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Neighborhoods as Nuisance
Parameters? Robustness
vs. Semiparametrics

Helmut Rieder*
University of Bayreuth, Germany

24 September 1999

Abstract

Deviations from the center within a robust neighborhood may naturally be
considered an infinite dimensional nuisance parameter. Thus, in principle,
the semiparametric method may be tried, which is to compute the scores
function for the main parameter minus its orthogonal projection on the
closed linear tangent space for the nuisance parameter, and then rescale
for Fisher consistency. We derive such a semiparametric influence curve
by nonlinear projection on the tangent balls arising in robust statistics.

This semiparametric IC is compared with the robust IC that minimizes
maximum weighted mean square error of asymptotically linear estimators
over infinitesimal neighborhoods. For Hellinger balls, the two coincide
(with the classical one). In the total variation model, the semiparametric
IC solves the robust MSE problem for a particular bias weight. In the case
of contamination neighborhoods, the semiparametric IC is bounded only
from above. Due to an interchange of truncation and linear combination,
the discrepancy increases with the dimension.

Thus, despite of striking similarities, the semiparametric method falls
short, or fails, to solve the robust MSE problem for gross error models.

Key Words and Phrases: Hellinger, total variation, and contamination
neighborhoods; semiparametric models; tangent spaces, cones, and balls;
projection; influence curves; Fisher consistency; canonical influence curve;
Hampel-Krasker influence curve; differentiable functionals; asymptoti-
cally linear estimators; Cramér—Rao bound; maximum mean square error;
asymptotic minimax and convolution theorems.
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1 The Semiparametric Setup

We need to set up the standard semiparametric framework, which employs some
family Q in the set M of all probabilities on some sample space (2, 5),

Q={Qp,|0€0, veH} C M (1.1)

The parameter 6 of interest is finite (%-)dimensional, out of some open set
O C R*, whereas v acts as nuisance parameter, which, for each 6, ranges over
some set Hy; typically, subsets of some infinite dimensional function spaces.
The observations zi,...,T, ~ (g, are assumed to be independent identically
distributed. Estimators of 6 may be any functions S,:Q" — R¥ which are
product- B, Borel-B¥ measurable. Let us fix (6g,0), the true but unknown
values of main and nuisance parameter.

In this generality, optimality results for the estimation of 6y can only be
derived in an approximate way, that is, asymptotically as the sample size n
tends to infinity. Moreover, to obtain meaningful results at all, estimators, which
now are estimator sequences S = (S,,), have to be judged locally about (6y,vp).
Subsequently, this fixed parameter will be omitted whenever feasible. Thus, we
put Qg,,,, = @, and denote expectation and covariance under ) by E and C,
respectively. Also the spaces Lo, L5, and L, of square integrable real-, R -
valued, and essentially bounded functions, respectively, refer to @ = Qg,,v, -

For the local asymptotics a certain smoothness of the parametric model
is required, in the sense of mean square differentiability at (6q,v0) of square
root densities: There exists some function A € L5 —the scores function for 6
at (8o, v0)—such that for each a € R¥ and for each function g € 9 Q there is
some path ¢ +— v, € Hyp 44 so that, as t = 0 in R,

V dQ90+ta,w = (1 + %t(aIA + g)) dQﬂo,Vo + O(t) (12)

In this context, the tangent set Q = 0,09 + 92 Q of the model Q at (6o, vq)
enters, where 8;Q = {a’A | a € RF} is the tangent space (linear, closed)
for the first parameter component, and 0,9 C Lo denotes the tangent set
for the nuisance component; all tangents in either class 0,Q necessarily have
expectation zero. The covariance Z = C(A) is assumed of full rank k.

As for complete technical details, maybe in slightly different notations, the
reader please consult standard textbooks on asymptotic statistics such as Bickel
et al. (1993; chapters 2-3), Rieder! (1994; chapters 2-4), van der Vaart (1998;
chapter 25). This recommendation also holds for the following notions, basic
properties and results, to be summarized in this section.

Influence functions or, in robust terminology, influence curves for model Q
at (6o, vp) are given by

peLs, Ep=0, E¢YAN =1, Eyg=0VYgedQ (1.3)

L HR, subsequently
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where [ denotes the k x k identity matrix. The set of all influence curves for
model Q at (o, vp) is denoted by ¥ = ¥y, .

On the one hand, influence curves go with functionals T:Q — R* which
are differentiable, with respect to model Q at (6o,10) in accordance with (1.2),
and Fisher consistent for the main parameter, such that

T(Qog+taw,) =T (Qoo o) + Evb(a'A + g) t + o(t) = 6y + ta + o(t) (1.4)

On the other hand, influence curves go with asymptotically linear estimators.
These are estimators S = (5,) that have an expansion

Vi (Sn—60) = 1N Y (@) +ogn(n) (1.5)

where the remainder tends to zero in probability, under the sequence of prod-
uct measures Q™. Such estimators are asymptotically normal in accordance
with (1.2): Setting Qn(a,9) = Qoo+tna,m, for t, =1/y/n, their distributions

under Q%(a,g) converge weakly as n — oo, for every a € R* and g € 8,0,

V(S — 60)(Q7(a, 9)) —— N (a,C(¥)) (1.6)

Given any ¢ € U, at least locally valid constructions to achieve (1.4) and (1.5)
are T(M) =6+ 2 [¢/dQVdM and S, =6+ 1/n Y t(z;).

For either tangent set 0,Q let 1in 8,Q and clin 0, Q denote the linear span,
respectively the closed linear span, of 8,Q in Ly. Thus, clind; Q@ = 6,9, and
clinf0Q = 0,9 + clind,Q as dimd; Q is finite. Introduce m,:Ly — clind,Q
as orthogonal projection on clind,Q, and TL,: L¥ — (clin 8,Q)* as orthogonal
projection in the product space; then II, = (7., ..., m)", acting coordinatewise.

In view of (1.3), it is easy to see that the projection II(1)) on (clin 3Q)*
must be the same for all ¢ € ¥ —the shortest, or canonical, influence curve p.
In fact,

Oy) = o= I (A-Th(A) Veer (1.7)

where J = C(A — II(A)) is called the Fisher information of model Q for the
parameter 6 at (6o,vp). Nonsingularity of this covariance J is equivalent to
the existence of influence curves (that is, ¥ # (), which we want to assume).

Remark 1.1 [adaptivity] With the nuisance parameter v fixed to vy, the
vy -section Q,, of model Q is a model without nuisance parameter,

Qu, ={Qo |0€60} (1.8)

satisfying (1.2) with 9:9,, = {0} and 8Q,, = 8 Q. Consequentially, the
canonical influence curve and Fisher information of Q,, at 6y are given by,
respectively,

o=I7'A, I=C(A) (1.9)
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The following bound of 7 by Z holds in the positive definite sense,
Cl@=T"'<J"=Clo) (1.10)

with equality iff ¢ = ¢, which is the case iff IIo(A) = 0. This is the case
of adaptivity. However, adaptation must still be achieved by some suitable
estimator construction. Y/

Remark 1.2 [bounded influence curves] Existence of bounded ICs ¢ € ¥,
which may become interesting for robustness, is equivalent to the following
condition,

a'A ¢ clin(8>Q + constants) VaeRF a#0 (1.11)

where clin denotes the closed linear span in Lj ; see Shen (1995; Theorem 1).
In the finite dimensional case, where 8,Q = {b'A | b € R*} with the scores
function A € L§ for v at (fg,vp), condition (1.11) is equivalent to full rank
k 4 £ of the total Fisher information matrix Z = C(A’,A’). 1In this case,
explicit constructions have been provided by HR (1994), Remark 4.2.11 and
5.5(8), 5.5(9), setting D = (I, 0xx¢) there. Y/

Closely related to the orthogonal projection (1.7) of influence curves leading to
the canonical IC p is the Cramér—Rao bound for the covariance,

CY)>T ' =Clo) Vyel¥ (1.12)

in the positive definite sense, with equality iff ) = p. In view of (1.6), this bound
concerns the asymptotic covariance of asymptotically linear estimators. Thus,
the asymptotically linear estimator with canonical influence curve ¢ at (6o, vp)
is the asymptotically most accurate to estimate 6, in model Q.

That this optimality is not restricted to estimators which are asymptotically
linear, but need to fulfill only a regularity condition weaker than asymptotic
linearity, or may even be arbitrary, measurable, is the subject of the convo-
lution and asymptotic minimax theorems, respectively; confer, for example,
Bickel et al. (1993; Theorem 3.3.2), HR (1994; Theorems 4.3.2, 4.3.4), van der
Vaart (1998; Theorems 25.20, 25.21, Lemma 25.25).

Remark 1.3 [nonlinear projection] These theorems require some structure of
the tangent set 0Q, to be a linear space or at least a convex cone. Anyway, the
projection is generally that on the closed linear space clin 9Q.

One exception is Theorem 9.2.2 of Pfanzagl and Wefelmeyer (1982) about
asymptotically median unbiased estimators, in terms of the projection on a
closed convex cone 0Q. No projection of influence curves on any tangent set
appears in Theorem 4.1(A) of HR (1981b), which provides another nonstan-
dard asymptotic minimax bound. Both results use the Neyman-Pearson lemma
(classical, respectively for capacities—infinitesimal gross error neighborhoods),
some pseudo loss functions (confidence probabilities), and are restricted to the
estimation of a real valued functional, respectively one real parameter. Y/
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2 The Infinitesimal Robust Setup

In robust statistics, we start with an ideal model P = { Py | § € © } which is
smoothly parametrized by some finite (k-)dimensional parameter 6 out of an
open subset ® C R¥; that is, P is some model as assumed in Section 1 but
without nuisance parameter. Since we do not believe in such a model P strictly,
we enlarge its elements Py to certain neighborhoods U(6;r) C M of radius 7.
Then the i.i.d. observations, under the hypothesis 8, may be allowed to follow
any law @ € U(6;r), while still  has to be estimated. Thus, a neighborhood
model Q is obtained,

0={Q|6€0,QecU6;r)} (2.1)

Model Q is clearly semiparametric: The deviation @ — Py of @ € U(8;7) from
the ideal Py has entered as nuisance parameter v, ranging over the sets of
differences Hy = {Q — Py | Q € U(6;7) }, where Q = Qg with v € Hy. In
particular, the ideal model P is the vg-section of model Q for vy = 0.

Remark 2.1 [nonidentifiability] If one does not start with a true 6, but the
real law @), and seeks 6 depending on @), one runs into the identifiability prob-
lem: The equation @ = Q,0—p, = Py + @ — Py has multiple solutions 6. This
is so already for members of the ideal model @ = P, € U(#;r) with ¢ close to 6
(if, as usual, the parametrization is continuos relative to the neighborhoods).
This problem has been dealt with by means of functionals that are Fisher
consistent at the ideal model and extend the parametrization to the neighbor-
hoods. Actually, both approaches lead to the same optimally robust influence
curves and procedures—once the choice of functional is subjected to robustness
criteria; confer HR (1994; preface, subsection 4.3.3). Y/

We specify the neighborhoods U(#;r) to be balls around Py of radius r in
Hellinger or total variation distance, or contamination neighborhoods,

Un(0;r) ={Q e M| d(Q,Py) <1} (2.2)
UC(G;T)={Q=(1—r)+Pg+(1/\r)M|M€M} (2.3)

where the Hellinger and total variation metrics dp and d, are given by

2di<Q,P):/|¢d_Q—¢d_P|2, ZdU(Q,P)=/IdQ—dP| (2.4)

Let us fix g € © and vy =0, and write P for the previous Q = Qg,,v, = Pa, -
Towards the differentiability (1.2) of the neighborhood model Q. at (6o,0),
depending on the type of neighborhoods U, (6y;r), we introduce the following
balls G« = G.(0p;7) as candidate tangent sets 92Q.,

Gn={g€Ly|Eg=0,Eg*<8&?} (2.5)
Gy={9€Ly |Eg=0,Elg|<2r} (2.6)
Go={g€Ly|Eg=0,g>-r} (2.7)
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which first appeared explicitly in Bickel (1981). Note that G. C G, C G. — G..
In the following, the scores function A is that of the ideal model P, for 8 at 6.

Proposition 2.2 The tangent sets of the neighborhood model Q. at (6y,0)
are, for x = h,v,c,

61Q*:{alAla€Rk}; 62Q*:g*; aQ*=8IQ*+62Q* (28)

PROOF Invoke bounded approximations A® of A such that EA®) = 0 and,
as t = 0, sup|A®| = o(1/t) and E[A® —A|> - 0. Given a € R* and any
bounded g € G, , employ the path v, = tg in defining measures @; by

dQ; = (1 +t(a'A® + g)) dP (2.9)

Then mean square differentiability (1.2) is satisfied, and these probabilities are
members of the neighborhoods U, (g + ta;tr), at least in the following entirely
acceptable sense,

du(Qt, Pags1a) < 17+ (1) (2.10)

in the cases * = h,v. In the case * = ¢, there exist approximations ]390+ta
of Pyyttq, such that dy(Pyytta, Pog+ta) = 0(t) and

Qq € U.(6o + ta; tr) (2.11)

for the tr-contamination ball (7'6(00 + ta;tr) around 1390+ta; namely, 1390+ta
with P-density 1+ t,.a'A® | t, =t/(1—tr).

In either case, we pass to the closure of G, N Ly, in Ly, which is G, . The
technical details needed in this proof may be found in HR (1994): Remark 4.2.3,
Lemma 4.2.4, Lemma 5.3.1, and proof to Theorem 5.4.1 (a). Y/

The tangent sets G, are closed convex, and the smallest cone and linear space
containing either G, is already the full tangent space Ly N {E =0}, provided
only that » > 0. Consequentially, A — IIo(A) = 0 in (1.7); in particular,
adaptivity fails drastically.

3 The Semiparametric Influence Curve

In the robust setup, we therefore modify definition (1.7) of canonical influence
curve, replacing 2 by the nonlinear projection mo: Ly — 02Q4 on 02Q4 = Gu
itself. Correspondingly, II, is replaced by IIy = (Fa,..., 7)1 LE = (82Q.)%,
defined coordinatewise. Thus, we obtain the following function g, , which we
call the semiparametric influence curve,

. = K~1(A — T (A)) (3.1)
with scaling matrix

K =E(A - T(A))A’ (3.2)
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The definition of g, requires that det K # 0. Rescaling of A — II(A) by K
ensures that Eg,A’ = I (Fisher consistency). Now K # C(A — IIy(A)), since
residuals are no longer orthogonal to the approximating ball.

Remark 3.1 The modified projection recipe (3.1)—(3.2) seems intuitively plau-
sible but is based only on analogy. The semiparametric influence curve has not
been derived as—but may only be checked against—a mathematical solution to
some suitable extension of the Cramér—-Rao bound, or convolution and asymp-
totic minimax theorems, in the semiparametric, respectively robust, setup with
full tangent balls. Y/

The following approximation lemma is well-known and will be applied to the
balls G = G, , the space X = L, and the coordinates x of A; then § = m2(A;).

Lemma 3.2 Let G be a nonempty closed and convex subset of some Hilbert
space X, and x € X . Then the minimum norm problem

|z — g|* = min! geqG (3.3)
has a unique solution § € G, which is characterized by
(x—glg—9) <0 Vge@ (3.4)

In the sequel, Z = C(A) = (Z;;) and 6 =Z~'A denote Fisher information (of

full rank k) and the canonical influence curve, of the ideal model P at 6.
We now determine the semiparametric influence curves g, 0,, 0. for the

Hellinger, total variation, and contamination neighborhood models, respectively.

Theorem 3.3 [Hellinger model| The semiparametric IC gy, exists iff

8’!‘2 < minjzl,m,k Ij’j (35)

And then
gh=0=1T"A (3.6)

PROOF In the case £ = 1 we have M2 = vA with v = positive root of the
minimum of 1 and 87%/Z. Indeed, by Cauchy-Schwarz, for every g € Gy,

(A—~Alg) = (1 —7){Alg) < (1 —7)VBTY2 = (1 —y)vT = (A —yA|yA) (3.7)

For general k > 1, this implies that A — II;(A) = DA and K = DT with
matrix D = diag(1 —;), where 0 <; <1, and v; =1 iff Z;; < 8r2. Y/

Theorem 3.4 [total variation] The semiparametric IC g, exists only if

2r <minj—y . E|A] (3.8)
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And then A") = A —TI,(A) has coordinates
A;T) =7 VA A (3.9)
where the clipping constants v; < 0 < j are uniquely determined by
By, — A =7 = B, — 1) (3.10)

ProOOF Obviously, A; —T2(A;) =0 iff E|A;| < 2r. Thus assume (3.8).

In case k = 1, in order to minimize E(A — g)? for g € G,, we set up a
Lagrangian E((A —g)® + 2ag+28|g|) with some unspecified real multipliers,
and try to minimize the integrand I(g) = (A —g)?+2ag+23|g| at each point.

A minimizing value § = 0 means that A2 < (A — g)2 + 2ag + 23g for all
numbers g > 0; that is, A —a < 3, and A% < (A — g)2 +2ag — 283g for all
numbers g < 0; that is, A — a > —3. This is the case when A — g =A.

If g > 0, then the derivative dI(g) =0 gives A—g=a+ 8. If § <0,
dI(g) =0 gives A—g = a— (. These are the cases when A—a > (3, respectively
when A —a < (.

Altogether, A—g=(—-38)VA—a)AB +a=(a—B)VAA (a+ ) seems
to be the necessary form of §=A —§.

Now define § = 7' VA A" by means of the unique solutions 7' < 0 < 4"
of E(y —A)y =r = E(A — ")+, which is a matter of continuity (dominated
convergence theorem), monotony (strict), and the intermediate value theorem.
We shall verify that this ¢ minimzes E ¢? subject to Eq=0, E|A —¢q| < 2r.

By the definition of §, E(A — ¢)§ < Y"E(A — q)+ — 7' E(¢ — A)+, which is
less or equal 7 (7" —v') = E(A —§)G- Thus E(—§)(¢—§) < 0, which is (3.4)./y

Theorem 3.5 [contamination] The semiparametric IC g, exists only if
r < —max;—q, . infp A; (3.11)
And then A = A —TI,(A) has coordinates
A = (A +7) Ay (3.12)
with clipping constant o; > 0 uniquely determined by
0=E\j+r)Aay (3.13)
In (3.11), infp denotes the P-essential infimum.

ProoF Obviously, A; —7T2(A;) =0 iff A; > —r a.e. P. Thus assume (3.11).

In case k = 1, in order to minimize E(A — g)? for g € G., we pass to the
equivalent problem of minimizing E ¢ subject to Eq =0, ¢ < A+r, for which
we minimize a Lagrangian Eq? — 2aEq = E(q — a)? + constant, subject to
g < A+ r. Doing this pointwise, the necessary form seems ¢ = (A +7) A a.
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Now consider the function f(s) = E(A +r)As for s > 0. It is monotone,
continuous [dominated convergence applies since —(A+7)_ < f < (A+7)4+],
and has limits —E(A+7)_ <0 and » >0 at 0 and oo, respectively. Thus f
has a zero a > 0, which we use to define § = (A+7)Aa. (Only in case r =0,
may « be nonunique, but then § = A.) By construction, ¢ satisfies the side
conditions Eq =0, ¢ < A+r.

To prove § optimal, let g € L2 be any such function. Then ¢ < Gg=A+r
as soon as § < a. Thus (a — §)(a — q) is always greater or equal to (a — §)2.
Consequentially, E(—§)(¢ — §) = E(a — §)(¢ — a+ a — §) < 0; which is (3.4).

Remark 3.6 In Theorems 3.4 and 3.5, condition (3.8), respectively (3.11), en-
sures that EA;T)AJ‘ > 0. This may be seen by rewriting EA;T) Aj as E |A§.r)|2
plus (v} —7j), where r(vy; —;) > 0 unless r = 0, respectively as E |A§,’“)|2
plus EA;T) (Aj+r— A;T)) , where Aj +r < aj ae.P onlyif r =0.

Whether condition (3.8), respectively (3.11), for dimension k¥ > 1 already
implies that det /IC # 0, hence existence of 9, , respectively of g., is unclear.

4 The Robust Influence Curve in Comparison

We shall prove, respectively disprove, the semiparametric recipe (3.1)—(3.2) by
comparison of results. How does the semiparametric influence curve 9, compare
with the robust influence curve 7, that, by definition, minimizes asymptotic
maximum mean square error of asymptotically linear estimators? The maxi-
mum is evaluated over shrinking neighborhoods U, (6y;r/z/n), as the sample
size n tends to infinity, with starting radius r —henceforth, radius r—fixed.
For asymptotically linear estimators, this maximum asymptotic MSE naturally
extends the covariance criterion employed in the Cramér—Rao bound to the
infinitesimal robust setup.

Remark 4.1 An extension of asymptotic maximum MSE over neighborhoods,
from asymptotically linear to arbitrary estimators S = (S,,), employing a risk
such as
lim lim limsup sup  sup /b AR, ?dQ™ (4.1)
b=00 62 nyoo |¢|<c QEU(tir)
where Uy, (t;7) = Ui (6o+t/\/n,r/\/n) of fixed radius r, and R, = /n (Sn—b6o),
has not been achieved. Theorem 4.1(A) of HR (1981b) is restricted to one sided
confidence probabilities, dimension k& = 1, and total variation, contamination
neighborhoods (for which least favorable testing pairs exist).
Therefore, except in this special robust setup, our comparison of semipara-
metric and robust ICs is tied with asymptotically linear estimators. Y/

For the estimation of g, over shrinking neighborhoods U.(6¢;7//n ), radius r,
we consider a weighted MSE with nonnegative bias weight . In the case of
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estimators of 8y that are asymptotically linear with influence curves ¢ at 6y,
the maximum asymptotic weighted mean square error is

MSE.(¢; 8,7) = E[¢|” + Br’w; () (4.2)

As for the derivation of this risk with weight 3 = 1, the bias terms w.(¢), and
the minimization of MSE,(¢; 8,r) for ¢ € ¥, which determines the robust
IC 7. uniquely, please confer HR (1994; chapter 5, subsection 5.5.2).

The influence curves ¥ = ¥y, , and asymptotic linearity of estimators, are
defined with respect to the ideal model P at 6.

4.1 Coincidence in Hellinger Model

Hellinger bias, according to HR (1994; Proposition 5.5.3), is given in terms of the
maximum eigenvalue of the covariance, w? (1)) = 8 maxevC (). In view of the
Cramér—-Rao bound (1.12), therefore, Hellinger risk MSE(.; 3,7) is minimized
by the canonical IC (1.9): ¢ = Z-!A, for every 3,r € [0,00). Theorem 3.3
thus yields the following coincidence.

Theorem 4.2 Under condition (3.5): 8r% < minj—,. j Z;; of its existence,
the semiparametric IC gy, is the robust IC ny, ,

éh = é = I_IA = 77h (43)
minimizing MSE(.; 8,7), for every 8 € [0,00).

The coincidence, in principle, justifies the semiparametric recipe. The value
of this result, however, is somewhat diminished since Hellinger neighborhoods,
in certain respects, are deemed too small; confer Bickel (1981; Théoreéme 8)
and HR (1994; Example 6.1.1). The gross error neighborhoods (total variation,
contamination) are more suitable for robustness.

Remark 4.3 Identity (4.3) implies equality in (1.10), with the robust IC 7
replacing the canonical IC p, which might suggest adaptivity. However, due to
bias, covariance alone does not define the right risk in the Hellinger model Qp,
which is why MSEy, is used. But MSEy,(n;8,7) = trZ-' +88r? maxevZ~! is
clearly larger than trZ—! = MSE(9;3,0) (if only SBr > 0). Despite of 5, = ¢
attaining both sides, in models Qp and P, respectively, strict inequality holds;
that is, Hellinger neighborhoods do not go for free. Y/

4.2 Relations for Total Variation

Case k = 1 Total variation bias in one dimension, according to HR, (1994;
Proposition 5.5.3), is w,(¥) = supp® — infp1p. The robust IC 7, minimiz-
ing MSE,(.; 3,7) is given by HR (1994; Theorem 5.5.7), with 3r? replacing
there. Thus,

n=¢cVAANC (4.4)
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for any numers ¢’ <0 < c¢" and A such that En, =0, En,A =1, and
Bri(c" —c)=E(c — AN), (4.5)
Theorem 4.4 Assume that
0<r <EAL (4.6)

Then the semiparametric IC g, is the robust IC 7, minimzing MSE,(.;3,r),
iff the bias weight 3 = (3(r) is chosen such that

Bh=r(y" =) (4.7)
where v' = v'(r) < 0 < ~"(r) =" are the solutions to (3.10), that is,
B(y = A)y =r = B(A =),

PrOOF Theorem 3.4 supplies g, = Ay'VAA~" with clipping constants ~',~v"
determined by (3.10) and rescaling constant A~! = K > 0 (Remark 3.6).
Thus g, attains form (4.4) with ¢/ = 4'A and ¢" = 4" A; in particular,
Bri(c — ') = Bri(y" —4")A. Since Ar = AE(y — A); = E(¢ — AA),
by (3.10), condition (4.5) is the same as (4.7). /i

This result justifies the semiparametric recipe if one accepts bias weight (4.7).
Bias weight 8 = 1, in view of (4.1), is the most natural choice. Then the
semiparametric IC g, minimizes MSE,(.;1,r), since it equals the robust IC 7,
for this radius rq, iff

rit =7"(r) = (r1) (4.8)

Let us keep bias weight 8 = 1. Then the semiparametric IC 5, defined for
radius r minimizes the risk MSE,(.; 1, R(r)) for another radius R(r) given by

R (r)=r/(+"(r) ='(r)) (4.9)

since g, is of form (4.4) and (4.5), hence is the robust 7, , for this radius R(r).
Also, by (4.7), it holds that R(r) = r+/8(r) , and (4.8) means that R(r1) =r; .

Example 4.5 For the standard normal location model Py = N'(4,1), Figure 1
shows the bias weight ((r) and the radius R(r) defined by (4.7) and (4.9),
respectively. The function B(.) has singularities at 0 and the right bound-
ary, which is 1 /\/2_77 = 0.3989, and attains its minimum value Bgi, = 4.8662
at 7min = 0.1668 . In particular, no radius r; for which 3(r;) =1 exists.

The radius R(r) rises from 0 towards oo at 1//27 . Since R(r)/r = \/B(r)
is always larger than y/fBmin , the semiparametric IC g, safeguards against more
than double the amount of contamination assumed in its definition (3.1)—(3.2),
and, as B(r) > Bmin, is typically even more pessimistic. /i
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Figure 1: Bias weight 8(r) and radius R(r) versus radius 0 < r < 1/A/2x , for total
variation neighborhoods U,(8,7/\/n) about the ideal location model P; = N'(6,1).

Confidence risk The asymptotic maximum risk considered in HR (1981b),
instead of mean square error, and bounded from below for arbitrary estima-
tors (Sy,), is based on right and left confidence probabilities as follows,

lim limsup sup sup Q"(R,<-7)VQQ"(R,>T) (4.10)

€700 m—oo |t[<c QEU(tir)
where U, (t;r) = U, (6o +t/\/n,r/\/n) of fixed radius r, and 7 € (0,00) is some
interval half-width. As already in (4.1), the standardization R, = v/n (S, — o)

is needed only for the description of the asymptotic minimax estimator as an
asymptotically linear one.

Theorem 4.6 Assume (4.6): 0 <r < EAy. Then the semiparametric IC g,
is the robust IC n, iff half-width

r=7(r)=1 (4.11)
is employed in the confidence risk (4.10).

PRrOOF According to HR (1981b; Theorems 4.1(A)—4.3; 1980; Theorem 3.1),
for radius
r<tBEAL (4.12)

the estimator (S,) minimizing risk (4.10) is asymptotically linear at 6y with
IC 7, of form (3.9) and (3.10)—but with r in (3.10) replaced by r/7.

Thus, the semiparametric IC g, is the robust IC 5, iff 7 =1 in risk (4.10).
And then, condition (4.12) on r > 0 is the same as (4.6). /i
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Case k > 1 Exact total variation bias for more than one dimension is rather
unwieldy, wy () = supj,|—; supp €'y —infp e'¢), where sup|,—; extends over all
unit vectors in R¥; confer HR (1994; Proposition 5.5.3). Approximate versions
w2.o(¥) and wy;e0(1) are defined by the Euclidean and sup norms in R* of
the vector of coordinate biasses wy(1);), respectively, which bound the exact
bias from below and above: wy,eo < wy < Wy < vk Wy - According to
HR (1994; Theorems 5.5.6-7) on one hand, the robust ICs 1, minimizing either
risk MSE,,s(.;8,7) have the coordinates

ni =c;VAANC (4.13)

with any numbers ¢ < 0 < ¢] and row vectors A; € R* such that the side
conditions En, =0 and En,A’ =l are met. Moreover, in case s = 2,

Br? (cf =) =E(c; - AjAj)Jr (4.14)
whereas in case s = oo, all differences ¢}/ — ¢} are the same,

/67'2(C;-I — C;) =E (Cll — A1A1)+ + -+ :E(C;C — AkAk)+ (415)

By Theorem 3.4 on the other hand, with clipping constants v} < 0 < v} defined
by (3.10), and (A%%)~! = K given by (3.2), the semiparametric IC g, has the
coordinates

0j =AM Y VAL A+ AR VAR A (4.16)

Thus, the order of clipping and linear combination is interchanged in g, and 7, .
So g, resembles, but does not exactly match, the robust 7, , therefore does not
minimize either risk MSE,.s(.;8,7), s = 2,00, if only fr > 0.

However, the bias terms w,,;; are only bounds for the exact bias w, , while g,
ought to be compared with the minimizer of the exact risk MSE,(.;3,r).
And, at least, g, has finite biasses wy;s(8y) and wy(dy), hence finite risks
MSE,;s(0v; 8,7), and MSE,(dy; 8, r).

The relative increase of risk of the semiparametric IC g, over that of the
robust IC 7, remains to be investigated numerically—even in one dimension
when 3 # B(r). A suboptimal g, may still be useful.

4.3 Discrepancy for Contamination

Contamination bias is w.(¢)) = supp |[¢|, the Lo -norm. The robust IC 7,
which minimizes MSE.(.;3,r), by HR (1994; Theorem 5.5.6), is the Hampel—-
Krasker influence curve,

b
e = (AA —a)w, w=min{1, m} (4.17)
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with a particular bound, namely, the solution b to the equation
prib=E (|AA —a|=b) (4.18)

which may be nonunique only if 8r =0 (in which case 7. = 9).
According to Theorem 3.5 on the other hand, the semiparametric IC g. has
the coordinates

o = AP (A +r)ANag+ -+ AP (A + 1) Aoy (4.19)

with upper clipping constants «; which are defined by (3.13), and (A4%%)1 =K
given by (3.2).

Thus, in general, g, is unbounded so that the risk MSE.(g.; 3,7) becomes
infinite, if only Br > 0 (the only interesting case).

Since in robustness respects, contamination and total variation have always
turned out very similar, it is surprising that the semiparametric recipe (3.1)
and (3.2) may give reasonable results for one model but not the other. The
intuitive convex combinations, however, have been used in robust statistics from
the start, prior to any other type of neighborhoods.

5 Unresolved: Robust Adaptation

In the general semiparametric model of Section 1, given the canonical influence
curves (1.7), one g, for each parameter § € ©, v € Hy, the construction
problem is to obtain an estimator (S,) that, for each § € ©® and v € Hy, is
asymptotically linear at (6,v) with prescribed IC gg,, .

Such estimators are automatically nonrobust in the same setup—asymptotic,
infinitesimal—in which their efficiency is obtained.

For example, consider the model dQy . (z) = v(z — ) dz with location pa-
rameter § € R and nuisance parameter v any symmetric Lebesgue density of
finite Fisher information of location, Z, = [AZ(z)v(z)dz, A, = —i/v; then
Ay (z) = Ay(x — 0). In this model, adaptivity IIs,(Ag,,) = 0 holds by rea-
sons of symmetry. Adaptive estimators have been constructed by Beran (1974)
and Stone (1975) and, at each (6, v), have expansion (1.5) with influence curve
00.,(z) = 0p,,(x) = Z,;'A,(z — 0). Hence, under @5, they achieve normal
limit law N(0,Z,1), as if v was known.

The assumption of exact symmetry, however, is very strict. In practice,
one would accept a distribution function as symmetric if it only is in a small
neighborhood of an exactly symmetric one. Such nonparametric hypotheses of
approximate symmetry have been formulated in HR (1981 a; section 3). If Qy,,
is thus enlarged to a shrinking neighborhood U.(8,v;r//n), while still 6 has
to be estimated, the adaptive estimators \/n (S, — 6) are driven off from their
limit A(0,Z, ') by some bias up to £r w.(gds,) which for gross error neighbor-
hoods (* = v,¢) may become infinite, if only A, = —v/v is unbounded.
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This observation obviously extends to the general semiparametric model if
the canonical influence curve gy, is unbounded.

Other robustness aspects, not considered in this paper, are breakdown point
and qualitative robustness. Possibly related is Klaassen’s result on the nonuni-
form convergence of adaptive estimators in the symmetric location case; confer
Bickel’s (1981) presentation. Pfanzagl and Wefelmeyer (1982; Proposition 9.4.1,
Corollary 9.4.5) have similar results, which connect the nonuniformity with dis-
continuity of the Fisher information. On the contrary, it is easy to see (since the
Lindeberg condition may be verified uniformly) that Huber’s (1964) minimax
location M-estimate tends to its normal limits uniformly on the corresponding
symmetric contamination neighborhood.

In view of all this, it seems desirable to construct estimators not with the
canonical influence curves gy, but robust influence curves 7y, instead, sacri-
ficing a few percent efficiency under @y, to gain robustness against deviations
from Qg -

A first step in this direction has been made by Shen (1995; Theorem 2)
who derives a bounded influence curve 7y, = 7, minimizing E[¢|* among all
influence curves ¢ € ¥, as defined in (1.3) for a general semiparametric model,
subject to || < sup |7.|. In some sense, the result may be viewed an extension
of HR (1994; Theorem 5.5.1), from finite to infinite dimensional nuisance tangent
space 02Q (of a certain kind; namely, an Lj-space of functions, expectation
zero, and measurable with respect to a sub- o -algebra of B).

The construction problem has not been solved. Towards such a robust adap-
tation, consistency of kernel density estimators has to be investigated over
shrinking neighborhoods U, (8,v;r/\/n), as estimators of the density v and
scores A, = —i/v belonging to the ideal center measure (g, . For these pur-
poses, the quantities v and A, need not be estimated over the full range but
only where |A,| < some bound.

Acknowledgement I thank Peter Ruckdeschel for plotting Figure 1.
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