that this shift function may be too rigid for the presently
considered series. The overall conclusion from these examples is that both model types may

be valuable tools for unit root analysis when series have level shifts.

5 Conclusions

Many economic time series exhibit level shifts in some known time period due to a special
event. It is important to take such shifts into account in unit root tests because the standard
tests for this purpose are distorted and may have low power if such shifts are ignored. A quite
general class of tests has been proposed in this paper for taking care of deterministic level
shifts. They have the convenient feature that they allow for smooth transitions from one
level to some other level over an extended period of time. Such a smooth transition to a new
state is often more realistic than assuming an abrupt shift to a new level. Although there are

other unit root tests which can accommodate smooth shifts in the level of a time series the

12



tests proposed here have the advantage that the corresponding test statistics are very easy
to compute for quite general shift functions. Moreover, their asymptotic null distribution
is known from the unit root literature and tables with critical values exist. The tests have
been applied to economic time series to illustrate how they work in practice.

In empirical work it is quite common that the timing of the level shift is known as in
the examples considered in the foregoing. However, there are also occasions where the exact
time of the shift is unknown. We intend to investigate extensions of the tests to this case in

future research.

Appendix. Proofs
We will first present some asymptotic properties of the estimators of the nuisance parameters

and then prove Theorem 1.

A.1 Properties of Estimators

Some properties of the nonlinear LS estimators obtained via (3.4) are given in the following
lemma. The lemma assumes local alternatives as specified by (3.1) so that the null hypoth-

esis is obtained by setting ¢ = 0.

Lemma A.1. Suppose that the assumptions of Theorem 1 hold. Then,

b5, (A.1)
0 =0+0,(1), (A.2)
5=+ 0,(1), (A4.3)
fio = o + Op(1) (A4)
and
T2 1y — (1) /b(1)) % & ()\Bc(l) —3(1—2) /0 1 sBc(s)ds> , (A4.5)
where A = (1 —¢)/(1 — ¢+ ¢%/3). 0

Lemma A.1 shows that the estimators b and fi1 are consistent whereas [ig, 6 and 07

are generally not. These latter estimators are only bounded in probability in general. For 6
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boundedness is, of course, trivial because the parameter space of € is compact by assumption.
However, for [ip and 4 the situation is different because the parameter space of pg and vy
is unrestricted. The situation is similar to Lemma 1 of S&L except that the result for
fi1 now involves the quantities 5(1) and b(1). However, this result is precisely the one we
need in the proof of Theorem 1. It is also possible to obtain the limiting distribution of
f11. That distribution is not needed in subsequent derivations, however, and it is therefore
omitted. Since Assumption 1(b) implies that f;(6) — prfi—1(6) = Afi(6) — 0 as t — oo the

inconsistency of the estimators v and 0 is expected and a similar argument can be given for

Ho-
The proof uses the same techniques as the proof of Lemma 1 in S&L. The following

results from that proof are used here as well:

T-'Z/Z, = h(e) + O(T™), (A.6)

where h(¢) =1 —c+ /3,
T Y27 7,(0) = O(T /%), (A.7)
Z5(0)'Z>(0) = Z Agi(0)Agi(0) +O(T™) (A.8)

uniformly in 6, where ¢;(6) = [1 : fi(6)'] and go(#) = 0. Furthermore, defining Dyy =
diag[T"/? : I1] and Mr(0) = diag [h(c) : 1, Agi(0)Agu(6)'],

Di7Z(9)'Z(8)Dig = Mr(8) + O(T/?) (4.9)

uniformly in #. We note in passing that (A.9) implies that the matrix Z () is of full column
rank for all 6 and all T large enough because, by Assumption 1(c), the matrix Mr(f) is
positive definite for all # and all T large enough.

Next we shall obtain an expression for the observed series by solving the difference equa-

tion defined by (2.6). This yields
Y = S1t + b(l)illu’o + b(L)iltlu’l + b(L)ilft(e)lry + Ty, = 15 2a R

where z; = b(L) ‘v, with v; = 0 for ¢ < 0, the trend term and the sequence f;(f) are
defined as zero for t < 0 and the sequence s;; contains transient effects due to the presample
values of y;. As is well known, s;; converges to zero exponentially as ¢ — oco. Using the

decomposition b(L) ™t = b(1) ! +b*(L)A we can write b(L) 't = b(1) ' 1t + 594, where sy
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contains transient effects similar to those in s1; except that now these effects do not converge

to zero but are bounded. Thus, we have
yt:u*t+kt+xta t:1,2,..., (AIO)

where 1, = b(1)"'puy and k; = s1; + s + (1) "tuo + b(L) 1 f:(#)'y. Notice that here the
parameters indicate true values and that the properties of the sequence k; are similar to
those of b(1) i + f;(0)'y. In particular, when Assumption 1(b) holds, the sequence Ak; is
absolutely summable. Transforming (A.10) by the filter 1 — pr L yields

Yt — Prye-1 = Zukes + ke — prki1 + uy, t=1,2,..., (A.11)
where ky = 0 and

uw = Xy — pr¥i = Ty — pr& + (pr — Pr)Ti1
= b(L) vy — prvi 1) + T (e — )z 1

= b(L)ilgt + Tﬁl(c — E)l't_l
e

(A.12)

W + T (- &)my.

Note that the above remark made for the sequence Ak; implies that the second sample
moments between Zy; and k; — prk;—; as well as between u; and k; — prk;_, converge to zero
in probability (for the latter, see the justification of (A4.13) of S&L).

We shall demonstrate next that, uniformly in 6,

Dr'W ()W (0)Dr" = diag[Ri : -, Agi(0)Agi(0)'] + 0p(1)

Y Rp(6) + 0p(1), W
where Dy = diag[T"/21,,; : I; 1] and
p | SO HOLY, pbo1,
ph(e)1, h(e)
Here £(b) = o~2Cov(u!?, .. Sul), 1, =[1:---:1) (p x 1) and the other notation is as

before. To justify (A.13), recall that W(0) = [V : Z(6)] where the ith column of the matrix
V consists of y; ; — prys i1 (i = 1,...,p, t = 1,...,T). Thus, a typical element of the
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matrix T71V'V is

T
Tt t;[ytfi — PrYe—i1) Y — PYr—j1]
B T

= T Y [ Zugmitte + r- [ Zam g+ 10-5] + 0,(1)

T
= IU,ET_1Z{Z1 + T_1 Z U—jUt—j + Op(].) (A14)
i=1
T
= 12T 42+ T7 % u®ul?; + 0,(1)
t=
Ly 12h(€) + Cov(u”, ug(i)j).

The first equality in (A.14) follows from (A.11) and the remark made after it. The second
equality is based on the fact that the sample mean of u; is of order o,(1). This can be
established by using (A.12) and well-known properties of stationary and near-integrated
processes, which also imply the third equality. Finally, the stated convergence in probability
is justified by (A.6) and a weak law of large numbers.

Next recall the definition Z(0) = [Z; : Z5(#)] and notice that a typical component of the
vector T-'V'Z, is

T Y Zulyemi — pryi—icl) = T S ZulZ1 it + us—io1] + 0,(1)
= T7'ZZyp. + 0,(1) (A.15)
2 ph(E).

Here the stated conclusions can be justified in the same way as in (A.14). Now, from (A.14),
(A.15) and (A.6) we can conclude that, as far as the ((p + 1) x (p + 1)) upper left hand
corner is concerned, the result stated in (A.13) holds. It follows from (A.8) that the same
is true for the ((k + 1) x (k + 1)) lower right hand corner of the matrix in (A.13). Thus, it
remains to show that T-/2Z,(0)'V = 0,(1). A typical column of this matrix is

T T _
_ _ _ c _
T2 E Zot(O)ye—i — prye—i 1] =T 12 E [Agt(e) - Tgt—l(e) [Ye—i — PrYe—i1] = 0p(1)
t=1 t=1

uniformly in 6. Here, the first equality follows from the definition of Z5(6) (see S&L). The
second one is based on (A.11) and remarks made regarding the properties of the sequences
therein. Thus, we have established (A4.13).

Next note that from (3.7) and (3.4) it follows that

Dr(f—B) = (Dz'W(@)W(@)Dz") 'Dp'W(h)e

N s ) (A.16)
+(Dp'W(0) W (0) Dp') ' Dy W ()¢,
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where ¢ = (Z(0) — Z3(0))[110 : 7] In the latter term on the r.h.s. of (A.16) we have

T-12v'¢ 0,(1)
DFW@Y¢=| T 2zic | = | 0,(1) | (A.17)
Z5(0)'¢ 0,(1)

Here the last two results can be established in exactly the same way as (A.10) of S&L. As
to the first one, note that the components of ( define an absolutely summable sequence
(see the discussion leading to (A.10) of S&L). Then, the desired result is obtained by using
(A.11) and the remarks made below it. It is straightforward to check that the matrix Ry; in
(A.13) is positive definite. From this property and Assumption 1(c) it further follows that
the matrix Rp(f) is positive definite for all # and all T large enough. Thus, (A.13) and
Lemma A2 of Saikkonen & Liitkepohl (1996) yield

(Dr'W(O)W(0)Dr') ™t = Rr'(6) + 0,(1). (4.18)

Using (A.11) and (3.5) it is straightforward to check that T~Y/2V'€ = O, (1) while T-1/2Z/€ =

0O,(1) and Z5(0)'E = O,(1) can be established in the same way as (A.12) and (A.13) of S&L.
Thus, combining (A.18) with (A.16) and (A.17) shows that

TPVIE
T-2Z1€

_ -1

+0,(1). (A.19)

TV2() — b) ]
Tl/Q(ﬂl - Ml)

The definition of the matrix R;; shows that a premultiplication of (A.19) by [, 1} : 1] gives
TY2(p, 1l (b — b) + i — 1) = h(@) T2 Z1E + 0,(1). (A.20)

On the 1.h.s. we have

pelp(b—0) = b(1) g (Shoy b — S5 by)

= —b(1)7 ' (b(1) — b(1))

= —b(1)b(1) " + -
Thus, the Lh.s. of (A.20) equals the Lh.s. of (A.5). Moreover, the r.h.s. of (A.20) converges
in distribution to the r.h.s. of (A.5) by arguments given in Elliott et al. (1996) and in
the proof of Lemma 1 of S&L. Thus, we have proved (A.5) while (A.1) is a straightforward
consequence of (A.19). Finally, (A.2) is trivial while (A.3) and (A.4) are obtained from
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(A.16) - (A.18) and the fact that the smallest eigenvalue of Rr(f) is bounded away from
zero by (A.13) and Assumption 1(c). This completes the proof of Lemma A.1.

If seasonal dummies are included in the model the matrix W (#) is defined as W () =
[V : Zy: Zy : Z5()], where Z3 is the matrix containing the values of the seasonal dummies
corresponding to ¥, ..., yr transformed by the filter 1 — prL. Redefining the dimension of
the identity matrix in the definition of Dr, we still have (A.13) except that Ry, is changed

to
o®%(b) + p21,1, p.h(e)1, A
Ry = pxh(€)1;, h(e) 01,
A 0 B

where A = plim T7'V'Z;, B = plim T~'Z}Z; and the zero matrix results because plim
TV'Z; = 0, as shown in S&L. It is not difficult to check that R;; > 0. Since it is also
straightforward to verify that T-Y2Z4€ = O,(1) and T~Y/2Z4¢ = 0,(1) we have an analog
of (A.19) with the two vectors in the brackets augmented to allow for the estimation of the
coefficients of the seasonal dummies. Premultiplying this new version of (A4.19) by the vector
[11:15, : 1 : 0] shows that we still have (A.20) so that (A.5) holds even when seasonal dummies
are included in the model. According to what was said above it is clear that (A.1) — (A4.4)

also hold and that the coefficient estimators related to the seasonal dummies are consistent.

A.2 Proof of Theorem 1

By the definition of ; and (A.10) one obtains
% = (L)t +b(L)k; +b(L)z; — fig — fut — f,(0)'F

= v+ B(L)u*t + E(L)kt + (E(L) —b(L))xy — fig — firt — ft(é)l’?,

where b(L) is defined in an obvious way and the latter equality is based on the identity
b(L)z; = v;. Now recall that p, = b(1)~'u; and use the representation b(L) = b(1) + b,(L)A
to obtain from the above
5 = vy — (i — b(1)b(1) 1)t + by (1) s + b(L) Ky
+(b(1) = b(1)z1 + (b.(L) — b (L)) Azy — fio — fo(0)'7.

18



From (3.3) we have T~ 2vr % 0B,.(s). Thus, from the above equality, Lemma A.1 and

arguments similar to those used in the proof of Theorem 1 in S&L it follows that

T~ Py = TV upg — T (i — b(1)b(1) " 1) 2 4 0,(1)

% 0G,(s; 7).

Proceeding in the same way as in the proof of Theorem 1 of S&L, it is straightforward to
use the above result to obtain the limiting distribution of the test statistic 7,;. Details are
omitted.

Now suppose that seasonal dummies are included in the model. Then, according to what
was said above about parameter estimation in this context it is clear that the counterpart
of the residual series ¥; obtained in this case satisfies T~/ 217[T5] N 0G.(s;¢) so that the
resulting test statistic has the same limiting distribution as in the model where no seasonal

dummies are included.
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Figure 1: Plots of German log GNP and shift functions (based on AR order 4).
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Figure 2: Plots of German log M1 and shift functions (based on AR order 4).
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Figure 3: Plots of German log M3 and shift functions (based on AR order 4).
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Figure 4: Plots of Polish log Industrial Production and shift functions (based on AR order
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