A Service of

[ ) [ J
(] [ )
J ﬂ Leibniz-Informationszentrum
° Wirtschaft
o Leibniz Information Centre
h for Economics

Make Your Publications Visible.

Messow, Philip

Working Paper

Pricing Synthetic CDOs Using a Three Regime Random-

Factor-Loading Model

Ruhr Economic Papers, No. 317

Provided in Cooperation with:

RWI - Leibniz-Institut fur Wirtschaftsforschung, Essen

Suggested Citation: Messow, Philip (2012) : Pricing Synthetic CDOs Using a Three Regime Random-
Factor-Loading Model, Ruhr Economic Papers, No. 317, ISBN 978-3-86788-366-5, Rheinisch-
Westfalisches Institut fiir Wirtschaftsforschung (RWI), Essen,

https://doi.org/10.4419/86788366

This Version is available at:
https://hdl.handle.net/10419/61377

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.4419/86788366%0A
https://hdl.handle.net/10419/61377
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

RUHR

ECONOMIC PAPERS

Philip Messow

. Pricing Synthetic CDOs Using a Three
Regime Random-Factor-Loading Model




Ruhr Economic Papers

Published by

Ruhr-Universitdt Bochum (RUB), Department of Economics

Universitatsstr. 150, 44801 Bochum, Germany

Technische Universitat Dortmund, Department of Economic and Social Sciences
Vogelpothsweg 87, 44227 Dortmund, Germany

Universitat Duisburg-Essen, Department of Economics

Universitatsstr. 12, 45117 Essen, Germany

Rheinisch-Westfélisches Institut fiir Wirtschaftsforschung (RWI)
Hohenzollernstr. 1-3, 45128 Essen, Germany

Prof. Dr. Thomas K. Bauer
RUB, Department of Economics, Empirical Economics
Phone: +49 (0) 234/3 22 83 41, e-mail: thomas.bauer@rub.de

Prof. Dr. Wolfgang Leininger

Technische Universitat Dortmund, Department of Economic and Social Sciences
Economics - Microeconomics

Phone: +49 (0) 231/7 55-3297, email: W.Leininger@wiso.uni-dortmund.de

Prof. Dr. Volker Clausen

University of Duisburg-Essen, Department of Economics
International Economics

Phone: +49 (0) 201/1 83-3655, e-mail: vclausen@vwl.uni-due.de

Prof. Dr. Christoph M. Schmidt
RWI, Phone: +49 (0) 201/81 49 -227, e-mail: christoph.schmidt@rwi-essen.de

Editorial Office

Joachim Schmidt
RWI, Phone: +49 (0) 201/81 49-292, e-mail: joachim.schmidt@rwi-essen.de

Ruhr Economic Papers #317

Responsible Editor: Wolfgang Leininger
All rights reserved. Bochum, Dortmund, Duisburg, Essen, Germany, 2012

ISSN 1864-4872 (online) - ISBN 978-3-86788-366-5

The working papers published in the Series constitute work in progress circulated to
stimulate discussion and critical comments. Views expressed represent exclusively the
authors’ own opinions and do not necessarily reflect those of the editors.



Ruhr Economic Papers $#317

Philip Messow

Pricing Synthetic CDOs Using a Three
Regime Random-Factor-Loading Model

technische universitat
dortmund




Bibliografische Informationen
der Deutschen Nationalbibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der deutschen National-
bibliografie; detaillierte bibliografische Daten sind im Internet iiber:
http://dnb.d-nb.de abrufbar.

http://dx.doi.org/10.4419/86788366
ISSN 1864-4872 (online)
ISBN 978-3-86788-366-5



Philip Messow!

Pricing Synthetic CDOs Using a Three
Regime Random-Factor-Loading Model

Abstract

Synthetic Collateralized Debt Obligations (CDOs) were among the driving forces of the
rapid growth of the market for credit derivatives in recent years. Possibly the most
popular model beside the Gaussian copula for pricing CDO tranches is the Random-
Factor-Loading-Model of Andersen and Sidenius (2005). We extend this model by
allowing more than two regimes of default correlations. The model is calibrated to
market spreads at times of financial distress and during calm periods. For both points in
time the model correlation skews are similar to the steep skews observed in the market
and lead to an improvement to the standard Random-Factor-Loading-Model.
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1 Introduction

The financial crisis that started in 2007 spread interest on the correct pricing
of credit derivatives, like CDOs, as valuation of these derivatives became even
more important within the last years.

The value of some CDO-tranche is the expected value of a function of the time
of default of the underlying assets and therefore is affected by the correlation of
the underlying assets (Brasch, 2004). It is common knowledge in the financial
literature that defaults are correlated (Das et al., 2002), but most practition-
ers still use the Gaussian copula approach introduced by Li (2000) for pricing
CDO tranches even though the weaknesses of this approach are obvious (van
der Voort, 2007). Due to the fact that this approach lacks of tail dependence
(eg, Kole et al., 2007), the reproducing of the observed correlation skew of the
market spreads and especially the correct pricing of senior tranches is hardly
possible. Andersen and Sidenius (2005) therefore extend the Gaussian copula
approach by introducing the Random-Factor-Loading-Model with two correla-
tion regimes (RFL(2)) accounting for the stylized fact that default correlations
are higher in bear than in bull markets. This paper adds even more flexibility
extending the basic RFL(2)-model to three correlation regimes (RFL(3)). We
use a factor approach, introduced by Merton (1974), where default occurs if
the firm’s value of assets falls below a certain threshold. The reader is assumed
to have some background in financial derivatives and so we omit background
information on CDOs. For a short review we suggest section 2 of Glasserman
and Suchintabandid (2007).

The paper is organized as follows. Section 2 introduces the general framework.
An analytical expression of the RFL(3)-model is given in section 3. The model
is calibrated to daily market spreads of the iTraxx 5yr observed during calm
periods and in times of financial distress in section 4. Section 5 concludes and

makes suggestions for future research.



2 Theoretical Background

We follow the general framework of Andersen and Sidenius (2005). A portfolio
with I debitors, assuming all idiosyncratic default probabilities p;(t) at time ¢

are known, exhibits a loss for the time interval [0, T of

1
L= ZlinTiST (21)

i=1

with 7., <7 some indicator function taking the value 1, if creditor 7 defaults up
to time T and 0 otherwise. [; denotes the loss of debitor i. For a better under-
standing of the loss function variables X1, ..., X are introduced. Furthermore

there exist threshold values ¢y, ..., ¢ so that for all debitors i =1, ...,

Nr<t = 1X;<c;- (22)

By introducing a systematic factor Z with Z = (Z3,...,Zy) and Z; ~
IID(0;0z), X1, ..., X7 and Iy, ..., l; are independent if conditioned on Z. Within
this framework all debitors are affected by the same macroeconomic environ-
ment.

For the determination of the individual default probabilities, it is assumed that
the random variable 7 is distributed exponentially with constant intensity pa-
rameter \. The time of default can be interpreted as the first jump of a poisson

process.
Prob(t >t) =exp(—=A-t). (2.3)

The default intensity A is approximated by A = 1{—’;, with SP the CDS credit
spread and R the recovery rate (Li et al., 2006).
The default-leg describes the expected payments of the protection purchaser

and the premium-leg describes the expected payments of the protection seller.
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The spread of the CDO has to be chosen in such way that the present values
of both legs are equal. For simplicity reasons it is assumed that the defaults
occur only at the observation points j = 1, ..., J, that is for a synthetic CDO
written on iTraxx byr every three months. For further insights regarding the
default timing see Finger (2005). The cumulative, percental loss of the tranche
(A, B) is described by L% 5. L} represents the cumulative, percental loss of
the portfolio and A; describes the length of the period and D(t;) the discount

factor for the period [0;;], so that the tranche spread is given by

.
M-

D(t;) - (E(L4(t;) — E(L4 p(ti-1))

T A D) (- B(E()

J

The numerator describes the payments of the default-leg and the denominator
the ’credit basis point value’, the change in value resulting from a change
in the spread of one base point. Using the representation 2.4, the following

relationship holds

E(L 5(t) = ﬁ B (max(L! — A,0)) — E (max(L; — B,0))]. (2.5)

Because a tranche can be interpreted as an option on the portfolio losses, the

expected loss, greater than A, can be described by a call-option with strike

price A (Martin et al., 2006):
1
E(max(L; — A,0))=1— A — / Prob(L} < z)dz. (2.6)
A

Until now, no distributional assumption of the portfolio losses has been made

and the described framework holds for all models.



3 The Random Factor Loading Model with

Three Regimes

The general Random-Factor-Loading-Model is described by the random vari-
ables X, ..., X; and [ and the following relationship assuming dimension one

for Z and homogeneity for all debitors

Xi=alZ) Z+ve +m
i=1,..,1 (3.7)
[ = "1 — R).

X; has an expected value of 0 and a variance of 1 by choosing v; :=
1-V(a(Z)-Z) and m := —FE(a(Z) - Z). a(Z) : R — RT is a determin-

istic function of the systematic factor Z.

Even though for the special case of a standard normal distributed factor Z

and idiosyncratic factor €;, X; is not standard normally distributed anymore,

because the function a(Z) is not constant.

Assuming a standard normal distribution, with ¢(z) the pdf and ®(x) the cdf,

for the systematic factor Z with thresholds 6; € R, let

« Z < 01
G =3B 0, <Z<b, (3.8)

Depending on the realization of the systematic factor one of the three correla-
tion regimes is switched on. To give an economic interpretation of the described
parametrization it is possible to describe three different states of the economy,
each state associated with a different correlation.

For the empirical verification the determination of m, v and the unconditioned
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default probabilities are needed. The derivation is described briefly in the fol-

lowing with 7 some indicator function and in-depth in appendix (A.1).

m=—F(a(Z)-Z)
= —E(a nz<o,  Z + B Noy<z<0, " Z + 7 Nz50, * Z)
= (a—p)-o(01) + (8 —7) - 0(6a).

vi=\/1=-V(a(Z) - Z)
V(a(2)- 2) =E (a(2)? - 2%) — (E (a(Z) - Z))
= (®(61) — 01 - (61))
+ B2 (Mo, (P(02) — P(61)) + 1,20, (01 - 3(61) — b - $(62)))
+92 (02 0(62) + (1 — (b)) — m?.

Because the idiosyncratic default probabilities can be derived using the spread
of the CDS, the following relationship of ¢(¢) and the unconditioned default
probabilities hold with ®4(.) describing the cdf of the bivariate standardized

normal distribution.

P(r <T)=Pla-nz<o, - Z+ P Noy<z<o, - £+ Nz>0, - Z+ei-v+m<c)

o c—m o
7 V2 +a? 17\/u2+oz2

c—m I} B c—m 153
+©2(\/u2+ﬁ2’92’\/v2+ﬁ2> %(x/v?ﬂi?’g“\/uuﬂ?)

LB c—m _ & com_ «
N : Vi a? 27\/1/2—!—&2 ’
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If m, v and ¢(t) are known, assuming I — oo, the unconditioned loss distribu-

tion with Q(z) = c¢— v - & 1(z) — m can be derived by

This loss function can be used to derive the expected loss of the tranches. Note
that a total loss of an equity tranche with detachment point A occurs, if I%R of
the nominal value of the portfolio defaults. Using equation 2.6 one can derive

the following relationship

1

E (max (L} — A,0) =1 — A — / Prob(L; < z)d
A
1

=1-A- / (1= Prob(L; > z))dx
A

1
=1-A—-(1-4) +/P7'0b(L:f > x)dx
A




Substituting y = —®~!(z), so that dz = —¢(y) and T := —P~'(A), the follow-

ing relationship, which is derived in detail in appendix (A.1), is characterized.

yh
Yy

E (max (L; — A,0)) =(1 = R){-nr<y, - P2 (

0p-a+m—c
Ya =

v
0 B+m—c
a v
O Btm—c
o v
_Oyy+m—c
o v

c—m

v
[
V2+062 1/2+C¥2>

c—m v
T2y, - Po <m;ya; —m)

+ sy, - P(01) - (1 - % - <I>(ya)> (3.10)

o c—m 1. v
+ hr>yllhr<y? = 2 N 52’ ’_\/VQ T3

® c—m v
+nT>y}3nT<yg' X2 m)yﬁaim

2(6) - (1- 75— 20h) )

14

+ By [y
2 - ‘Yz —
nT>I/5 2 /1/2 + ﬁ?’yﬁ /1/2 + [—}2

+ syl Thr<y?

el (41)2 (m”“m))
+ sz - (—(01) - (D(y3) — 0(yh)))
s (0(82) — 2(01) - (1

c—m
+ sy, - P2 (WHWT;

=5~ 0)

_\/V2+’Y2>
+7]T>yw'<_q)2< C;m2§y7§_ QV 2))
Vet VIZ+ 92
e, (-0(0) (1 12— 8
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Using this analytical expression the expected tranche losses can be derived and
used to determine the present values of the default- and premium-leg. Knowing
these values, the model spreads can be calculated, which will be done in the

next section.

4 Empirical verification

The main focus of this section is to check whether the RFL(3)-model is capable
of producing the observed correlation skew in the market spreads and if this
is done in such a way that one can assume that the third correlation regime
has advantages over the parsimonious parametrization of the RFL(2)-model.
We assume a flat yield curve from now on. Following Andersen and Sidenius
(2005) a portfolio of 125 underlying assets, as the iTraxx 5yr, is a sufficiently
big enough portfolio to apply the large portfolio limits of the last section.
We assume a recovery rate of R = 40% because Altman and Kishore (1996)
empirically investigated that the mean of the recovery rate lies around 40%.
The models are calibrated to observed market spreads of the days 06/20/2007
and 09/16/2008. The first point in time is during a calm period and the sec-
ond one is just after Lehman-Brothers defaulted, which describes one of the
most volatile periods of financial history. In a second step the models are cal-
ibrated to two days simultaneously (06/20/2007-06/21/2007 & 09/16,/2008-
09/17/2008).

Table 1: Spreads of the iTraxx 5yr at 06/20/2007 and 09/16,/2008 (in bp)

Date 0% —3% 3% —6% 6%—9% 9% —12% 12% —22%
06/20/2007  723.31 47.44 12.54 5.70 2.27
09/16/2008  4864.10 685.93 414.69 239.84 114.09
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Table 1 summarizes the market spreads of the 06/20/2007 and 09/16/2008.
The spreads jumped in times of financial distress to a multiple of the observed
spreads in calm periods.

The model spreads are a function of the vector ¢ = («, 3,7, 01, 62)", where
«, [ and ~ are positive constants. The parameter vector ¥ is chosen so that
mﬂin = hé1 (%) , where sModel describes the spreads produced by the
RFL(3)-model and s}t describes the market spreads summarized in table
1. Given the default probability of the debitors, by using the CDS spreads, and
some starting values (ag; So; Y0; 01,; 02,) the thresholds ¢(¢) can be derived.

Table 2 summarizes the parametrization of the RFL(3)-model for both days.
Given the parametrization for the 06/20/2007, the a-regime can be inter-

Table 2: Parametrization of the RFL(3)-model for 06/20/2007 and 09/16,/2008

Date « 151 5y 0, 0

06/20/2007 1.4027 0.4594 0.4012 -3.0712 —2.4912
09/16/2008 1.3815 1.1595 0.4876 —2.4192 —1.6993

preted as a ’disaster state’ with high correlations of default. The probability of
this state is ®(—3.0712) = 0.107%. The correlation of the a-regime is roughly
the same for both points in time. But the probability of obtaining this state at
times of financial distress is about eight times higher (®(—2.4192) = 0.78%).
As you can see in figure 1, the RFL(3)-model almost fits perfectly the observed
skew of the base correlations for the time of financial distress, but the RFL(2)-
model fit is just slightly worse. Fitting the base correlation skew perfectly for
the calm period, the third correlation regime is an unambiguous improvement.
Because the purpose of figure 1 was to show that both RFL-models can repro-
duce the basecorrelation skew with a better fit for the RFL(3)-model, table 3
and 4 summarize the deviations of the estimated model spreads to the mar-

ket spreads for a more detailed view of the improvement due to the higher

12
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Figure 1: Comparison of the base correlations for the 06/20/2007 and

09/16/2008

parametrization. Compared to the RFL(2)-model the fit for the 06/20/2007 is

much better since all tranches have a smaller percental deviation from market

spreads. For the 09/16/2008 all tranches are priced as least as good as the
RFL(2)-model, with a perfectly priced 12% — 22%-tranche within both mod-

els. Overall, the introduction of a third correlation regime improves the results

for both, the calm period and the period of financial distress.

Table 3: Deviation of the model from the market spreads for the 06/20/2007

(in %)
Model 0% —3% 3% —6% 6%—9% 9% —12% 12% —22%
Market 723.31 47.44 12.55 5.70 2.27
RFL(2) — Model ~ 0.17 1586 16.31 1.21 0.44
RFL(3) — Model 0.00 0.00 0.00 0.00 0.00
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Table 4: Deviation of the model from the market spreads for the 09/16,/2008
(in %)

Model 0% —-3% 3% —6% 6%—9% 9% —12% 12% — 22%
Market 4864.1 685.9 414.7 239.8 114.1
RFL(2) — Model 6.10 7.54 3.42 1.05 0.00
RFL(3) — Model 5.63 7.36 3.88 0.88 0.00

One could argue that the close to perfect fit of the RFL(3)-model is due to the
fact that this model has five degrees of freedom by pricing five tranches. To
show that the RFL(3)-model is a real improvement compared to the RFL(2)-
model, we will calibrate the named models to the tranches of two days for a
total of ten tranches to circumvent the described problem.

Looking at the percentage deviations from the market spreads in table 5, we
find out that the fit for the first three tranches is much better within the
RFL(3)-model than within the RFL(2)-model. The 9% — 12% & 12% — 22%-
tranches are fitted equally or slightly worse compared to the RFL(2)-model.
Looking at the percentage deviations from the market spreads table 6 shows
that the fit of the RFL(3)-model is much better for both days. Only the 6% —
9%-tranche of the 09/16/2008 is fitted slightly worse while all other tranches
are fitted much better.

Summing up the gains of introducing a third correlation regime are obvious.
For trying to reproduce both the market spreads for one day and for several
days, the gains of introducing a third correlation regime are worth its price for

the additional parameters.
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Table 5: Deviations of the RFL(2)- and RFL(3)-model from market spreads
for the 06/20/2007 & 06/21/2007 (in percent)

Model 0% —3% 3% —6% 6%—9% 9% —12% 12% — 22%
06/20/2007(RFL3)  14.89 20.16 12.34 3.51 0.84
06/20/2007(RFL2)  0.10 0.92 3.60 3.71 2.86
06/21/2007(RFL3)  12.30 24.56 11.62 1.69 2.05
06/21/2007(RFL2)  0.23 1.21 4.26 3.71 3.20

5 Conclusion

"Collateralized Debt Obligations’ revolutionized the market for credit deriva-
tives during the last century. Because of the standardized trading of these
derivatives there is a need for pricing the different tranches correctly. Within
the framework of this paper a reasonable alternative to the Gaussian model
which is the standard market model as well as to the well-known Random-
Factor-Loading-Model by Andersen and Sidenius (2005) was introduced. The
new model was calibrated to two points in time - one during calm financial
markets and one during financial distress. For both points in time the empirical
fit of the RFL(3)-model was much better than the fit of the Gaussian copula
and considerably better than the fit of the RFL(2)-model.

Not only the lack of reproducing the empirically observed tail dependence
enhanced the need for extensions to the Gaussian copula. The introduction
of even more exotic derivatives, like CDO?, increased this need dramatically.
Within this paper we introduced such an extension.

A reasonable supplementation to the model described above would be to relaxe
the assumption of constant recovery rates. Hamilton and Carty (1999) show

that recovery rates in times of financial distress are much smaller than during

15



Table 6: Deviations of the RFL(2)- and RFL(3)-model from market spreads
for the 09/16/2008 & 09/17/2008 (in percent)

Model 0% — 3% 3% —6% 6% —9% 9% —12% 12% — 22%
09/16/2008( RFL2)  4.00 9.63 1.11 0.89 0.97
09/16/2008( RFL3)  0.02 0.79 1.21 0.83 0.00
09/17/2008(RFL2)  9.97 6.20 5.86 3.31 0.98
09/17/2008( RFL3)  1.07 0.58 0.54 1.40 0.00

calm periods. Introducing stochastic recovery rates into the RFL-models by

making R a function of the systematic factor Z would be one way of dealing

with this stylized fact.

Another interesting part of future research would be to look how well the dif-

ferent models do if they are calibrated to even more days in time than just two.

By doing so one could find out how sensitive these models react to parameter

changes.
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A Appendix

A.1 Derivation of the large portfolio limit of the
RFL(3)-model

The following relationship of m and v results in the RFL(3)-model with 65 > 6,

m=—E(a(Z)-Z) = —E(a nz<p, - Z+ B oy<z<0, " Z+7 Nz50, " Z)
=—(a-(=¢(0h)) + B - noyz0, - (6(61) — ¢(02)) + 7 - $(62))
=—(—a-¢(0h) + B (¢(61) — ¢(62)) + 7 - $(62))
=—(—a-¢(0h) + B (61) — 8- d(62) + 7 ¢(62))
=(a =) - ¢(6h) + (6 —7) - 6(02)

and

V(a;(2) - 2) =E (a,(2)? - 2%) — (E (a;(Z) — Z))

=BE(® - nz<o, - Z° + 7 Moycz<o, - 22+ Nz50, - Z7)
=a? - E(nz<o, - Z2°) + B° - E(Nlg,<z<0, - Z°) +7v* - E(z>0, - Z°)
=a® - (0(61) — 01 - $(6h))
+ B2 (110,20, ((02) — ©(61)) + Mo20, (01 - (01) — b2 - (62)))
+72(02 - ¢(0:) + (1 — ©(6,)) — m”.
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The unconditional probability of default is described as follows

Prob(t < T) =Prob(o-nz<g, - Z + 5 Noy<z<ts - Z + 7 Nz, - Z +Ei-v+m<c)

=F (Prob<5i< e Nz<h 'Z_ﬁ'n91<Z<92'Z_’Y'77Z>92'Z_m|Z>>
v

_E<¢<Ca'ﬁZéel'Z/3'7701<Z<92'Z’y-nz>92-Zm>>
—/ ( ez m) dz+/ < /3 7= m>.¢(z)dz
+/ < —v Z- m>~(b(z)dz

c—m «
=0 1015
’ <\/V2+a2 ! \/1/2+0z2)

c—m e 3 c—m 8
+®2<\/v2+52’92’¢u2+52> ©2<¢uz+52’gl’¢u2+/32>

+ _em ) s c=m .. v
VIZ+92 V2 VR
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Using the parameters from above one can derive the unconditional loss distri-

bution.

*

lim Prob( L
n—0oo

n -

l > x) =Prob(p(Z) > x)
=Prob(a(Z) - Z < c—v- &' (x) —m)

=Prob(a-Z < Qz),Z = 01)+ Prob(B - Z < QUx),0, < Z < b6,)

Using 2.6 one can prove 3.10. It is necessary that

0-a+m—c

Ya = I/

1 - B+m—c

Ypi=

9  Oo-B+m—c

y@~*7y
Oy-y+m—c

Yy = y
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1
E(max (L — A,0)) =1 - A— / Prob(L; < z)dz
A
1

=1-A- /(1 — Prob(L; > x))dx
A

1
=1-A—(1-A4) -l—/Prob(Lf > r)dx
A

Jo(on (1))
+A/1n(m;))>91 . <q> (min <Q(;)> .,92> - CD(é)l))dx

Iz

+ [ o), <q> (%‘”) - @(@)) iz

I3

Using the substitution y = —®~!(z), do = —¢(y) and T := —d~1(A) the

results of the derivations of the integrals I, Iy and I3 are described in the

following. This yields for I

oo (4222220

ctry—m
a

is smaller than 6, if and only if ¥ < y,. So we have to discriminate

between the two cases T < y, and T > y,. This yields for T < y,

[ o)

and for T > y,

;Z‘D(<C+ﬁ/§/_7n>>'¢@0dy+Q24%en-¢u»dy

—@(wﬁ+ﬂww—%ﬂ+ﬂ)+mawu—A—w%»
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The following result holds for I,

X c+vrv-y—m
ctym g, - P (nun <y7 92> - @(91)> - o(y)dy

T
,ZO" 5

’I: . J—
= [ o -0 (min (*;me) - @(@0) - 6(y)dy.

Ify < y}; the indicator function is always 0, and the integral can be transformed

as follows given T > yﬂ

/<I> (min (W7 92) — (P(@l)) - o(y)dy.

A distinction of cases is necessary for the derivation of I, T < yﬂ and T > 2,

ctrvy—m

because is smaller than 605 if and only if y < yﬁ. This yields for T < yﬁ

J TES e RaR

1
Yp
1

Z o <c+ voy— ) - $(y)dy —Z o <W>  6(y)dy — B(6,) - j¢(y)dy

> c—m . v o c—m g v
2<\/52+u2’ ’\/52+y2> 2(@’”’@)
—0(01) - (1 - A-2(yh))
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and for T > y%

T
<c+v y- m) = B(61) - )y + [ (8(62) — (61)) -H(u)dy

v3

1 2
Ys Ys
v3

(” e m) Hy)dy — B(61) - 7¢<y>dy+ (2(6:) — 2(61)) / o(y)dy
] <c—|—l/ y— )-@(y)dy—7@(W>'¢(y)dy

—00 —00

= ®(01) - (D) — D(yh)) + (@(02) — B(01)) - (1= A= D(13))

e (WP T2 TR +v2> - (W;yﬂ;_w)
—0(0) - (D(43) — D(yh)) + ((6) — 2(61) - (1 A~ D(43)).

In a last step one has to derive the integral /3. Given that T > y, the following

relationship holds:

T

c+vrv-y—m
Netvamy, - <c1> <y> - @(92)> - b(y)dy.

g gl

Because C+”f;‘ ™ > 0, holds if and only if y > v, I3 can be transformed to



This integral can be derived without using a distinction of cases

/ (2 (“H22) 00 - ot)ay

Yy

/! (=) ety - JRERCY

—P c-m .V 9 c-m_ v
A\ ) T\ T s
S B(0) (1L A ().
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Adding all integrals up, results in equation 3.10

c—m

v
;1 —
V2 +a? \/V2+oz2>

E(max (L*— A,0)) =(1 — R){nr<y, - (

c—m
+ 77T>ya ' (mJJm m)

g B(6) (1 o )

c—m . v
syt ey - @ \/V2+/327 T N EE

T syl lrey? - < <m7yﬁ1 m))
( % —<I>(y}a)>>

+77T>y3 (\/f ?f \/#{32)
c

+ syl Thr<y?

e (-0 (Gt 7))
+ibesyz - (= 2(00) - (2(y3) - B(yh)))

sy - (8(0) — 9(01))- (fli 2())

+ sy, - P2 <\/;2+7 L= \/V2+7 >
+ vy, ( <\/7’%’ \/ﬁ»
15y, - )<1777®(%) '
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