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Nolan Ritter and Colin Vance1

The Phantom Menace of Omitted 

Variables – A Comment

Abstract

This note demonstrates that in applied regression analysis, the variance of a coeffi  cient 
of interest may decrease from the inclusion of a control variable, contrasting with 
Clarke’s assertion (2005, 2009) that the variance can only increase or stay the same. 
Practitioners may thus be well-advised to include a relevant control variable on this 
basis alone, particularly when it is weakly correlated with the variable of interest.

JEL Classifi cation: C12, C15, C18
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Introduction 

This note clarifies a point made in two papers appearing in Conflict Management and Peace Science

by Clarke (2005, 2009) that explore the implications of omitted variable bias in regression analysis. 

Among the issues taken up by Clarke is whether the inclusion of relevant control variables decreases 

the variance of the coefficient of interest.  He states that the quick answer is no, and elaborates: 

Adding a variable [therefore] can never decrease the variance of the coefficient of interest; the 

variance can only increase or stay the same (Clarke 2005: 347; Clarke 2009: 48).   

The aim of this note is to demonstrate why, in practice, the estimated variance of a coefficient of 

interest may well decrease from the inclusion of a control variable; whether this happens depends on 

the correlation of the included variable and the variable of interest.   

Demonstration 

Following Clarke’s 2005 article, we assume that the true regression model is: 

�� � �� � ��	�� � �
	�
 � ��	�� � �� ������ ��� (1)

Clarke then considers two misspecified models, Model 1 and 2, respectively: 

Model 1: �� � ��� � ���	�� � ��� ������� ����� (2)

Model 2: �� � ��� � ���	�� � �
�	�
 � ��� ������� ����� (3)

and notes that the error variance of the OLS estimate ���� in Model 1 is given by: 

��������� � �
���
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where �� � � �	�� � 	����
�
� � .  The error variance of the OLS estimate ���� in Model 2 is given by: 

��������� � �
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where ��
 is the correlation coefficient of 	�� and 	�
. Implicitly assuming that ��� and ��� are equal, 

and recognizing that ��
 falls somewhere along the 0 to 1 interval, Clarke concludes that the variance 

of ����� must necessarily be less than or equal to the variance of ����. This conclusion, however, is 

predicated upon a strong assumption that is rarely met in practice: ��� and ��� will only be equal in the 
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special case when 	�
 adds no explanatory power to the regression in Model 2 (�
� � ��, which 

corresponds to the familiar result that the addition of irrelevant variables to a model unambiguously 

reduces the efficiency of the estimates. 

But consider the difference in the variance estimate between Model 1 and Model 2 when 	�
 is 

relevant. The formulae for the estimates of the residual variances are:  

�"�� �
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 and (6)
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Further recognizing that ��� � �� ���
	�
 � ��	�� and that ��� � �� � ��	��, it becomes clear that 

there is no a priori reason for us to expect that ��� and ��� and, hence, the estimated residual variances, 

�"��� and ��"��, are equal. In fact, if 	
 is a relevant determinant of Y, it is quite plausible that ��� is 

greater than ��� because �� contains part of 	
 (Wooldridge 2003: 101). Assuming this is the case, the 

question then turns to the magnitude of ��
. If ��
 is relatively low, then a small drop in �"���relative to 

�"�� would suffice to make the magnitude of the estimate for ��������� less than that of the estimate for 

���������, contrasting with Clarke’s theoretical assertion. 

Does this occur with any frequency in applied empirical work? Absolutely, which is one reason 

Angrist and Pischke (2009: 24) give for including control variables: to reduce the residual variance, 

thereby lowering the estimated variance (and hence the estimated standard errors) of the regression 

estimates. Using observed data on food demand, for example, Maddala (2001: 161) presents a model 

that demonstrates how the variance may decrease with the inclusion of a control variable. In footnote 4 

of his 2009 paper, Clarke also acknowledges that the estimated variance is biased when the restriction 

in Model 1 is false. But he maintains that this bias is rarely large enough to affect his findings.  

To illustrate a counterexample, we implement a simple Monte Carlo experiment for which annotated 

code, written using Stata, is included in the appendix. Begin by assuming that the true model given by 

equation (1) is the data generation process. Setting the population to 10,000 observations, we 

randomly draw from a uniform distribution to generate values for 	� and do likewise for 	�. Values 

for 	
 are generated by drawing from a uniform distribution and adding to this the product of a scalar 

pi and 	�, thereby allowing us to adjust the degree of correlation between 	�and 	
 depending on the 

magnitude of�pi. The error term �� is drawn from a normal distribution with a mean of zero and 

variance of one. Inserting these variables into the true model, setting �� � �� � �
 � �� � !, and 

selecting a value for pi, we generate 10,000 values of �. The simulation then proceeds by drawing a 

75% sample of the generated data and estimating Models 1 and 2. The process is repeated 1,000 times, 

yielding a distribution of estimates for ���� and ����, from which estimates of their respective variances 

can be calculated. 
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The graph below plots estimates of ��������� and ��������� from distinct runs of the simulation, with 

��������� varying depending on the value of pi and hence the correlation between 	� and 	
. In this 

example, when the correlation is lower than -0.27, the inclusion of variable 	
 in Model 2 makes the 

estimated variance of ���� higher than that of ����. When the correlation falls between -0.27 and 0.31, 

with the corresponding value of pi falling between -0.28 and 0.33, the opposite holds: ��������� (

���������. Finally, when the correlation is above 0.31, we again have the case in which ��������� )

���������. Thus, we see that for some 29% of the range in correlations between 1 and -1, the 

estimated variance of ���� is reduced from the inclusion of the control variable.2  

Figure 1: Monte Carlo Simulations 

Conclusion 

One of the key points made in Clarke’s highly insightful analysis is that there is a disconnect between 

textbook discussions of omitted variable bias and the real world confronted by practitioners. As he 

persuasively argues, the standard formula for omitted variable bias is of little use when the correct 

specification of the model is unknown; without this knowledge, the analyst is unable to determine 

whether adding a control variable or set of controls makes the bias on the coefficient of interest better 

or worse.   

���������������������������������������� �������������������
2 Clarke (2005) additionally argues that whenever the bias on ����is less than the bias on ����, the mean squared 
error (MSE) of ����must be less than the MSE of ����. This assertion can also be contradicted with Monte Carlo 
simulation: If ��������� is greater than ���������, then the MSE of ����, may be greater than the MSE of ����even 
when the bias on the former is greater than the bias on the latter. Demonstration code is available upon request. 
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In this note, we suggest that the analyst likewise runs the risk of falling into the void between theory 

and practice when assessing the effect of the inclusion of a control variable on the variance of the 

estimate of the coefficient of interest. Clarke argues that this variance can only increase or stay the 

same. While this result is always true for the special case in which the coefficient on the control 

variable is zero, our analysis shows that the estimated variance may well decrease in the more realistic 

case when the control variable explains variation in �, which has relevance for the specification of the 

model. Specifically, if controls are available that are weakly correlated or uncorrelated with the 

variable of interest, but are relevant determinants of the dependent variable, a circumstance that is not 

uncommon in natural experiments (e.g. Galiani and Gertler 2005; Little, Long and Lin 2009), then 

their inclusion can serve to increase the precision of the coefficient estimates without imparting bias.    
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Appendix 

The following presents annotated Stata code, Version 10.0, for implementing the Monte Carlo 

simulation. Users can change the value of pi, currently set at 0.325, to explore the implications of 

different degrees of correlation (r23) between x2 and x3. 

*** PROGRAMMING OF MONTE-CARLO-ROUTINE STARTS 

capture program drop monte  /* drops any existing components of program "monte" to assure a clean start */ 

program monte, rclass       /* program monte definition begins */ 

version 10.0                /* command interpreter set to STATA version 10.0 */ 

capture drop uniform 

gen uniform = uniform()               /* the variable "uniform" is drawn from a uniform distribution with values between 0 and 1 */ 

regress y x2 if uniform > 0.25        /* regresses y on x2 on a subsample where the variable "uniform" is greater than 0.25 */ 

return scalar beta_21 = _b[x2]        /* stores the estimated coefficient of beta_21 */ 

regress y x2 x3 if uniform > 0.25     /* regresses y on x2 and x3 on the same sample as above */ 

return scalar beta_22 = _b[x2]        /* stores the estimated coefficient of beta_22 */ 

corr x2 x3                            /* calculates the empirical correlation between x2 and x3 */ 

return scalar correlation = r(rho)    /* stores the correlation */ 

regress y x2 x3 x4 if uniform > 0.25  /* regresses y on x2, x3 and x4 on the same sample as above */ 

return scalar beta_2 = _b[x2]         /* stores the estimated coefficient of beta_2 */ 

end                                   /* definition of program monte ends */ 

*** CREATE DATASET 

clear  

set seed         1111           /* random number generator set to seed 1111 to make sure the dataset is always the same */ 

set obs         10000           /* sets the number of observations to 10000  */ 

capture drop beta_1 x2 x3 x4 y 

generate beta_1 = 1                          /* the intercept takes on the value 1 */ 

generate double x2 = uniform()               /* x2 is drawn from a uniform distribution with values between 0 and 1 */ 

generate double x3 = uniform() + 0.325 * x2  /* pi is set at 0.325. */ 

generate double x4 = uniform()               /* x4 is drawn from a uniform distribution with values between 0 and 1 */ 

generate double y = beta_1 + x2 + x3 + x4 + rnormal(0,1) /* build y from generated components assuming slope coefficients of 1 plus a 

normally distributed error term with expected value 0 and variance 1 */ 
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*** SIMULATION BEGINS 

simulate correlation = r(correlation) beta_2 = r(beta_2) beta_21 = r(beta_21) beta_22 = r(beta_22), reps(1000): monte /* runs monte-carlo 

simulation with 1000 repetitions */ 

*** LABEL VARIABLES 

label var beta_21 "coefficient estimates for beta_21" 

label var beta_22 "coefficient estimates for beta_22" 

label var beta_2  "coefficient estimates for beta_2 from full model" 

*** GET VARIANCE ESTIMATES 

sum beta_21, detail                               /*Compare presented variance estimate with that of beta_22.*/ 

sum beta_22, detail                               /*Compare presented variance estimate with that of beta_21.*/ 

display correlation 

/* To generate the data to make the graph presented in the paper, repeat the Monte-Carlo simulation for various values of pi and store the 

results for the correlation of x2 and x3 (r23) and the variances of the betas along with pi in a separate data set. Additional code to automate 

this process is available from the authors upon request. */ 


