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Abstract
We discuss the impact of organizational workload on professional service outcomes, 
such as survival rates in hospitals. The prevailing view in the literature is that service 
quality deteriorates when organizational workload increases. In contrast, we argue that 
the relationship between workload and service outcomes is nonlinear and that there is 
a quality-optimal workload level. Whilst outcomes deteriorate with increasing workload 
when workload levels are already high, they will improve if workload increases from 
a low level. We reach this hypothesis by combining three perspectives: (i) the queuing 
theory perspective, with its focus on congestion, (ii) a discretionary choice perspective, 
with a focus on decisions made by professionals in response to changes in workload, 
and (iii) an endocrinological perspective, with a focus on the subconscious eff ects of 
workload on worker performance through the cognitive impact of stress hormones. 
Using a patient census of 1.4 million patients in 624 departments across 101 hospitals, 
we provide empirical support for the nonlinearity hypothesis in the context of hospital 
survival rates. We further discuss the implications for hospital capacity planning and 
the wider implications for service operations management.
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1. Introduction

Governments and health care professionals across the world are deliberating the

rising cost of health care. Aging populations and unhealthy lifestyles are driving

the relentless demand for ever more comprehensive health care services. Whilst

cost containment has always been on the agenda, the recent economic recession has

pushed it to the forefront. Health care providers are seeing their revenues fall in the

wake of austerity measures implemented in a bid to reduce national deficits. As a

result, hospitals and other health care organizations are having to make significant

efficiency savings - and fast.

To cut staff is the hospital manager’s knee-jerk reaction to mounting cost pressure.

Over 50% of hospitals in a recent survey by the American Hospital Association had

reduced staff to cope with the economic downturn (American Hospital Association

2011b). This is unsurprising, given that staffing represents the largest cost pool, with

over two thirds of every hospital dollar spent on staff wages and benefits (American

Hospital Association 2011a). Additionally, staff cuts can be quickly implemented

across the organization through recruitment freezes and redundancies.

In contrast to many other industries, demand for health care services does not

decline in economically challenging times. When hospital managers reduce staff

numbers, workload will inevitably increase, leaving clinicians to wrestle with the

corresponding impact on service quality. What is the nature of the relationship

between organizational workload and the quality of hospital services? This is the

contextual question we address in this paper.

Service quality is an abstract and multi-dimensional construct, in particular in

the context of a hospital, with its complex range of services. To put our study in

perspective, we identify three key dimensions of service quality, which are related

but have different measurement foci. The first dimension, congestion-related service

quality, is concerned with speed and throughput. Typical measures in the hospital
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context are waiting times and length of stays. Congestion has been, and remains, a

key concern in operations management (Hopp et al. 2007, Kc and Terwiesch 2009,

Ramdas and Williams 2009, Kc and Terwiesch 2010). The second quality dimension,

perception-related service quality, focuses on overall experience and outcome, as

perceived by the service consumer. It can be gauged by direct measures, such as

consumer feedback, and indirect measures, such as loyalty and advocacy.

This paper is concerned with a third quality dimension, outcome-related service

quality (Ata and van Mieghem 2009, Wang et al. 2010, Kc and Terwiesch 2010,

Anand et al. 2011). In contrast to perceived quality, service outcome is determined

by objective third-party assessment - usually in the form of expert professional

peers. This dimension is particularly relevant for complex professional services, such

as health care, as consumers normally lack the requisite knowledge or experience

to assess the quality of the service they receive. In our empirical study we are

concerned with a particularly important outcome measure of hospital services: a

patient’s probability of surviving hospitalization.

The causal variable of interest here is organizational workload. Workload refers

not just to work volume per se, but to work volume relative to a set of organiza-

tional resources that define its capacity. We use the term ‘organizational workload’

to denote the percentage utilization of an organization’s service delivery capacity.

Workload is not constant, but varies over time. The specific focus of this paper is

on variation in workload between service episodes, with a typical patient stay as an

exemplary reference period. The effects of variations in long-term average workloads

between organizations have been discussed elsewhere, for example in relation to

learning curve effects induced by high cumulative volume (Pisano et al. 2001, Halm

et al. 2002) or chronic effects of stress and burn-out on productivity (Dahl 2011).

In this empirical study we model differences in long-term average workload levels

between organizations as organizational fixed effects over the observation period.
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A common measure of organizational workload in the hospital context is bed

occupancy. However, published numbers of certified beds are an unreliable indicator

of hospital capacity. Certified beds can be unstaffed and effectively mothballed,

whilst hospitals can also shift bed capacity between clinical departments. As we

are concerned here with departmental workload, we will use an alternative and

more general measure of capacity: the maximum number of patients treated in a

department on any one day during the observation period. The department’s daily

workload is then the patient volume in the department on that day, expressed as a

percentage of the capacity measure. The question we ask is how a patient’s chances

of in-hospital survival alter with the average daily workload that the department

experiences during the patient’s stay.

Several studies in the medical literature argue that clinical quality deteriorates as

workload increases (Weissman et al. 2007, Schilling et al. 2010). However, a recent

study of cardiothoracic patients in a US hospital failed to identify a significant effect

of workload on in-hospital survival probability (Kc and Terwiesch 2009). We provide

an explanation as to why a general quality deterioration hypothesis is difficult to

maintain. We argue that the relationship between workload and service quality is

best understood as a nonlinear phenomenon: increasing workload leads to improved

quality when workload levels are low, whilst quality deteriorates when workload

further increases from already high levels. As a consequence, it is possible to identify

a quality-optimal workload level - a tipping point beyond which quality deteriorates,

and often rapidly so.

2. Hypothesis development

We distinguish three partial effects by which workload variation can impact

outcome-related service quality: (i) resource availability alters with workload, (ii)

workers make conscious decisions in response to changing workload, and (iii) work-

load acts as a stressor and triggers a subconscious stress response in workers. Whilst
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the first two perspectives have been widely studied in the operations literature, the

stress response, which is particularly relevant to error propensity, has been neglected

so far.

2.1. Congestion-induced effects

When workload increases, limited resources must be shared between a greater num-

ber of consumers, leading to increased congestion and waiting times. Longer idle

waiting during a service episode does not only negatively affect the consumers’ ser-

vice perception, but can also have a detrimental effect on service outcomes if a

consumer’s condition deteriorates over time (Rosanio et al. 1999) or if she is exposed

to environmental threats. For example, a disease may progress while a patient is

waiting for treatment and the longer a patient remains in hospital, the greater the

risk of contracting hospital acquired infections.

Waiting times increase nonlinearly with workload: a percentage point increase

at low or medium workload levels will have a less pronounced effect on waiting

times than a percentage point increase when workload is already high. This effect

is captured in the waiting time formulas of queueing theory. These formulas can

typically be decomposed as a product of a term that depends only on characteristics

of the service process and is independent of the traffic rate, and a term of the form

ρ
1−ρ , where ρ denotes capacity utilization. An example is the Pollaczek-Khinchin

formula for the expected waiting time in an M/G/1 queue W (ρ) =α ρ
1−ρ , where α=

1+C2

2μ depends only on the service rate μ and the coefficient of service time variation

C. As expected waiting times are proportional to ρ
1−ρ , they increase rapidly when

utilization ρ approaches 100%.

It is difficult to argue that congestion-related waiting, i.e., waiting that is unin-

tended and not part of the service protocol, might systematically lead to better

outcomes. If that were the case, such beneficial waiting times should be worked into
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the service protocol. However, potential outcome deterioration as a consequence of

congestion-related waiting is well documented. For stroke patients, for example, a

long waiting time for treatment is associated with a considerably worsened prognosis

(Hacke et al. 2004).

Whilst waiting can have a negative outcome effect, it is likely that this effect

is negligible when waiting times are very short. This is an important assumption

for our hypothesis development. Formally, if a function f(W ) describes outcome-

related quality as a function of waiting time W , then we assume that f ′(W )≤ 0 and,

importantly, that f ′(0) = 0. If waiting time increases with utilization, i.e.,W ′(ρ)> 0,

then the partial effect of congestion on quality, QC(ρ) = f(W (ρ)), will satisfy the

following conditions:

Assumption 1. Q′
C(0) = 0 and Q′

C(ρ)≤ 0.

If the marginal quality deterioration increases in absolute value with waiting time,

i.e. if f ′′(W )< 0, and if waiting time increases in a convex manner with utilization ρ,

i.e., if W ′′(ρ)> 0 as in the Pollaczek-Khinchin formula, then Q′′
C(ρ)< 0, i.e., quality

deteriorates more rapidly at higher workload levels. In the health care context such

effects could occur, for example, when the marginal probability of contracting an

infection increases with patient density (Archibald et al. 1997).

2.2. Discretion-induced effects

Classical queuing theory assumes that service provision is unaffected by workload,

that variations in workload are buffered entirely by waiting times. This is unrealistic

in the context of professional services, where workers have a degree of discretion over

service provision. When professionals experience high workload they may decide to

cut corners to reduce service times and improve throughput, accepting associated

service quality compromises for individual consumers. In this context Hopp et al.

(2007) refer to quality as an additional variability buffer.
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Within the hospital context, Kc and Terwiesch (2009, 2010) demonstrate empir-

ically that increased workload is associated with reduced service time, measured

as a patient’s length of stay in the hospital: when workload increases, patients are

discharged sooner. Cutting corners in this way can clearly have detrimental effects

on service outcomes. Hugonnet et al. (2007) study the relationship between work-

load and infection rates and conclude “Low staffing level was followed only a few

days later by the occurrence of infections. This suggests that under the pressure of

increased workload, healthcare workers do not comply with infection control mea-

sures, such as hand hygiene, due to time constraints.”

Hugonnet et al. (2007) also provide evidence that discretionary reduction in ser-

vice provision and its associated negative effect on service outcomes will predomi-

nantly occur with high workloads. Since service length is not the focus of our paper,

we only report briefly that this nonlinear effect of workload on service length could

be confirmed with our sample of approximately 1.4 million patient episodes from

624 German hospital departments. Figures 1 and 2 summarize estimated logarith-

mic length of stay and 95% confidence intervals as a function of workload for all

patients (full sample) and for a subsample of patients with high mortality risk.

The details of the employed spline regression methodology, control variables, and

the conditions included in the high-risk subsample are explained in Section 3. The

estimated curves confirm the refined service length hypothesis: when workload is

low, doctors do not appear to use their discretion over premature service comple-

tion. Increased capacity utilization leads to a moderate increase in length of stay, in

line with the predictions of queueing theory. However, when workload is very high,

the results confirm the findings of Kc and Terwiesch (2009, 2010): doctors increase

patient throughput.

In some contexts, workers may also use their discretion when workload is low.

Specifically, if organizations or individual workers benefit from recorded activity
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rather than outcomes and the need for specific activities cannot be directly assessed

by the consumer or the payer, then workers may use their discretion in performing

more activity than is strictly necessary. This effect is likely to occur when workload

is low and much capacity is unused. In the health care context this phenomenon

is known as over-treatment and is often attributed to perverse incentives created

by payment contracts. The effect of over-treatment on clinical outcomes depends

on the context: existing studies either fail to show a significant effect or confirm a

negative effect on clinical outcomes (see e.g. Torres and Santiago (2004)).

In summary, the discretion perspective leads to the following general impact of

workload on service quality: at low workload levels discretion is either not exercised,

and subsequently service quality remains unaffected, or service quality increases

with increasing workload as unnecessary activity is reduced. At high workload levels,

however, increased workload leads to a deterioration in outcomes as professionals

use their discretion and cut corners to improve throughput. This is summarized in

the following assumption on the partial effect QD of discretion on outcome quality

as a function of workload.

Assumption 2. Q′
D(0)≥ 0, Q′

D(1)< 0.

2.3. Stress-induced effects

Edmondson and Tucker (2001) distinguish between problems and errors in a service
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process. They define a problem as a “disruption of the worker’s ability to execute a

prescribed task”. In relation to workload, an inappropriate time allocation disrupts

a worker’s routine. In contrast, an error is defined as “an execution of a task that

is either unnecessary or incorrectly carried out and that could have been avoided

with appropriate distribution of pre-existing information.” Importantly, “workers

are well aware of the problems they encounter. In contrast, by definition, people are

unaware of their own errors while making them.” It is in the context of problem

solving that workers use their discretion over service provision as discussed above.

To develop a fuller picture of the effect workload has on outcome-related quality,

we also need to address subconscious impulses that affect a worker’s error making

propensity. Drawing on the endocrinology literature, we argue that propensity for

errors is reduced, and subsequently outcomes improve, when workload increases from

a low level up to a certain threshold, beyond which error-making increases and

service quality deteriorates.

There is ample evidence in the medical and psychological literature that work-

load acts as a stressor, i.e., increased workload leads to increased stress hormone

levels. In a meta-analysis review of 208 laboratory studies, Dickerson and Kemeny

(2004) found that performance tasks that contained uncontrollable elements and

could be critiqued by others elicited a human cortisol response. Heightened work-

load increases the number of such tasks and decreases the level of control as time

pressures mount. Sonnentag and Fritz (2006) review studies of the effect of day-to-

day workload variation and conclude that cortisol secretion increases as short-term

workload increases. This link is confirmed in a wide spectrum of professional service

contexts, including air traffic controllers (Zeier et al. 1996), managers (Lundberg

and Frankenhaeuser 1999), medical staff in neonatal and pediatric intensive care

units (Fischer and et al. 2000) and ambulance service personnel (Backe et al. 2009).
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The effect of stress hormone levels on performance has been a central topic in

endocrinology since Selye’s seminal proposal to study stress as an organism’s generic,

nonspecific response to different exogenous strains (Selye 1936, McEwen 2002). Of

particular interest in this context is the relationship between stress hormone levels

and cognitive performance. Following the discovery that some stress hormones, such

as cortisol, can cross the blood-brain barrier and affect neurons directly via recep-

tors (McEwen et al. 1968), researchers have made significant advances in explaining

how stress hormones affect cognitive functions. Among other things, stress hor-

mones have been shown to control the excitability of neurons in those regions of

the brain that are central to memorizing and learning. In a recent review article

Lupien et al. (2007) summarize the state of knowledge relevant to our study: “We

have shown here that the effects of stress hormones on human cognition are best

understood in line with the inverted U-shape function between glucocorticoids and

cognitive performance.” The inverted U-shape is supported both by scientific theory,

based on the interplay between two receptor types that differ significantly in their

affinity for glucocorticoids (de Kloet et al. 1999) and by empirical evidence, based

on randomized controlled trials (Lupien et al. 1999).

In summary, there is evidence that hormone levels are a monotone function of

workload and that cognitive performance has an inverse U-shaped relationship with

hormone levels. As workload increases, stress hormone levels increase and it is there-

fore plausible to assume that a worker’s propensity to make errors decreases with

workloads at low workload levels and increases at high levels of workload.

It is not obvious how characteristics of worker error rates translate to quality

effects at customer level, as workers use their discretion in deciding how much time

they will spend with an individual customer. Whilst a worker’s propensity to make

errors may be increased at times of heavy workload, the same worker will have less

time with each patient in which to make an error, as she shortens service times in
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response to work pressure. To discuss this effect, we assume that worker i’s errors

occur as Poisson events at a rate λi(x) at workload x. If ti(x) is the amount of time

she spends with a specific customer during his service episode, then ti(x)λi(x) is the

rate at which the customer experiences errors by worker i during his service episode.

At low workload levels, the stress response leads to decreasing worker error rate

λi(x). If the worker’s time with the customer does not increase, i.e., if t′i(x)≤ 0, the

beneficial effect translates to the customer’s episode error rate, as the worker makes

fewer errors across shorter time periods. At high workload levels stress leads to

increased worker error rates, whilst at the same time workers may reduce their indi-

vidual customer exposure times in response to increasing workloads. The episode

error rate ti(x)λi(x) will only increase if the percentage rise in the worker’s error rate

exceeds the percentage reduction in her exposure time to the customer. These argu-

ments extend to a customer’s overall episode error rate across all workers involved

in his service, as the overall episode error rate is the sum of the episode error rates

ti(x)λi(x) over all workers i. The following proposition summarizes this conclusion.

You will notice that the condition λ′i(x)
λi(x)

≥ − t′i(x)
ti(x)

is equivalent to (tiλi)′(x) ≥ 0 and

captures the fact that the percentage reduction in exposure time to worker i is an

insufficient counterbalance to the percentage deterioration of worker i’s error rate.

Proposition 1. Suppose a customer is being served by m workers, individual

worker errors follow m independent Poisson processes with differentiable error rates

λi(x) as a function of workload x, and that worker i spends time ti(x) with a cus-

tomer during their service.

1. If λ′
i(x) < 0 and t′i(x) ≤ 0 for all i then the customer’s episode error rate

decreases with workload at level x.

2. If λ′
i(x)> 0 and λ′i(x)

λi(x)
≥− t′i(x)

ti(x)
for all i, with strict inequality for at least one i,

then the customer’s episode error rate increases with workload at workload level x.
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For the development of our hypothesis we assume that the first part of the propo-

sition applies to low workload levels and the second to high levels, leading to the

following assumption on the partial effect of stress on outcome quality.

Assumption 3. Q′
E(0)> 0 and Q′

E(1)< 0.

2.4. Hypothesis

Having considered the effects of congestion, professional discretion and stress on

outcome-related service quality and argued that at low workload levels waiting-

related effects are insignificant, decision-related effects are either insignificant or

positive, and stress-related effects are positive, we surmise that quality increases

with workload at low workload levels. At high levels, however, all three effects

point towards the negative and outcome-related quality deteriorates with increased

workload. These effects are summarized in our central hypothesis.

Hypothesis. The workload of professional service organizations has a nonlinear

effect on outcome-related service quality. At low workload levels an increase in

workload results in a more positive outcome, whilst at high workload levels, an

increase leads to a more negative outcome. There is an optimal workload level with

regard to outcome-related service quality.

We have made three important assumptions in the development of this hypothesis:

(i) the quality deterioration effect of waiting is negligible when waiting times are

very short, (ii) the time workers spend with customers decreases with workload and

(iii) worker error rates deteriorate considerably with very high workloads. The first

two assumptions relate to the hypothesized effect at low workloads: firstly, if quality

deteriorates markedly with waiting, even when waiting times are very short, and

an increase in workload leads to increased waiting even at very low workload levels,
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then this negative effect could potentially dominate any beneficial stress effect at

low workload levels. Secondly, if workers spend more time with customers when

workload increases from low levels, specifically if the percentage increase in exposure

time exceed the percentage improvement in error rates, then the stress-induced effect

itself is negative from the outset. In both cases, workload would have a negative

effect on outcomes even at low workload levels. The third assumption relates to the

hypothesized effect at high workload levels: if error rates increase only marginally

relative to reduced exposure times then the stress-induced effect remains positive at

high workload levels and could, at least in principle, outweigh the negative effects

of congestion and deliberate cutting of corners.

3. Empirical Study

3.1. Data

The data for this study consists of a patient census from 101 German hospitals. For

72 of these hospitals the database contains administrative hospital discharge records

of all patients discharged over one year - either 2004 or 2005. For the remaining 29

hospitals all patients discharged during the two year period 2004-2005 are included.

The database contains 1,415,754 cases across 624 hospital departments. The fact

that the data constitute a complete census of the departments is significant as it

allows us to calculate workload proxies at department level.

We use a patient’s probability of in-hospital survival as a metric of outcome-

related service quality (Gaynor et al. 2005, Huckman and Pisano 2006, Kc and

Terwiesch 2009). The US Department of Health identifies six conditions “for which

mortality has been shown to vary substantially across institutions and for which evi-

dence suggests that high mortality may be associated with deficiencies in the quality

of care”. These are: acute myocardial infarction (AMI), congestive heart failure

(CHF), gastrointestinal hemorrhage (GIH), hip replacement after fracture (HIP),
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pneumonia (PNE) and stroke (STR) (Agency for Healthcare Research and Qual-

ity 2006). We decided to study the effect of workload on the survival of patients

with these primary conditions, giving us a subsample consisting of 85,321 patient

episodes across 393 departments in 93 hospitals.

Since we use discharge records, patients who are admitted during the study period

but discharged outside of this window are not included in the data. Consequently,

the end of the study period does not constitute a complete patient census and

would lead to a bias in workload estimates. Similarly, if a patient was admitted

before the study period, we cannot calculate the workload during their entire stay.

To account for these censoring issues, we exclude patients who were admitted

before the hospital’s observation period or discharged during the final month of the

observation period. This is prudent in light of an average length of stay of 11 days

for the patients in our subsample. Additionally, we exclude departments where

either no or all patients survived and departments with fewer than 20 patients over

the course of the observation period. Following these exclusions the sample consists

of 75,314 patient episodes across 243 departments in 87 hospitals.

3.2. Variables

Organizational workload during a patient episode. To compute workload as

the percentage utilization of the department’s capacity during a patient episode,

we need to measure departmental capacity, i.e., the maximum number of patients

that can be treated in a department on any one day. Whilst the natural measure is

the number of staffed beds, this number is not publicly available. Public documents

refer to the number of certified hospital beds. Interviews with hospital managers

have revealed that this number can deviate significantly from the number of staffed

beds and is not a reliable measure of operational capacity. In the absence of reliable
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staffed bed numbers, we use the maximal number of inpatients in the department on

any one day during the observation period as a measure of departmental capacity.

We compute patient episode workload as the ratio of the average daily patient

volume in the department during the episode to the department’s capacity.

Patient risk factors. The discharge records contain several variables that

allowed us to control for patient heterogeneity. Beside the primary medical condi-

tion and important individual risk factors (i.e., age, gender, emergency status), the

presence of secondary diagnoses is a potential source of heterogeneity. To account

for these comorbidities we adopted a standard approach, developed by Elixhauser

et al. (1998), to the German ICD-10 system, following Quan et al. (2005). One of the

original comorbidities in the Elixhauser model, HIV, had a very low incidence rate

in our subsample and was therefore omitted and all patients with HIV comorbidity

removed from the sample. A frequently applied alternative to the Elixhauser model

is a comorbidity index developed by Charlson et al. (1987). Both models produced

very similar estimates. We report only results using Elixhauser comorbidities.

Severity of patient-mix in the department. In addition to controls for the

clinical conditions of patient i, we control for the severity of condition of the other

patients in the department during patient i’s stay. Following Weissman et al. (2007),

we use the diagnosis related groups (DRG) in which patients are categorized for

reimbursement purposes. Each DRG has an associated cost weight (CW) which

reflects the treatment cost of a typical patient in this group in an average hospital.

We calculated the average cost weight of all patients in patient i’s department for

each day of patient i’s stay and averaged this number across patient i’s length

of stay. Following Weissman et al. (2007), we use this average cost weight as a

control variable rather than as a second independent variable because it accounts

not only for resources used in the department itself but includes costs incurred in

the operating theater and other functional departments.
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To check for robustness, we have estimated models with alternative controls for

patient severity across the department. The first is a staff cost weight (SCW),

derived from the cost weight using labor cost rates published by the regulator for

the German DRG system, InEK. The staff cost weight captures the labor intensity

of a patient rather than the general resource intensity. As a second, more clinically

focused measure of severity across the patient pool, we used the average Charl-

son comorbidity index of the other patients in the department (see Charlson et al.

(1987)). The estimations of workload effects were robust within these three specifica-

tions. We only report results for staff cost weight as a departmental case complexity

control.

Staffing and seasonal patterns. To control for varying staffing patterns, we

follow Kc and Terwiesch (2009) and include a weekend and public holiday dummy

variable. This controls for the so called ‘weekend effect’ (Bell and Redelmeier 2001).

Since the average length of stay for patients in our sample is more than 10 days,

patients who are admitted on weekends or public holidays are likely to experience

more days with lower staffing levels than patients admitted during the week. We also

included dummies for month-of-the-year to capture longer-term temporal factors,

such as a demand spike during flu season. Finally, we include a year dummy for

2005 to control for systematic differences between the observation years.

Department fixed effects. There is an ongoing debate in the literature about

the impact of hospital characteristics on quality of care (Shortell and Hughes 1988,

McClellan and Noguchi 1998, Gaynor et al. 2005). To account for such effects in an

aggregate manner, we include department-within-hospital fixed effects and cluster

standard errors at hospital level.

Table 1 shows the summary statistics of survival, workload variables and patient

risk factors.
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Table 1 Descriptive Statistics for Main Variables

Mean
Survival probability 0.906
Patient-level workload (fixed capacity during observation) 0.742
Patient-level workload (varying capacity during observation) 0.791
Fraction of patients admitted on weekends or public holidays 0.226
Fraction of male patients 0.497
Fraction of emergency admissions 0.536
Fractions of primary conditions

Acute myocardial infarction (AMI) 0.191
Pneumonia (PNE) 0.204
Stroke (STR) 0.292
Congestive heart failure (CHF) 0.070
Hip replacement after fracture (HIP) 0.128
Gastrointestinal hemorrhage (GIH) 0.115

Age (in years) 68.32
(19.67)

Patient episodes N 75,314

3.3. Model and estimation method

We estimate the survival probability Pijk for patient i in department j of hospital

k with a logit model

logit(Pijk) = β0+
n∑

l=1

β1lfl(Wijk)+β2Rijk +β3Sijk +β4Djk + εijk. (1)

Wijk denotes the independent variable workload and the remaining variables are

controls. The vector Rijk contains risk control factors, specifically dummy variables

for the main condition, with acute myocardial infarction (AMI) as the reference

condition, and gender, age, age squared, emergency admission status and dummy

variables for the Elixhauser comorbidities, as well as the staff case weight. The

vector Sijk contains seasonal dummy variables for admissions on weekends or pub-

lic holidays, for month-of-the-year and for year of admission; Djk is the vector of

department dummy variables to capture department fixed effects.

To account for the hypothesized nonlinear relationship between workload and

survival probability, we have estimated a linear spline regression model (Marsh and

Comier 2001). This structure is captured in the term
∑n

l=1β1lfl(Wijk), where n
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is the number of splines and the coefficients β1l represent the slopes of the linear

segments. The model assumes that workload has a piecewise linear effect on service

quality. This guarantees that the effect changes continuously with varying workload

values.

We apply spline models instead of the more ubiquitous polynomial models as

piecewise linear functions are more sensitive to changing gradient signs over the

range of the independent variable. For example, a square term in a polynomial can

be significant because it contributes substantially to model fit over a local sub-

region. The effect of the square term, however, is maintained globally; it carries

over to neighboring regions and introduces a spurious nonlinearity in regions where

there is none. This is not the case with piecewise linear functions, where slopes can

undergo discontinuous changes.

To simplify the interpretation of coefficients in spline regressions it is useful to

specify a piecewise linear function as a linear combination of piecewise linear basis

functions fi, i=1, . . . ,n, in the following way: let 0<μ1 < ... < μn−1 < 1 be a chosen

set of nodes where the linear pieces are joined. The first function f1(x) =min{x,μ1}
equals x if x≤ μ1 and μ1 if x>μ1; the last function fn(x) =max{x−μn−1,0} equals

x− μn−1 if x ≥ μn−1 and zero if x < μn−1. Between these two functions lie (n− 2)

functions of the form

fl(x) =max{min{x,μl}−μl−1,0}=

⎧⎨
⎩

0 if x≤ μl−1

x−μl−1 if μl−1 ≤ x≤μl

μl −μl−1 if x≥ μl.

Note that the function
∑n

l=1β1lfl(x) is linear if all coefficients β1l coincide. The

coefficient β1l can be readily interpreted as the slope of the fitted function on the

interval (μl−1,μl) with μ0 =0,μn =1.

We estimate a logit model with dummy variables for hospital departments, as

well as a conditional fixed-effects logit model. The conditional fixed-effects logit
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model uses fewer degrees of freedom as it does not explicitly estimate parameters

for the department dummy variables. This allows us to calculate a likelihood ratio

(LR) chi-square test. The logit model with department dummy variables has the

advantage that it allows us to calculate partial effects, while the conditional fixed-

effect logit model would only allow the prediction of P (1|Fixed Effect= 0), which

results in misleadingly low survival probabilities (Wooldrige 2002). The coefficient

estimates obtained from these two models are very similar. As mentioned earlier,

standard errors are clustered at hospital level to take account of the hierarchical

nature of the model specification.

3.4. Model selection

To select an appropriate spline model, we follow Royston and Sauerbrei (2007),

using the Stata command uvrs. We begin by choosing a maximum number n of linear

spline pieces that we allow for the most complex spline model and fix the (n− 1)-

quantiles of the empirical workload distribution as the set of candidate nodes where

spline pieces may be joined. We first estimate the model with n spline pieces. The

model selection procedure then compares this benchmark model, in terms of fit, with

estimations of simpler but increasingly more complex models with k= 0,1...,n− 1

spline pieces, where k = 0 and k = 1 correspond to a model without the workload

variable and to a linear model, respectively. The procedure stops and selects the

model with k spline pieces if the benchmark model with n pieces does not provide a

significantly better fit, based on the chi-square statistic of log-likelihood differences.

If the benchmark model fits significantly better, the procedure proceeds to splines

with k+1 pieces. The benchmark model is selected if it fits significantly better than

any of the other simpler models.

Since the candidate nodes are the (n − 1)-quantiles, we have a choice between

these nodes when specifying a spline with k <n pieces. First, for a spline with k=2
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pieces there are n − 1 possible models, one for each of the candidate nodes. We

estimate all n−1 models and select the model with the maximum likelihood function

value. The node corresponding to the selected model is considered identified and

will be kept as a node if we estimate splines with more pieces. If k ≥ 2 and the

procedure progresses from models with k pieces to models with k+1 pieces because

the benchmark model still has a significantly better fit, then we have a list of k−1

identified nodes, which we include in all models with k+ 1 pieces. To specify the

spline with k+1 pieces, we therefore only need to identify one new node from the

remaining n−k non-identified nodes. We estimate the respective n−k models and

again select the model with the maximum likelihood function value as the preferred

model with k+1 pieces, to be compared with the benchmark model. We add the

corresponding new node to the list of identified nodes.

The model selected by the above procedure depends on the maximal number

n of spline pieces and the respective candidate nodes, which are set at the (n −
1)-quantiles of the workload distribution. To find an overall best fitting model,

we executed the procedure for n= 1, . . . ,20 and selected the final model from the

resulting 20 models on the basis of the Bayesian Information Criterion (BIC) as

suggested by Long and Freese (2006).

4. Results

4.1. Results of Pooled Analysis

Table 2 contains a subset of the coefficient estimates obtained by the spline regres-

sion across the 6 conditions. The model selection procedure identifies two splines

as the best model, i.e., more complex models did not improve the model fit signifi-

cantly. The selected model identified the node at a workload of 87.1%.

The hypothesis is supported by both logit models: survival probability increases

significantly with workload at low workload levels and decreases significantly at

high levels. To illustrate the magnitude of this effect, we set all control variables to
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Table 2 Selected coefficients of logit of survival odds

Logit Conditional
with dummies Logit

min(Workload,0.8712) 1.130*** 1.123***
(0.190) (0.189)

max(Workload− 0.8712,0) -10.06*** -10.01***
(1.365) (1.359)

Severity of patient-mix -0.0850 -0.0844
(0.106) (0.105)

Admitted on weekends or public holidays -0.0599* -0.0598*
(0.0279) (0.0278)

PNE 0.204** 0.203**
(0.0740) (0.0737)

STR -0.0604 -0.0602
(0.0912) (0.0908)

CHF 0.764*** 0.761***
(0.134) (0.133)

HIP 1.172*** 1.163***
(0.222) (0.220)

GIH 1.046*** 1.042***
(0.0877) (0.0872)

Observations 75,314 75,314
LR Chi-Square . 18,392.1
Standard errors adjusted for clustering within hospitals

* p < 0.05, ** p < 0.01, *** p < 0.001

their mean values and varied workload. If workload is at a low level of 50%, average

survival probability across the six conditions and the included hospital departments

is estimated at 93.73% (95% CI: 93.18−94.28). The probability increases to 95.78%

(CI: 95.52− 96.04) at the estimated optimal workload level of 87%, beyond which

estimated survival probabilities drop sharply to a 86.16% chance of survival at full

capacity.

4.2. Results for Specific Conditions

In the pooled analysis we accounted for the six medical conditions through dummy

variables and assumed a homogeneous nonlinear effect of workload. To obtain a

more granular understanding of workload effects we examined the effect separately

for each clinical condition. The model remains the same as in equation (1) with the
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exception that Rijk no longer includes dummy variables for the main conditions.

As we move from the pooled sample to individual conditions we lose sample size

and therefore statistical power. Since we are attempting to explain changes in avoid-

able deaths through workload, rather than deaths per se, and avoidable mortality

occurs much less frequently than all-cause mortality, a large sample size is required

to detect a statistically significant signal (Peduzzi et al. 1996). We therefore focus

in this section on the three conditions with the largest sample size, which also have

the highest all-cause mortality rates - PNE, STR and AMI. The sample size and

mortality rates for the remaining conditions CHF (N=4247, 7.7% mortality), GIH

(N=7308, 5% mortality) and HIP (N=9243, 4.3% mortality) are too low to obtain

robust significant results. The corresponding estimations identify only partial non-

linear effects for CHF (significant reduction in survival probability at high workload

levels, but no significant effect at low levels) and no significant effect, linear or

nonlinear, for GIH and HIP.

Table 3 Selected coefficients of logit of survival odds by condition

AMI PNE STR

min(Workload,Node) 1.353** 1.730***
(0.422) (0.367)

max(Workload−Node,0) -14.53*** -4.821***
(3.113) (1.202)

Workload 0.500
(0.454)

Severity of patient-mix -0.241+ -0.220 0.0227
(0.133) (0.164) (0.120)

Admitted on weekends or public holidays -0.177* -0.0529 0.0309
(0.0873) (0.0691) (0.0560)

Observations 14,096 14,278 21,400
Node 0.8843 0.8253
Standard errors adjusted for clustering within hospitals
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Table 3 contains the results of the logit model for the three included conditions.

Figure 3 plots corresponding predicted survival probabilities with 95% confidence

intervals, calculated by the delta method (Wooldrige 2002), with workloads ranging
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Figure 3 Predicted survival probabilities with 95% confidence intervals

from 50% to 100% and all other variables set to their means.

The results show a significant nonlinear effect, in line with our hypothesis, for

pneumonia and stroke. It is somewhat surprising, at first glance, that we were not

able to identify a significant workload effect, linear or nonlinear, for acute myocar-

dial infarction (AMI), although the sample size is comparable to PNE and STR.

To gain insight into the difference between these conditions, we interviewed doc-

tors and nurses across hospitals and a chief medical officer of a UK strategic health

authority. The interviewees were not surprised by the lack of a significant workload

effect on AMI survival as, in their view, this was to be expected. Acute myocardial

infarction (AMI) is a highly acute diagnosis and survival is mostly determined by

correct clinical diagnosis and adequate, rapid treatment in the ambulance or emer-

gency department, prior to ward admission (McNamara et al. 2006). Ward workload

is therefore much less relevant than workload in the emergency department, which

was not measured in our data. Additionally, our interviewees confirmed that ward

treatment for AMI patients is fairly standardized and patients are monitored elec-

tronically so that a life-threatening deterioration in health quickly becomes obvious.

In contrast, pneumonia and stroke patients require very intensive nursing care and

deterioration in health may not be as obvious as in patients with AMI. In summary,

ward workload can be expected to be a more relevant factor behind survival rates

for pneumonia and stroke patients.
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4.3. Effects of workload during phases of a patient episode

Differences in workload effects may occur across conditions, as illustrated above,

but also across phases of a patient episode. Are effects more pronounced during

certain phases of pneumonia or stroke episodes? Ideally, we would look to study

daily workload effects in order to measure this; however, avoidable deaths will often

be caused by an accumulation of suboptimal services on different days during the

hospitalization and therefore significant individual day effects could only be iden-

tified with a substantially larger sample. Figure 4 illustrates the cumulative effect

of workload over successive days. The estimates have been obtained by repeating

the analysis in section 4.2 for workloads up to day d of a patient’s stay. The curves

correspond to workloads (i) on the day of admission, (ii) during the minimal period

required to identify a linear spline with the model selection procedure outlined in

section 3.4 (4 days for PNE and 6 days for STR), (iii) during the period up to the

average length of stay for the condition in our data (11 days for PNE and 13 days

for STR), and (iv) for the entire patient episode. You will notice that the survival

optimal workload, once identified, is relatively stable as d changes.
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Figure 4 Cumulative workload effect
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Figure 5 Early versus late phase

To verify whether workload during different phases of a patient episode has dif-

ferent effects on service outcomes, we split each patient episode into two phases of
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equal duration and estimated the models with workload during the initial and final

half of the patient stay. The results are shown in Figure 5. Interestingly, the gradi-

ents of the identified splines are similar for early phase and late phase workloads;

however the tipping points after which quality deteriorates are different. In the case

of pneumonia the first phase of a hospital episode appears to have a greater impact

on survival probability, whilst the opposite is true for stroke patients.

5. Limitations of the empirical study

The first limitation of our study is the lack of direct information concerning the

hospital departments’ operational capacity. Our capacity metric is the maximum

number of patients observed in the hospital department on any one day during

the observation period. This measure is fixed for all patient episodes in the same

department and relates to slow-changing capacity, such as the number of beds,

number of doctors, or number of high-value medical devices. To check the robustness

of our results we also computed episode workloads relative to an alternative, episode-

specific measure of departmental capacity: the maximum number of patients in the

department during the period from one month before the patient’s admission to

one month after discharge. This measure incorporates more flexible dimensions of

capacity, such as access to nursing staff. The results for PNE and STR remain

qualitatively unchanged and become quantitatively somewhat more pronounced.

AMI now shows a nonlinear effect but the size is small, in keeping with our earlier

argument that AMI survival is less affected by ward workload. In summary, whilst

the quantitative effect of short-term capacity is different from that of long-term

capacity, the qualitative results remain unchanged and also support the nonlinearity

hypothesis.

A second limitation concerns potential demand endogeneity: workload is driven by

demand, which may itself be affected by the quality of service outcomes. There are
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several reasons why demand endogeneity is unlikely to be a significant confounding

factor in our study. Firstly, mortality-related information was not easily available

in Germany before 2005, the end of our observation period and therefore patients

and referring doctors would not have had access to objective quality information to

influence their hospital selection. Secondly, at least one of our conditions - stroke - is

highly acute and hospital proximity is likely to be the prominent hospital selection

criterion. Thirdly, there is some evidence in the literature that demand for hospital

services is exogenous to survival probability, even for elective procedures. Using a 17-

year panel, Gaynor et al. (2005) were unable to reject the hypothesis that volume is

exogenous to survival in patients undergoing coronary artery bypass grafts. Finally,

our data allows us to perform a simple exogeneity test: we calculated a standardized

survival ratio for each department as the ratio of the observed number of survivals

in the department to the predicted number of survivals of the department’s patients

across all departments in the sample, where the predicted number of survivals was

calculated by estimating our basic model (1) without department fixed effects. The

larger the department’s ratio, the more favorable its survival rates compare to other

hospital departments. We compared a department’s standardized survival ratio with

its demand growth over the observation period, using weekly admissions data. If

demand were endogenous - that is, driven by survival rates - we would expect

high standardized survival ratios to be associated with larger demand growth rates.

However, the data for the 243 hospital departments in our study demonstrated no

significant correlation between these two variables.

A third limitation of our study, in common with other studies of hospital out-

comes, is the potential for omitted variable bias. For example, Schilling et al. (2010)

refer in their study to staff skills, leadership and institutional aspects as possible

omitted factors. Whilst we were unable to include actual departmental staffing lev-

els over each patient’s stay, the inclusion of department fixed effects should mitigate
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this limitation somewhat in our study. Additionally, we do capture some variation

in daily staffing levels with the weekend and public holiday dummy and seasonal

dummy variables, as in Kc and Terwiesch (2009). Nevertheless, further research

should address the effect of increased workload on actual staffing levels, and the

resulting effect on service quality. This is particularly relevant for analyses at the

level of a single hospital.

6. Hospital capacity planning

Our estimations led to a piecewise linear representation of service quality Q(w) as

a function of workload w during a service episode

Q(w) =min{α0+β0w,α1+β1w}, (2)

where β0 > 0 and β1 < 0. Optimal quality is delivered at workload level w∗ = α1−α0
β0−β1

where the two linear pieces intersect. Table 4 shows relevant estimates of the econo-

metric model (1) applied to stroke patients in two different hospitals in our data

set - one hospital with 523 stroke patients in a dedicated stroke unit and a second

hospital with 1,278 stroke patients across 5 departments. In both cases the observed

Table 4 Estimation results for stroke patients in two hospitals

STR patients in STR patients across
stroke unit five departments

β0 6.342* 7.134***
(2.915) (0.962)

β1 -35.83** -13.81*
(13.00) (6.172)

Quality-optimal workload w∗ 0.843 0.822
Optimal survival probability Q(w∗) 0.981 0.967

(0.006) (0.005)
Average observed workload w̄ across all patients 0.759 0.760
Observed survival rate across all patients 0.925 0.896
Observations 523 1278
Robust standard errors, * p < 0.05, ** p < 0.01, *** p < 0.001

average workload w̄ is considerably lower than the quality-optimal workload w∗. It
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is tempting to argue that the quality of service for stroke patients could be improve

by cutting resources, as this would shift the average workload closer to the optimal

level w∗.

In fact, practicing managers may argue that a change in resources to a fraction r

of current levels would change workloads by the factor 1
r and therefore if r= w∗

w̄ the

average workload would shift to the desired level w∗. In the case of the two hospitals

in Table 4 this would call for substantial cuts to 90% (stroke unit) and 92% (across

departments) of current capacity. This argumentation, however, is seriously flawed

on two counts: first, it ignores the effects of workload variability and second, it fails

to take account of the effects of a change in resources on length of stay.

The effect of workload variability is conceptually similar to the classical newsven-

dor problem, but is complicated by the fact that acute hospitals cannot choose a

fixed capacity constraint beyond which they will no longer admit patients. It would

be near impossible to turn away patients in urgent need of care and as such, we have

to accept the reality that the organization will serve demand beyond its planned

capacity when the need arises. For this reason, it seems more appropriate to for-

mulate the hospital capacity optimization problem in terms of choosing a resource

vector R instead of choosing a fixed capacity limit beyond which demand is capped.

The survival-optimization problem chooses resources R so as to maximize expected

survival probability across patient episode workloads

max
R

EF (R)[Q(w)], (3)

where F (R) is the cumulative distribution function of episode workload when the

organization has resources R. It is difficult to predict how workload distributions

would alter with resource levels, even if demand remained unaffected. If we disregard

the length of stay response to changing resources, the optimization problem (3) turns

into a modified newsvendor problem (see appendix for details). The corresponding
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survival-optimal resource levels for the two hospitals in Table 4, based on their

empirical workload distributions, can be calculated as 98% (stroke unit) and 99%

(across departments) of current levels, far from the earlier flawed advice to aim for

90% (stroke unit) and 92% (across departments) of current capacity. Therefore the

effect of workload variation alone is sufficient to illustrate that average workload w̄

may well be much lower than w∗ at optimal resource levels.

The actual capacity optimization problem, however, is significantly more complex

and needs to account for the additional length of stay response to resource changes.

Specifically, congestion and professional discretion over service times exert counter-

acting effects. Figures 1 and 2 provide useful illustrations of this. When workload

is low, only the congestion effect is active - clinicians are not yet under sufficient

pressure to accelerate patient discharge. It is therefore plausible to assume that, as

capacity is cut, low workloads increase more rapidly than high workloads because

the counteracting effect of actively reduced service times is not yet being felt. At

high workload levels, however, doctors may exercise their discretion and discharge

patients earlier. Figures 1 and 2 provide some evidence that the combined effect of

congestion and early discharge will still result in a reduction in length of stay at high

workload levels. Therefore high workload levels can be expected to increase more

gradually as capacity is cut. In summary, one can expect that capacity cuts lead to

a shift in the workload distribution towards the right, as well as a compression of

its shape. A comprehensive analysis of this effects is beyond the scope and data of

the present study, however, and is left for future research.

7. Conclusions

The empirical results presented in this paper complement and refine recent research

in the medical literature which argues that organizational workload can cause qual-

ity issues. Schilling et al. (2010), using the same medical conditions as in our
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study, emphasize the effect of overcrowding in hospitals and emergency departments.

Weissman et al. (2007) conclude that “hospitals that operate at or near capacity

[...] might consider re-engineering their structures of care to respond better during

periods of high stress” (p. 454). These studies are both based on aggregate sam-

ples across clinical conditions. In a more focused study of a cardiothoracic surgery

unit, Kc and Terwiesch (2009) were unable to detect a significant impact of work-

load on in-hospital mortality. Our results, based on a sample across conditions and

hospitals, suggest that the relationship between workload and in-hospital mortality

is best understood as a nonlinear phenomenon. Linear models, as used in earlier

studies, tend to underestimate the magnitude of outcome deterioration at very high

workload levels. We also demonstrate that the impact of workload on mortality can

be quite different for differing medical conditions.

We have highlighted the implications of these findings for quality-led hospital

capacity planning. Since service quality is a nonlinear function of workload, quality

cannot be optimized on the basis of average workload alone. As in the newsvendor

problem, distributional characteristics do matter. Specifically, managers need to

develop an understanding of how capacity changes affect workload distributions,

and the crucial role of length of stay response, driven by the relationship between

congestion effects and professional discretion over service completion.

The insights gained through this empirical study in a hospital context have impli-

cations for a wider spectrum of professional service organizations. We have argued

conceptually and empirically that the effect of organizational workload on pro-

fessional service outcomes is likely to be nonlinear: when organizational workload

is already high, outcomes will deteriorate as workload is further increased. How-

ever, when workload is low or moderate outcomes do not deteriorate and may well

improve as workload increases. The nonlinear phenomenon is conceptually explained

by combining three perspectives, two of which - the effects of congestion and of
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professional discretion over service provision - are well established in the literature.

A new endocrinological perspective sheds light on the effect of workload on error

rates, through the subconscious impact of stress hormones on a worker’s cognitive

performance. When workload is low, an increase in workload triggers a positive

stress response, resulting in increased vigilance and improved individual and orga-

nizational performance. A worker’s stress response at low to moderate workload

levels acts as a variability buffer with respect to service outcome. However, the

stress buffer clearly has its limits. When workload becomes too high and stress

hormone levels exceed certain thresholds, a worker’s cognitive performance begins

to deteriorate and she becomes more error-prone. Furthermore, at high workload

levels autonomous professionals will begin to take conscious decisions to improve

throughput, using quality as a variability buffer, whilst congestion effects lead to

significant waiting times with further detrimental impact on service quality. As a

consequence of these mutually reinforcing effects, service quality can ‘fall off a cliff’

when workload exceeds a quality-tipping point.

This study has raised at least two potential questions for future research. First,

how does the relationship between congestion and professional discretion over

service completion affect workload distributions when resource levels are changed?

And second, what factors affect the quality-tipping point and the extent of deteri-

oration that follows when this point is passed? Finding answers to these questions

will assist operations managers in hospitals, as well as other professional service

organizations, in their attempt to drive efficiency whilst optimizing service quality.
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Appendix. Modified newsvendor solution

We assume a hospital department is currently run with a planned maximal daily capacity of C patients.

Workload is measured relative to planned capacity: an average daily patient volume n in the department

during a patient’s stay leads to workload w = n
C
. Had the planned capacity been rC, the workload would

have been w
r
. Here we assume, crucially, that length of stay is unaffected by changes in planned capacity.

With this assumption, the optimization problem (3) is therefore simplified to

max
r>0

E[Q(
w

r
)], (4)

where the expectation is taken over the distribution F of workloads w at current capacity C.

Proposition 2. Suppose (2) describes the relationship between workload and service quality in a depart-

ment. Let F be the cumulative distribution function of patient episode workload W at current capacity and

suppose a change in capacity by a factor r changes workload to W
r
. Then the optimal solution of (4) is

r∗ = s∗
w∗ , where s∗ ∈ (0,1) is a root of the monotone function β1E[W ]+(β0−β1)E[I[0,s]W ]. The root is unique

if F is strictly monotone at s∗.

Proof. We may assume w.l.o.g. that F has the support [0,1]. Since s=w∗r the maximum of Q(w
r
) is achieved

at w= s and we obtain

E[Q(
w

r
)] =

∫ 1

0

Q(
w∗w

s
)dF (w) =

∫ s

0

(α0 +β0

w∗w

s
)dF (w)+

∫ 1

s

(α1 +β1

w∗w

s
)dF (w)

=

∫ s

0

(α0 +β0w
∗(1+

w− s

s
))dF (w)+

∫ 1

s

(α1 +β1w
∗(1+

w− s

s
))dF (w)

=

∫ s

0

(α0 +β0w
∗)dF (w)+

β0w
∗

s

∫ s

0

(w− s)dF (w)+

∫ 1

s

(α1 +β1w
∗)dF (w)+

β1w
∗

s

∫ 1

s

(w− s)dF (w)

= Q(w∗)+
w∗

s
g(s).

Here we have used the fact that α0 +β0w
∗ = α1 +β1w

∗ =Q(w∗), due to the definition of w∗. The function

g(s) is of the form

g(s) = β0

∫ s

0

(w− s)dF (w)+β1

∫ 1

s

(w− s)dF (w)

= β1

∫ 1

0

(w− s)dF (w)+ (β0 −β1)

∫ s

0

(w− s)dF (w)

= β1(E[W ]− s)+ (β0 −β1)(E[I[0,s]W ]− sF (s)).

Solving (4) is equivalent to maximizing g(s)

s
. Integration by parts implies

∫ s

0
wdF (w)−F (s)s=−∫ s

0
F (w)dw.

Therefore g(s) = β1(E[W ]− s)− (β0−β1)
∫ s

0
F (w)dw and g′(s) =−β1− (β0−β1)F (s). The function g(s)

s
has
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a maximizer in the interval (0,1) because its derivative has the same sign as g′(s)s−g(s) =−β1E[W ]− (β0−

β1)E[I[0,s]W ] and the latter function is monotonically decreasing in s with values −β1E[W ]> 0 at s= 0 and

−β0E[W ]< 0 at s= 1. �



e-companion to Kuntz, Mennicken, and Scholtes: Stress on the Ward ec1

Additional statistics of the data

Table EC.1 Descriptive statistics for both models of risk-adjustment

Mean Standard Deviation
Elixhauser comorbidities

Congestive heart failure 0.217 0.412
Cardiac arrhythmias 0.239 0.426
Valvular disease 0.072 0.259
Pulmonary circulation disorders 0.020 0.141
Peripheral vascular disorders 0.062 0.242
Hypertension, uncomplicated 0.426 0.495
Hypertension, complicated 0.074 0.263
Paralysis 0.176 0.380
Other neurological disorders 0.130 0.336
Chronic pulmonary disease 0.100 0.301
Diabetes, uncomplicated 0.152 0.359
Diabetes, complicated 0.097 0.295
Hypothyroidism 0.030 0.171
Renal failure 0.114 0.318
Liver disease 0.032 0.175
Peptic ulcer disease excluding bleeding 0.006 0.080
AIDS/HIV 0.001 0.029
Lymphoma 0.006 0.075
Metastatic cancer 0.013 0.114
Solid tumor without metastasis 0.026 0.160
Rheumatoid arthritis/collagen, vascular diseases 0.013 0.112
Coagulopathy 0.031 0.173
Obesity 0.088 0.284
Weight loss 0.024 0.153
Fluid and electrolyte disorders 0.156 0.363
Blood loss anemia 0.012 0.108
Deficiency anemia 0.017 0.129
Alcohol abuse 0.039 0.194
Drug abuse 0.005 0.069
Psychoses 0.006 0.076
Depression 0.037 0.189

Charlson-Index dummies
Charlson-Index = 0 0.274 0.446
Charlson-Index = 1 od. 2 0.412 0.492
Charlson-Index = 3 od. 4 0.224 0.417
Charlson-Index ≥ 5 0.089 0.285

N 75314



ec2 e-companion to Kuntz, Mennicken, and Scholtes: Stress on the Ward

Table EC.2 All measures of workload and case complexity

Mean Standard Deviation
Workload measures
Workload 0.742 0.117
Workload at admission 0.746 0.132
Time variant workload 0.791 0.102
Time variant workload at admission 0.796 0.122

Case complexity measures
Staff case weight 1.001 0.948
Total case weight 1.888 1.693
Average Charlson Points 1.738 0.631

N 75314
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Figure EC.1 Histogram of occupancy during patient’s stay by main condition


