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Quantile regression

Pavel Cizek
October 13, 1999

Quantile regression (QR) is a statistical technique that allows to estimate
conditional quantile functions (e.g., the conditional median function) and ob-
tain statistical inference about them in much the same way as classical regression
methods based on minimizing sums of residuals facilitate estimation of condi-
tional mean functions.

This chapter helps you to understand the main principles of quantile regression
and demonstrates how to use XploRe for quantile regression analysis. As it
is impossible to provide a profound introduction into this area here, we refer
readers for further information to bibliography.

Before proceeding to the next section, please type at the XploRe command line
library("metrics")

to load the necessary libraries. Library metrics automatically loads xplore,
kernel, glm, and multi libraries.

1 Introduction

The purpose of the classical least squares estimation is to answer the question
“How does the conditional expectation of a random variable Y, E(Y'| X), depends
on some explanatory variables X ?,” usually under some assumptions about the
functional form of E(Y'| X), e.g., linearity. On the other hand, quantile regression
enable to pose such a question at any quantile of the conditional distribution.
Let us remind that a real-valued random variable Y is fully characterized by its
distribution function F(y) = P(Y < y). Given F(y), we can for any 7 € (0,1)
define 7th quantile of Y by

Qy(r) =inf{y € RIF(y) > 7}. (1)

The quantile function, i.e., Qy(7) as a function of 7, completely describes the
distribution of the random variable Y. Hence, the estimation of conditional
quantile functions allows to obtain a more complete picture about the depen-
dence of the conditional distribution of ¥ on X. In other words, this means
that we have a possibility to investigate the influence of explanatory variables
on the shape of the distribution.

Probably the simplest presentation of the above outlined idea is possible within
the framework of the classical two-sample treatment-control model. There are
two groups—one control group that is left without treatment, and the other
one to which a particular treatment is applied—and the researcher is, of course,
interested in the effect of the treatment on the performance of individuals.
Doksum (1974) showed that the treatment effect can be uniquely defined by



F(z) = G{z + A(z)} as “horizontal distance” A(z) between the original distri-
bution, F, that describes the control group and the new one, G, that describes
individuals after treatment. Denoting, for the sake of simplicity, F~1,G~! quan-
tile functions corresponding to the distribution functions F, G, respectively, we
get A(x) = G '{F(x)} — z, and hence for 7 = F(z) the quantile treatment
effect can be expressed as

§(r) = MF(1)} =G (1) = F~(n),

which describes the true effect of treatment at every quantile of the original
distribution F.

On the estimation of the quantile treatment effect, we demonstrate now one im-
portant difference between the traditional expectation-oriented approach and
quantile regression. If we neglect for now eventual difficulties related to the
estimation of such models in general, the outlined treatment-control model can
be easily described and estimated with the help of the treatment dummy D;
that is zero for the members of the control group and one for the rest of obser-
vations. Let us consider as an example a part of vitaminc data which contains
observations on the effect of a single 600 mg dose of ascorbic acid versus a sugar
placebo on the muscular endurance (measured by repetitive grip strength trials)
of fifteen male volunteers in the first round (see Data Sets).

1. Starting with the standard linear regression model

E(Y;|Di) =a+4d-D;, (2)
the least squares method estimates § by
6= Z Yi — Z yi=Ep Y —Eg Y, 3)
{i,D;=1} {i,D;=0}

where F,,G, denotes empirical distributions of samples {y;|D; = 0},
{yi|D; = 1}, respectively. Numerical results for the given example are
presented in table 1.

o) 0
4.514 | -2.197

Table 1: The OLS estimate of model (2). @ qr01.xpl

2. In the quantile regression framework, the model is for a given 7 € (0,1)
characterized by
Qv:(7|D;) = a(7) + 6(7) - D; (4)

(note that the parameters are now functions of 7). It is possible to derive
that the quantile regression estimate of §(7) is given by
6(r) = Gl (1) = 7N (), ()

n n

where -1, G1 denotes empirical quantile functions for samples {y;|D; =
0}, {yi|D; = 1}, respectively. Numerical results for several choices of 7 are
presented in table 2.



T | a&(r) | o(r)
0.1 | 1.80 | -0.63
03| 2.79 | -1.20
0.5 | 5.26 | -2.78
0.7 | 5.82 | -3.18
0.9 6.99 | -3.12

Table 2: The QR estimate of model (4). @ qr02.xpl

Comparing given two methods, it is easy to see that while the traditional es-
timation of the conditional expectation provides only information about the
difference of averages between groups, see (3), the quantile regression allows to
identify the effect of treatment at various quantiles. Importance of this fact
emerges once we examine carefully tables 1 and 2 (regression lines are also de-
picted in figure 1). Whereas the first one tells us just something about the
average effect of treatment, which can be roughly compared with quantile re-
gression for 7 = 0.5, the latter one indicates, for example, that the better the
endurance is without the application of ascorbic acid, the bigger is the effect of
the treatment, and vice versa. Moreover, the effect of treatment is nearly neg-
ligible (compared to its average) for individuals with a rather low endurance.

Vitaminc data- OLS and QR

~

Figure 1: Least squares (the black thick line) and quantile regression for 7 =
0.1,0.3,0.5,0.7,0.9 (blue, green, and red lines) @ qr12.xpl



2 Quantile regression estimation

Some key definitions related to quantile regression are introduced in this section.
Besides that, we demonstrate how to use XploRe for the estimation of quantile
regression models.

2.1 Definitions

Given a random sample y1,...,y,, it seems natural to find the approximation
of a quantile (e.g., the median Gy (1/2)), in terms of the order statistics yj; <
.+« < Y[n), i-€., by means of sorting. The crucial point for the concept of quantile
regression estimation is that the sample analogue of Qy (7) can be also found
as the argument of the minimum of a specific objective function, because the
optimization approach yields a natural generalization of the quantiles to the
regression context. The 7th sample quantile can be found as

argmin +(y; — 6), 6
om izzlp (yi —6) (6)
where
pr(@) =z {r—I(x < 0)} (7)
(see figure 2) and I(-) represents the indicator function.
(&)
tg (ad) =1
tg(a)=1-1
/ o ald
3

Figure 2: Quantile regression function p,

Any one-dimensional M-statistics (including the least squares estimator and
(6)) for estimating a parameter of location

n
fu = argmin > ¢(y; — p)
HER i=1

can be readily extended to the regression context, i.e., to the estimation of
conditional expectation function E(Y|X = z) = 2T 3 by solving

B = argmin»_¥(y; — ] B),

PER? i1



where y = (y1,...,yn) is a vector of responses and X = (21,...,7,)T is an
n X p matrix of explanatory variables. From now on, n will always refer to the
number of observations and p to the number of unknown parameters. As the
sample quantile estimation is just a special case of M-statistics for ¢ = p,, it
can be adapted for the estimation of the conditional quantile function along the
same way. Thus, the unknown parameters in the conditional quantile function
Qy (1]X = z) = 2T B are to be estimated as

n
B(r) = argmin Y _ p,(y; — =] B). ®)
BER? i=1
The special case of ¢ = 1/2 is equivalent to minimizing the sum of absolute
values of residuals, the well-known L;-estimator.

Before proceeding to the description of how such an estimate can be computed in
XploRe, two issues have to be discussed. First, given formula (8), it is clear that
there probably exists no general closed-form solution like in the case of the least
squares estimator. Therefore, it is natural to ask whether any solution of (8)
exists at all and whether it is unique. The answer is positive under some rather
general conditions. Let #H,,,m € {1,...,n}, represents the set of all m-element
subsets of {1,...,n}, and let for any m € {1,...,n} and h € H,, X}, denotes a
m X p submatrix of X composed from rows X, ,..., Xy . . Similarly, let for
a vector y be yr, = (yn,,---,yn,, )" . Notice that this convention applies also for
h € Hy, that is, for single numbers. The rows of X taken as column vectors are
referred by x1,...,r,—therefore, X = (z1,...,7,)T = (X{,..., XT)T. Now
we can write theorem 3.3 of Koenker and Bassett (1978) in the following way:

Let (y,X) are regression observations, T € (0,1). If (y,X) are in general po-
sition, i.e., the system of linear equations y, = Xpb has no solution for any
h € Hpt1, then there exists a solution to the quantile regression problem (8) of

the form B(r,h) = X, "y, h € Hy, if and only if for some h € H,, holds
(T1—-1)1, <& <71y, 9)

where & = Dign Priyi — X;B(r, h)} - X;X; ", pr is defined by (7), and 1, is

~

the p x 1 vector of ones. Moreover, B(r, h) is the unique solution if and only if
the inequalities are strict, otherwise the solution set is the convex hull of several
solutions of the form B(r,h).

The presented result deserves one additional remark. Whereas situations in
which observations (y, X) are not in general position are not very frequent un-
less the response variable is of discrete nature, weak inequality in (9), and con-
sequently multiple optimal solutions, can occur when all explanatory variables
are discrete.

The second issue we have to mention is related to the numerical computation
of estimates. The solution of (8) can be found by techniques of the linear
programmaing, because

BERP <

min Y pr(y; — Xif)
=1

may be rewritten as the minimization of a linear function subject to linear



constraints

min 71y +(1-7)-1%0 (10)
ﬂe]RP;u,veR1

subject to y—XB=u—wv.

The linearity of the objective function and constraints implies that the solution
has to lie in one of the vertices of the polyhedron defined by the constraints in
(10). It is possible to derive that these vertices correspond to elements h of #,
and take form

Br) = Xi'un
u = max{y— XA(r),0,}, especially uj =0
= —min{y — XB(7),0,}, especially vj, = 0.

Apparently, there are always at least p indices from {1,...,n} such that the
corresponding residuals are equal to zero. Therefore, traversing between vertices
of the polyhedron corresponds to switching between hq,hs € Hp—hence the
method belongs to the group of the so-called ezterior-point methods. In order to
find the optimal h (or equivalently vertex), we usually employ a modified simplex
method (Koenker and D’Orey, 1987). Although this minimization approach has
some considerable advantages (for small problems, it is even faster than the
least squares computation), it becomes rather slow with an increasing number
of observations. Thus, it is not very suitable for large problems (n > 100000).
Koenker and Portnoy (1997) developed an interior-point method that is rather
fast when applied on large data sets.

2.2 Computation

z = rqfit(x,y{,tau,ci,alpha,iid,interp,tcrit})
estimates noninteractively a quantile regression model

The quantlet of metrics library which serves for the quantile regression estima-
tion is rqfit. We explain just the basic usage of rqfit quantlet in this section,
other features will be discussed in the following sections. See appendix 5.1 for
detailed description of the quantlet.

The quantlet expects at least two input parameters: an n X p matrix X that
contains n observations of p explanatory variables and an n X 1 vector y of n
observed responses. If the intercept is to be included in the regression model,
the n x 1 vector of ones can be concatenated to the matrix X in the following
way:

x = matrix(rows(x)) "x.

Neither the matrix X, nor the vector y should contain missing (NaN) or infinite
values (Inf,-Inf). Their presence can be identified by isNaN or isNumber and
the invalid observations should be processed before running rqfit, e.g., omitted
using paf.



Quantlet rqfit provides a noninteractive way for quantile regression estimation.
The basic invocation method is quite simple:

z = rqfit(x,y,tau),

where parameter tau indicates which conditional quantile function Qy (7]|X)
has to be estimated. It is even possible to omit it:

z = rqfit(x,y).

In this case, the predefined value 7 = 0.5 is used. The output of rqfit might be
little bit too complex, but for now it is sufficient to note that z. coefs refers to
the vector of the estimated coefficients 3(7) and z.res is the vector of regression
residuals. If you want to have also the corresponding confidence intervals, you
have to specify extra parameters in the call of rqfit—the fourth one, ci, equal
to one, which indicates that you want to get confidence intervals, and optionally
the fifth one, alpha, that specifies the nominal coverage probability for the
confidence intervals (its default value is 0.1):

z = rqfit(x,y,tau,1,alpha).

Then z. intervals gives you the access to the px2 matrix of confidence intervals
(the first column contains lower bounds, the second one upper bounds). Read
section 4.3 for more information.

To have a real example, let us use data set nicfoo supplied with XploRe.
The data set is two-dimensional, having only one explanatory variable z, a
household’s net income, in the first column and the response variable y, food
expenditures of the household, in the second column (see Data Sets). In order
to run, for example, the median regression (7 = 0.5) of y on constant term, x
and 22, you have to type at the command line or in the editor window

data = read("nicfoo")

x = matrix(rows(data)) ~ datal[,1] ~ (datal[,1]"2)
datal,2]

rqfit(x,y)

.coefs

N N <
]

Q qr03.xpl

Do not forget to load metrics library before running rqfit:
library("metrics").

The result of the above example should appear in the XploRe output window
as follows:

Contents of coefs
[1,] 0.12756
[2,] 1.1966
[3,] -0.24616



3 Essential properties of QR

The practical usefulness of any estimation technique is determined, besides other
factors, by its invariance and robustness properties, because they are essential
for coherent interpretation of regression results. Although some of these prop-
erties are often perceived as granted (probably because of their validity in the
case of the least squares regression), it does not have to be the case for more
evolved regression procedures. Fortunately, quantile regression preserves many
of these invariant properties, and even adds to them several other distinctive
qualities, which we are going to discuss now.

3.1 Equivariance

In many situations it is preferable to adjust the scale of original variables or
reparametrize a model so that its result has a more natural interpretation. Such
changes should not affect our qualitative and quantitative conclusions based on
the regression output. Invariance to a set of some elementary transformations
of the model is called equivariance in this context. Koenker and Bassett (1978)
formulated four equivariance properties of quantile regression. Once we denote
the quantile regression estimate for a given 7 € (0,1) and observations (y, X)
by A(r;y, X), then for any p x p nonsingular matrix A, € R?, and a > 0 holds

—

B(r;ay, X) = af(r;y, X)

2. B(r;—ay, X) = aB(1 — 759, X)
A( 3
A(

Ty + X7, X) = B(r;9, X) + v

T3y, XA) = A7 B (13 y, X).

w

4.

This means, for example, that if we use as the measurement unit of y millime-
ters instead of meters, that is y multiplied by 1000, then our estimate scales
appropriately: S(7;y[mm], X) = 1000 - f(7; y[m], X).

3.2 Invariance to monotonic transformations

Quantiles exhibit besides “usual” equivariance properties also equivariance to
monotone transformations. Let f(-) be a nondecreasing function on R—then
it immediately follows from the definition of the quantile function that for any
random variable Y

Qs (1) = Qv (1)} (11)

In other words, the quantiles of the transformed random variable f(Y) are the
transformed quantiles of the original variable Y. Please note that this is not the
case of the conditional expectation—E{f(Y)} # f(EY’) unless f(-) is a linear
function. This is why a careful choice of the transformation of the dependent
variable is so important in various econometrics models when the ordinary least
squares method is applied (unfortunately, there is usually no guide which one
is correct).



We can illustrate the strength of equivariance with respect to monotone trans-
formation on the so-called censoring models. We assume that there exists, for
example, a simple linear regression model with i.i.d. errors

yzzz',TB"‘Eza 7:6{1,...,”},

and that the response variable y; is unobservable for some reason. Instead, we
observe §j; = max{y;,a}, where a € R is the censoring point. Because of censor-
ing, the standard least squares method is not consistent anymore (but a properly
formulated maximum likelihood estimator can be used). On the contrary, the
quantile regression estimator, thanks to the equivariance to monotone transfor-
mations, does not run into such problems as noted by Powell (1986). Using
f(z) = max{xz,a} we can write

Qi (T|zi) = Qp(yoy (T|2:) = f{Qyi(7]2:)} = f (] B) = max{z] B, a}.
Thus, we can simply estimate the unknown parameters by

~

Br) = axgmin’ Y p, (y: — max{(z7 B, a}).

BERP Ty

3.3 Robustness

Sensitivity of an estimator to departures from its distributional assumptions is
another important issue. The long discussion concerning relative qualities of the
mean and median is an example of how significant this kind of robustness (or
sensitivity) can be. The sample mean, being a superior estimate of the expecta-
tion under the normality of the error distribution, can be adversely affected even
by a single observation if it is sufficiently far from the rest of data points. On
the other hand, the effect of such a distant observation on the sample median
is bounded no matter how far the outlying observation is. This robustness of
the median is, of course, outweighed by lower efficiency in some cases. Other
quantiles enjoy similar properties—the effect of outlying observations on the
Tth sample quantile is bounded, given that the number of outliers is lower than
n-min{r,1 —7}.

Quantile regression inherits these robustness properties since the minimized
objective functions in the case of sample quantiles (6) and in the case of quantile
regression (8) are the same. The only difference is that regression residuals
ri(B) = yi — I B are used instead of deviations from mean y; — u. Therefore,
quantile regression estimates are reliable in presence of outlying observations
that have large residuals. To illustrate this property, let us use a set of ten
simulated pseudo-random data points to which one outlying observations is
added (the complete code of this example is stored in @ qr04.xpl).

outlier = #(0.9,4.5) ; outlying observation
; data initialization

’



randomize (17654321) ; sets random seed

n =10 ; number of observations
beta = #(1, 2) ; intercept and slope
matrix(n) “uniform(n) ; randomly generated data

X
x = sort(x)
x = x | (17outlier[1]) ; add outlier

; generate regression line and noisy response variable

regline = x * beta
y = regline[1:n] + 0.05 * normal(n)
y =y | outlier[2] ; add outlier

Q qr04.xpl

Having the data in hand, we can advance to estimation in the same way as in
section 2.2. To make results more obvious, they are depicted in a simple graph.

z = rqfit(x,y,0.5) ; estimation
betahat = z.coefs

; create graphical display, draw data points and regressions line

d = createdisplay(1,1)

data = x[,2]"y ; data points

outl = outlier[1] outlier[2] ; outlier

setmaskp(outl,1,12,15) ; is blue big star
5

line = x[,2] regline ; true regression line

setmaskp(line, 0, 0, 0)
setmaskl(line, (1:rows(line))’, 1, 1, 1)

yhat = x * betahat

grline = x[,2] yhat ; estimated regression line
setmaskp(qrline, 0, 0, 0)

setmaskl(qrline, (1l:rows(qrline))’, 4, 1, 3)

; display all objects
show(d, 1, 1, datal[l:n], outl, line, qrline)

setgopt(d, 1, 1, "title", "Quantile regression with outlier")

Q qr04.xpl

As a result, you should see a graph like one on figure 3, in which observations
are denoted by black circles and the outlier is represented by the big blue star
in the right upper corner of the graph. Further, the blue line depicts the true
regression line, while the thick red line shows the estimated regression line.

As you may have noticed, we mentioned the robustness of quantile regression
with respect to observations that are far in the direction of the dependent vari-

10



Quantile regression with outlier

X

0.2 0.4 0.6 0.8

Figure 3: Robustness of QR estimates to outliers. @ qr04.xpl

able, i.e., that have large residuals. Unfortunately, this cannot be said about the
effect of observations that are distant in the space of explanatory variables—a
single point dragged far enough toward infinity can cause that all quantile re-
gression hyperplanes go through it. As an example, let us consider the previous
data set with a different outlier:

outlier = #(3,2)

Running example @ qr05.xpl with this leverage point gives dramatically differ-
ent results than in the previous case—see figure 4.

4 Inference for QR

In this section we will discuss possibilities regarding statistical inference for
quantile regression models. Although there are nearly no usable finite sample
results for statistical inference compared to the often used theory of least squares
under the normality assumption, the asymptotic theory offers several competing
methods, namely tests based on the Wald statistics, rank tests, and likelihood
ratio-like tests. Some of them are discussed in this section.

11



Quantile regression with outlier

Figure 4: Non-robustness of QR estimates to leverage points. @ qr05.xpl

4.1 Main asymptotic results

The asymptotic behavior of ordinary sample quantiles generalizes relatively eas-
ily to the quantile regression case. A fundamental result was derived in Koenker
and Bassett (1978). Let {3(r)|7 € (0,1)} is the quantile regression process and
consider the classical regression model

yi:Xi/B+€i; iE{l,...,'ﬂ}

with i.i.d. errors ¢; ~ F', F has a density f such that forallz € R 0 < F(z) < 1,
holds f(z) > 0. Assuming that n=' >0 X7 X; = Qn — Qo as n — oo,
where ) is a positive definite matrix, Koenker and Bassett (1978) showed that
the joint asymptotic distribution of m p-variate quantile regression estimators

B, = (Bn(Tl)Ta e aBn(Tm)T)T takes the form

Vit (By = B) = [V {Bu(m) - 8 }] "

=

1 LEN(0,00Q;Y), (12)

where O = ()= = [(min{ri, 73} = 7i73) /(F{AF " (m)}AF (7))}, and
F~! refers again to the quantile function corresponding to the distribution F.
Having the asymptotic normality of the estimates in hand, one can use the Wald
test for testing hypotheses that can be expressed as a set of linear restrictions
on Bn(71),--.,Bn(Tm) for some 71, ..., 7y, m € N.

The situation is little bit more complicated in the case of non-i.i.d. errors, but the
normality of the quantile regression estimator is preserved under heteroscedas-
ticity. If we denote the estimate of coefficients for 7 € (0,1) by S,(7), then for

12



Vi {Bu(r) = ()} 5 N (0,H () I(nH (1), (13)
where .

J(r) = nEToo In (1) = nll)l’_ir_loo (1 —71)n ! Z XIX;
and )

n—-+oo n—-+oo

H(r)= lim Hy(r) = lim n_IZXiTXifi{F_l(T)}

(fi(-) denotes conditional density of y given X). A guide to the estimation of
H,(7) is given, for example, in Powell (1989), and Koenker and Portnoy (2000).

4.2 'Wald test

As was already mentioned in the previous section, the asymptotic normality of
quantile regression estimates gives us possibility to test various linear hypotheses
formulated through regression quantiles by means of the Wald test. For a general

linear hypothesis about the vector B = (8(m)7,. .., B(Tm)T)T
Hy:HB=h (14)

(H being a J x mp matrix, h a vector of length J), the Wald test statistics can
be written as

W, =HB-hT[H{Qe (XTX) '} HT]" (HB -h), (15)

which has under the validity of Hy asymptotically x? distribution with J de-
grees of freedom. The only difficult point is the estimation of the asymptotic
covariance matrix ). There are several strategies available, see Koenker and
Portnoy (2000) for their discussion.

To present a possible application of this test procedure, let us explain a simple
test of heteroscedasticity. Following Koenker and Bassett (1982a), homoscedas-
ticity is equivalent to the equality of slope parameters across quantiles. Con-
sider, for example, model (2)

yi=a+5Dz-+5,~, iE{l,...,n}.

Then the test of the equality of the slope parameter § across quantiles 71, 75 is
nothing but the test of the hypothesis

H() H (5(’1’2) - (5(’1’1) = 0

Since the 7th quantile regression estimate ) (1) is in this case simply the differ-
ence of the 7th quantiles for samples {y;|D; = 0} and {y;|D; = 1} (remember,
D; e {Oa 1});

~ ~

o(e) — 0(m1) =
= {Qv(r|Di=1)=Qy(r2|D; = 0)} = {Qy(n1|Di = 1) = Qy(r1|Di = 0)}
= {Qv(r|Di=1)=Qy(n|Di =1)} = {Qy(r2|Di = 0) — Qv (r1|D; = 0)}

13
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Further it is possible to derive the variance o%(71,72) of d(72) — d(71) from
formula (12), and to construct the statistics

T, = {3(r2) = 8(1)}/6(r1,72)

with an asymptotically normal distribution. For a practical realization of the
test, it would be necessary to approximate 6(71,72), but this goes beyond the
scope of this tutorial. For more information on the so-called sparsity estimation,
see for example Siddiqui (1960), Bofinger (1975), Welsh (1988), or Hall and
Sheather (1988).

4.3 Rank tests

z = rqfit(x,y{,tau,ci,alpha,iid,interp,tcrit})
estimates noninteractively a given quantile regression model

chi = rrstest(x0,x1,y{,score})
performs the regression rankscore test

The classical theory of rank test (Hajek and Siddk, 1967) employs the rankscore
functions

ani(t) = Ri—tn if (R;—1)/n <t < R;/n, (16)
0 if R,/n <t
where R; represents the rank of the ith observation y; in (y1, - ..,y,). The inte-

gration of a,;(t) with respect to various score generating functions ¢ produces
vectors of scores, rank-like statistics, which are suitable for testing. For instance,
integrating an;(t) using the Lebesque measure (generating function () = t)
generates the Wilcoxon scores

R; —1/2

1
31':/ anz(t)dtzia i=1:"'7n7 (17)
0 n

¥(t) = sgn(t—1/2) yields the sign scores s; = a,;(1/2) and so on. The way how
this theory can be applied in the regression context was found by Gutenbrunner
and Jureckovd (1992), who noticed that the rankscores (16) may be viewed as
a solution of a linear-programming model

T
18
Jhax o ya (18)

subject to Xa= (1—1)X1,.

The important property of this model is its duality to model (10) that defines
regression quantiles—see also Koenker and D’Orey (1993) for details.

The uncovered link to rankscore tests enabled to construct tests of signifi-
cance of regressors in quantile regression without necessity to estimate some
nuisance parameters (such as  in the case of the Wald test). Given the model
y = Xofo + X181 +¢,B80 € RR—7, B, € R/, Gutenbrunner, Jure¢kové, Koenker,
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and Portnoy (1993) designed a test of hypothesis Hy : 81 = 0 based on the
regression rankscore process. It is constructed in the following way: first, com-
pute {a,;(t)}1, at the restricted model y = Xof¢ + € and the corresponding
rankscores vector s = (s;)7_y = {— [ani(t)d)(t)},_, . Next, form the vector

S, = nfl/zXls,

which converges in distribution to NV (O,A2 (1/))Q0) under the null hypothesis,
where A%(¢) = fol P2(t)dt, Qo = limp_yo0(X1 — X1)T (X1 — X1)/n, and X; =
Xo(XT Xo)~1 XTI X,. Finally, the test statistics

T =S, Q' Sn/A%(¢) (19)

has asymptotically x% distribution. To do this test in XploRe (given some
(y,X)), the only thing you have to do is to split the matrix X to two parts Xg
and X; (leaving the intercept usually in Xj) and to call the quantlet rrstest,
which requires Xg, X1, and y on input. Optionally, you can specify the type of
the score generating function to be used (see appendix 5 for more details); the
Wilcoxon scores are employed by default. For demonstration of the quantlet, let
us use again a simulated data set—we generate a pseudo-random 100 x 3 matrix
X and two response vectors y; = X -(1,2,—1)T +¢; and y» = X -(1,2,0)7 +&,.
The resulting test statistics differ significantly (in the first case, the test statistics
is significant, while in the latter one not) as is documented both by their values
and p-values.

; simulate data matrix
n = 100
randomize(1101)
x = matrix(n) ~ uniform(n,?2)
; generate yl and y2
y1 = x[,1] + 2*x[,2] - x[,3] + normal(n)
y2 = x[,1] + 2*x[,2] + normal(n)
; test the hypothesis that the coefficient of x[,3] is zero
; first case
chil = rrstest(x[,1:2], x[,3], y1)
chil
cdfc(chil,1)
; second case
chi2 = rrstest(x[,1:2], x[,3], y2)
chi2
cdfc(chi2,1)

Q qr06.xpl.xpl
When the script ends, the XploRe output should look like
Contents of chil
[1,] 19.373

Contents of cdfc
[1,] 0.99999
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Contents of chi2
[1,] 0.018436
Contents of cdfc
[1,] 0.10801

The existence of a testing strategy for quantile regression motivated the search
for a reverse procedure that would provide a method for estimating confidence
intervals without actual knowledge of the asymptotic covariance matrix. Quite
general results in this area were derived in Hugkovd (1994). Although the com-
putation of these confidence intervals is rather difficult, there are some special
cases for which the procedure is tractable (Koenker, 1994). An adaptation of the
technique for non-i.i.d. errors have been done recently. Now, it was already men-
tioned that quantlet rqfit can compute also confidence intervals for quantile
regression estimates. This is done by the above mentioned method of inverting
rank tests, which has several practical implications. Above all, the computation
of confidence intervals at an exact significance level a would require knowledge
of the entire quantile regression process {5(7)|7 € (0,1)}. This is not possible
because we always work with finite samples, hence we have only an approx-
imation of the process in the form {5(7)|r € {m,...,7m}}. Therefore, two
confidence intervals are computed for every parameter at a given significance
level a (parameter alpha)—the largest one with true significance level higher
than a, let us call it I, and the smallest one with true significance level lower
than a, I>. Then, according to the value of parameter interp, various results
are returned. If its value is nonzero or the parameter is not specified, e.g.,

z = rqfit(x, y, 0.5, 1),

then the bounds of the returned intervals are interpolated from the lower and
upper bounds of the pairs of intervals, and the result in z.intervalsis a p x 2
matrix of confidence intervals—the first column holds the interpolated lower
bounds, the second one upper bounds. In the other case, i.e., interp = 0,

z = rqfit(x, y, 0.5, 1, 1, 0),

z.intervals is a p x 4 matrix of pairs of confidence intervals—the first column
contains the lower bounds of intervals I, the second one lower bounds of I;’s,
the third one embody upper bounds of I;’s, and the fourth one upper bounds of
intervals I, which implies that the bounds in rows of z.intervals are numer-
ically sorted. In this case, the matrix z.pval will contain the correct p-values
corresponding to bounds in z. intervals.

Finally, before closing this topic, we make one small remark on iid switch. Its
value specifies, whether the procedure should presume i.i.d. errors (this is the
default setting), or whether it should make some non-i.i.d. errors adjustments.
We can disclose the effect of this parameter using the already discussed nicfoo
data. The data seems to exhibit some kind of heteroscedasticity (as is often
the case if the set of significant explanatory variables involve individuals with
diverse levels of income), see figure 5.

To compare the resulting confidence intervals for median regression under the
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Nicfoo data- OLS and QR

05

Figure 5: Least squares (the black thick line) and quantile regression for 7 =
0.1,0.3,0.5,0.7,0.9 (blue, green, and red lines) @ qr07.xpl

i.i.d. errors assumption and without it, you can type at the command line or in
the editor window

data = read("nicfoo")
x = matrix(rows(data)) ~ datal[,1] ~ (datal,1]°2)
y = datal[,2]

z = rqfit(x,y,0.5,1,0.1,1)

z.intervals

z = rqfit(x,y,0.5,1,0.1,0)
z.intervals

Q 4r08.xp1

Once you run this example, the output window will contain the following results:

Contents of intervals

[1,] 0.12712 0.13194
[2,] 1.1667 1.2362
[3,] -0.24616 -0.24608

Contents of intervals

[1,] 0.024142 0.20241
[2,] 1.0747  1.3177
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[3,] -0.29817 -0.2014

Please, notice the difference between the first group of intervals (i.i.d. errors
assumption) and the second one.

5 Description of quantlets for QR

The complete description of XploRe quantlets for quantile regression and the
related test follows in next two sections. There are also several final remarks
and notes that are important for the use of these quantlets. In both sections
holds that all the input parameters are discussed first, the output values are
commented later.

5.1 Quantlet rqfit

z = rqfit(x,y{,tau,ci,alpha,iid,interp,tcrit})
estimates noninteractively a quantile regression model

The main purpose of the quantlet is to estimate the quantile regression model
given by regression observations (y,x) for a quantile tau. For the sake of sim-
plicity, we will assume throughout this section that the output of rqfit is stored
in a list called z as shown in the template.

x An n x p matrix of explanatory variables. It should not contain
missing (NaN) or infinite values (Inf,-Inf). See also section 2.2.

y An n x 1 vector of observations for the dependent variable. It
should not contain missing (NaN) or infinite values (Inf,-Inf).
See also section 2.2.

tau A regression quantile to be estimated. If the parameter is omitted,
the predefined value 0.5 is used. There are two different modes
of operation, depending on the value of this parameter:

tau inside (0,1): A single quantile solution for the given tau
is computed and returned. The estimated parameters are
stored in z.coefs and the corresponding residuals are ac-
cessible via z.res.

tau outside (0, 1): Solutions for all possible quantiles are sought
and the approximation of the quantile regression process

{B(r)|r € {m,...,7m}} is computed. In this case, z.coefs
is a matrix containing (1), ..., 8(7m)- The array contain-
ing both 71,...,7, and B(m1),...,B(7n) is to be found in
z.sol.

It should be emphasized that this regime can be quite mem-
ory and CPU intensive. On typical machines it is not rec-
ommended for problems with n > 10000.
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ci

alpha

iid

interp

A logical flag for confidence intervals (nonzero values mean true)
with the default value equal to 0 (false). If ci is zero, only
regression coefficients and the corresponding residuals are calcu-
lated. In the other cases, confidence intervals for the parameters
are computed using the rank inversion method of Koenker (1994)
and returned in z.intervals.

Be aware that the computation of confidence intervals can be
rather slow for large problems. Note also that rank inversion
works only for p > 1, but this should not be very restrictive,
since you include intercept in the regression in most cases.

A nominal coverage probability for the confidence intervals, which
default value is 0.1. The value is called nominal because the
confidence intervals are computed from an approximation of the

quantile regression process {#(7)|T € {71,...,7m}}. Therefore,
the “available” significance levels are given by the breakpoints
Ti,-.-,Tm, and consequently, by the size of the used data set.

Given a nominal significance level alpha, some breakpoints are
chosen so that they most closely approximate the required cov-
erage probability. Then either two confidence intervals are re-
turned (the best ones with significance levels just above and be-
low alpha), or interpolation takes place. See section 4.3 and the
description of parameter interp for more details.

A logical flag indicating i.i.d. errors (nonzero values mean true),
the value used if the parameter is omitted is 1 (true). If iid is
nonzero, then the rank inversion method employs the assumption
of i.i.d. errors and the original version of the rank inversion in-
tervals is used (Koenker, 1994). In the opposite case, possible
heterogeneity of errors is taken into account. See also section 4.3.

A logical flag for interpolated confidence intervals (again, nonzero
values mean true), the default value is 1 (true). As confidence
intervals (and any other test statistics) based on order statistics
are discrete, it is reasonable to consider intervals that are an in-
terpolation of two intervals with significance levels just below the
specified alpha and just above the specified alpha. If interp is
nonzero (and, of course, ci is nonzero, otherwise no confidence
intervals are computed), rqfit returns for every parameter a sin-
gle interval based on linear interpolation of the two intervals.
Therefore, z.intervals is a p X 2 matrix, each row contains a
confidence interval for the corresponding parameter in z.coefs.
On the other hand, if interp equals to zero, two “exact” in-
tervals with significance levels above and below alpha (that two
on which the interpolation would be based) are returned. Thus,
z.intervals is a p X 4 matrix, each row contains first the lower
bounds, then the upper bounds of confidence intervals, i.e., all
four bounds are sorted in ascending order. Moreover, matrices
z.cval and z.pval, which contain the critical values and p-values
of the upper and lower bounds of intervals, are returned in this
case. See also sections 2.2 and 4.3.
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tcrit

A logical flag for finite sample adjustment using t¢-statistics, its
default value is 1 (true). In the default case, the Student critical
values are used for the computation of confidence intervals, oth-
erwise, normal ones are employed.

It might sometimes happen that confidence intervals for some pa-
rameter have a form (-Inf,Inf) or (—103%0 103%). Setting this
parameter to zero, i.e., decreasing the absolute value of critical
values, can help you to obtain finite confidence intervals.

Now, the discussion of output values is ahead.

z.coefs

zZ.res

z.intervals

z.cval

z.pval

z.sol

A px1or pxm matrix. If parameter tau is inside interval (0, 1),
the only column of z.coefs contains the estimated coeflicients. If
tau falls outside (0, 1), z. coefs is a pxm matrix that contains the
estimated coefficients for all breakpoints 71, ..., 7. This matrix
is actually composed of the last p rows of z.sol array, see z.sol
for more detailed description. See also section 2.2.

An n x 1 vector of regression residuals, that is returned only if
tau is inside interval (0,1). See also section 2.2.

A p x 2 or p x 4 matrix containing confidence intervals that are
computed only if ci is nonzero and tau belongs to interval {0, 1).
In the first case, one interpolated interval per parameter is re-
turned, in the second one, two intervals per parameter are re-
turned (bounds of the intervals are sorted in ascending order).
See the description of parameters alpha and interp for more
details as well as sections 2.2 and 4.3.

A p x 4 matrix of critical values for (non-interpolated) confidence
intervals. It is returned only when tau is inside interval (0, 1),
ci is nonzero, and interp equals zero. See the description of
parameter interp for further information.

A p x 4 matrix of p-values (probabilities) for (non-interpolated)
confidence intervals. It is returned only when tau falls to interval
(0,1), ci is nonzero, and interp equals zero. See the description
of parameter interp for further information.

The primal solution array, which is a (p + 3) x m matrix. Its
first row contains the breakpoints 7, ..., 7, of the quantile func-
tion, i.e., the values in (0,1) at which the solution changes. The
second row contains the corresponding quantiles evaluated at the
mean design point, i.e., the inner product of X = (X ;)?_, and
B(r;),i = 1,...,m. The third row contains the value of the ob-

jective function evaluated at the corresponding 7,4 = 1,...,m,
see (8), and the last p rows of the matrix give 8(m1),...,0(Tm)-
The solution §(7;) prevails from 7; to 7541,% = 1,..., m. Portnoy

(1989) showed that m = Op(nlnn). See also section 4.3.
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z.dsol The dual solution array, an n X m matrix containing the dual so-
lution corresponding to z.sol. The ijth entry, i € {1,...,n},j €
{1,...,m}, is equal to z, where

z=1 if y; >xi3(7j),
r=0 ifyi <27,'B(7‘j),
0<x <1 otherwise.

See Gutenbrunner and Juretkova (1992) for a detailed discussion
of the statistical interpretation of z.dsol. The use of z.dsol
in statistical inference is described in Gutenbrunner, Jureckova,
Koenker, and Portnoy (1993).

5.2 Quantlet rrstest

chi = rrstest(x0,x1,y{,score})
executes the regression rankscore test

The main purpose of the quantlet rrstest is to test significance of some explana-
tory variables in regression using rankscore tests. For this purpose, the quantlet
invokes already described rqfit with parameter tau equal to —1. Therefore,
the note related to this choice of tau applies here. The test is described in
section 4.3.

x0 An n x (p — J) matrix of maintained regressors. If there is an
intercept term in the regression, x0 should contain it. The same
restrictions as in the case of x and rqfit applies on x0—it should
not contain missing (NaN) or infinite values (Inf,-Inf).

x1 An n x J matrix of regressors under test. The explanatory vari-
ables placed in x1 are tested for their significance in regression.
Again, x1 should not contain missing (NaN) or infinite values
(Inf,-Inf).

y An nx1 vector of observations for the response variable. It should
not contain missing (NaN) or infinite values (Inf,-Inf).

score The desired score function for test. Possible values are:
score = 1: Wilcoxon scores (this is the default case); they are

asymptotically optimal for logistic error model.

score = 2: Normal scores, which are asymptotically optimal for
Gaussian error model.

score = 3: Sign scores, which are asymptotically optimal for La-
place error model.

score € (0,1): A generalization of sign scores to the quantile
given by the value in (0,1), i.e., scores generated by the
function 9 (t) = sgn(t — score).
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See also section 4.3.
Let us discuss now the only output value of the quantlet.

chi A test statistics that is asymptotically distributed according to
x? with J degrees of freedom. See also (19) in section 4.3.
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