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Abstract

We show in the paper that the decomposition proposed by Beveridge and

Nelson ������ for models that are integrated of order one can be generalized to

seasonal Arima models by means of a partial fraction decomposition� Two equiv�

alent algorithms are proposed to optimally �in the mean squared sense� compute

the estimates of the components in the generalized decomposition� While the �rst

algorithm is very fast and easy to implement� the second can also provide the

standard errors of the estimated components� The properties of the implied �l�

ters are investigated and compared with those obtained using the model	based

Tramo
Seats software package� The alternative methods are applied to the

German unemployment series�

A part of the research for this paper was carried out within Sonderforschungsbereich ���

at the Humboldt University Berlin and was printed using funds made available by the

Deutsche Forschungsgemeinschaft�
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� Introduction

In recent years� several model�based seasonal adjustment procedures have

been suggested to overcome the ad�hoc character of widely used procedures

based on moving average 	lters� like Census X
��� Due to the in�uence

of the Box and Jenkins
 ������ methodology� most of these model�based

approaches postulated components following Arima models� For example�

Box et al� ������� Nerlove et al� ������� Harvey and Todd ������ and Mar


avall and Pierce ������ adopted an unobserved Arima components frame


work with orthogonal components� Since the development of the software

packages Tramo�Seats �G�omez and Maravall� ����� and Stamp �Harvey�

������ this type of approach has become increasingly popular in practice��

Another approach which is based on an Arima framework is the one

advocated by Beveridge and Nelson ������ for nonseasonal series which are

integrated of order one� This approach has been extended to some seasonal

models by Newbold and Vougas ������� However� to the best of our knowl


edge� a complete solution to the Beveridge�Nelson type of decomposition for

the general case of 	nite nonstationary seasonal series� integrated of any or


der� has not been given in the literature� In this paper� we give one such

general solution� together with two e�cient algorithms which allow for the

computation of the estimates of the components and� if desired� also their

mean squared errors�

The proposed solution is based on a partial fraction decomposition of the

Arima model followed by the series� since� as we show in the paper� that is

precisely what the decomposition proposed by Beveridge and Nelson ������

amounts to in the case of a nonseasonal series which is integrated of order

one�

�The Tramo�Seats software has the potential to compete with the new Census X�
�� program� since it has the capabilities of automatic model identi�cation� automatic
outlier treatment� pre	testing of Trading Day and Easter e
ects� etc� Besides� it can be
e�ciently used for routine application to a large number of series� as is done� for example�
at Eurostat
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The two algorithms proposed to estimate the components are� 	rst the

Kalman 	lter and smoother� appropriately initialized because the series are

nonstationary� and� second a kind of G� Tunnicli�e Wilson
s algorithm like

the one proposed in Burman ������� We show in the paper that both algo


rithms give identical results� The 	rst algorithm� however� is the only one

that can give the standard errors� Besides� it can also be used in the cases

in which there are 	xed e�ects or missing observations in the model� where

the second algorithm cannot be applied�

Since the proposed Beveridge�Nelson decomposition� henceforth referred

to as BND� starts with an Arima model for the series at hand and from that

model constructs models for the components according to a certain rule�

the question naturally arises as to whether the results obtained with this

procedure will be similar to the results obtained with the Tramo�Seats

procedure� The latter procedure obtains models for the components from

the model followed by the series by imposing the so�called canonical decom


position� See Maravall and Pierce �������

There is one fundamental di�erence� however� between both procedures�

In the Tramo�Seats approach� hereafter referred to as TSA� the series is

assumed to be the sum of a certain number of orthogonal components� Since

the components are unobserved� they are estimated by means of the �	nite

version of the� Wiener�Kolmogorov 	lters or� what amounts to the same

thing� the Kalman 	lter and smoother� In the case of the BND� the models

for the components are not orthogonal because all the innovations of these

models coincide with the innovations of the model for the series� This implies

that� if we knew the whole past of the series� the components of the BND

would be in fact observed� Since the observed series is 	nite� we will have to

estimate the components of the BND by projecting the unknown past values

of the series onto the 	nite sample� Therefore� the relevant comparison is

between the minimum mean squared error �MMSE� estimators of the �corre


lated� components of the BND and the MMSE estimators of the �orthogonal�

components of the TSA�
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We compare in the paper the 	lters obtained with the BND with those

obtained by the TSA for some of the more usual models in practice� The

proposed methodology is applied to the series of German unemployment and

the results are compared with the ones obtained applying the TSA�

The paper is structured as follows� In Section �� the decomposition orig


inally proposed by Beveridge and Nelson ������ is reviewed and the result

is established that this decomposition can be obtained by means of a partial

fraction decomposition� Also in this Section� and based on the previous re


sult� a BND is proposed for general Arima models� The two algorithms to

estimate the components in the proposed BND are described in Section � and

their equivalence is proved� In Section �� the properties of the 	lters for the

components obtained with the BND are studied and compared to those of the

corresponding 	lters obtained with the TSA� In Section �� both approaches

are applied to the German unemployment series� Section � summarizes the

conclusions�

� A General Framework for the Beveridge�

Nelson Decomposition

Beveridge and Nelson ������ proposed a decomposition for Arima�p� �� q�

models which was further investigated by Cuddington and Winters �������

Miller ������ and Newbold ������� Suppose fztg is an I��� process such that

rzt has the Wold decomposition rzt � ��B�at� where B is the backshift op


erator� Bat � at��� and r � ��B� Then� according to Beveridge and Nelson

������� zt can be expressed as the sum of a permanent pt and a transitory

ct component� where pt is de	ned as the sum of the current observed value

zt and all forecastable future changes in the series� It was shown by these

authors that the previous de	nition implies that the permanent component

follows the model rpt � ����at and the transitory component is given by ct

� ���B�at� where �
��B� satis	es ��� B����B� � ��B�������

It is a remarkable fact that the BND can also be obtained by means of a
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partial fraction expansion of the rational lag function ��B�� Before proving

this result� we summarize the partial fraction expansion of a rational function

in the following lemma�

Lemma � Let a�x� and bj�x� be polynomials of degree n � � and mj � �

for j � �� � � � � K� Then� the partial fraction expansion yields the unique

decomposition

a�x�
KQ
j��

bj�x�
� c�x� �

KX
j��

dj�x�

bj�x�
� ���

where c�x� and dj�x� are polynomials of degree n� � maxf�� n � �mg and

m�
j � mj � �� respectively� and �m �

PK
j��mj� It is understood that c�x� � �

if n � �m�

A proof of the lemma can be found� for example� in Van der Waerden

������� The polynomials c�x� and dj�x� �j � �� � � � � K� can be determined

by multiplying ��� with
P
bj and comparing the coe�cients of the resulting

polynomials� This yields a system of linear equations which is solved for the

coe�cients of c�x� and dj�x�� Alternatively� one can successively multiply

��� by the di�erent factors of the bj polynomials while setting the variable x

equal to the roots of these factors� In this way� one can sequentially obtain

the unknown coe�cients�

To see that the BND can be obtained by means of a partial fraction

expansion� suppose 	rst that fztg follows the model ��B�rzt � ��B�at� where

the polynomial ��B� is of degree p and has all its roots outside the unit circle

and the polynomial ��B� is of degree q� Then� write the partial fraction

expansion
��x�

��x���� x�
� ��x� �

k

�� x
�
��x�

��x�
� ���

where ��x� is a polynomial of degree maxf�� q � p� �g� k is a constant and

��x� is a polynomial of degree maxf�� p� �g�

Multiplying ��� by �� x and letting x � � yields k � ����� where ��x�

� ��x����x� is� as before� the expression that gives the weights in the Wold
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decomposition of rzt� De	ning ��x� � ��x����x� � ��x����x�� it is not

di�cult to verify that ��x� � ���� � �� � x���x����x�� so that� with the

previous notation� ���x� � ��x����x�� Letting rpt � kat and ��B�ct �

��B�at� the result is proved� Note that the degree of ��B� ismaxfp��� q��g�

which coincides with the result of Newbold and Vougas �������

The original BND allowed for a constant in the model� This is easily

incorporated into the present context� since� in the partial fraction expansion

we would obtain the extra term 	��� � x�� which would be assigned to the

trend component� This follows from the fact that now the model for the

series is ��B��rzt � 	� � ��B�at� The model for the trend would be rpt �

	�����at�

The previous result can be generalized to the multiplicative seasonal

Arima model of the type

��B���Bn��rdrD
n zt � 	� � ��B���Bn�at� ���

where� 	 is the mean of the di�erenced series� n is the number of seasons�

d � �� �� �� D � �� �� r � � � B is a regular di�erence and rn � � � Bn

is a seasonal di�erence� Instead of zt� it may be necessary to use log�zt�� or

some other transformation� to stabilize the variance of the series� If p and

P are the degrees of the autoregressive polynomials ��B� and ��B�� and q

and Q those of the moving average polynomials ��B� and ��B�� model ���

is denoted as a multiplicative �p� d� q��P�D�Q�n model�

If we try to apply the original Beveridge and Nelson
s idea� which is

based on the forecast function of the series� to decompose zt in ��� into a

trend� a seasonal and an irregular component� the task seems formidable�

see� for example� the paper by Newbold and Vougas ������� However� if we

make use of the partial fraction expansion� we immediately obtain a unique

decomposition which makes sense� To this end� 	rst de	ne the polynomials

���B� � ��B���Bn��  �B� � rdrD
n and �

��B� � ��B���Bn� and suppose

for simplicity that there is no mean in ���� Then� consider the partial fraction
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decomposition

���x�

���x� �x�
� ��x� �

�p�x�

��� x�d�D
�
�s�x�

S�x�
�
�c�x�

���x�
� ���

where S�x� � � � x � � � � � xn�� and the third term on the right of the

previous expression exists only if D 
 �� Note that we have used in ��� the

fact that rn � ���B�S�B�� The degrees of the ��x�� �p�x�� �s�x� and �c�x�

polynomials in ��� are� respectively� maxf�� q� � p� � d�g� d� � �� n� � and

p� � �� where p��p� P � q� � q �Q and d� � d�D�

We could further decompose S�B� in ��� into its di�erent seasonal fac


tors� what would give rise in turn to subcomponents associated with the

di�erent seasonal frequencies� However� in order to simplify matters� we will

consider in this paper a unique seasonal component� which will be given by

the decomposition ����

The assignment of the terms in ��� to the di�erent components is linked

with the roots of the autoregressive polynomials in ���� As for the unit

roots� it is clear that the factor �� � x�d
�

should be assigned to the trend

component pt� since it corresponds to an in	nite peak in the pseudospectrum

of the series at the zero frequency� On the other hand� given that all roots of

the polynomial S�x� correspond to in	nite peaks in the pseudospectrum at

the seasonal frequencies� the factor S�x� should be assigned to the seasonal

component st�

As regards the roots of the autoregressive polynomial ��x���xn�� the

situation is not so clear�cut and the assignment is more subjective� For

simplicity� we will consider in what follows only a third component� which

will be referred to as !stationary component" ct� All roots of ��x���x
n� will

be assigned to this stationary component� which� therefore� may include a

cyclical component and stationary trend and seasonal components�

Based on the previous considerations� the decomposition zt � pt� st� ct

is proposed where the trend pt� seasonal st and stationary ct components are

given� respectively� by

rd�pt � �p�B�at� S�B�st � �s�B�at� ���B�ct � ��B�at� ���

�



where ��x� � ��x����x���c�x�� We can express the trend� say� in terms of the

original series zt by replacing at in ��� by the expression #�
��B� �B�����B�$ zt�

obtained from ���� This yields

pt �
�p�B��

��B�S�B�

���B�
zt� ���

Therefore� the trend pt is the result of applying the one�sided 	lter Hp�B� �

�p�B��
��B�S�B�����B� to the series zt� If the roots of �

��x� are all outside

the unit circle or� what is the same thing� the model ��� is invertible� we can

express ��� as an in	nite sum of present and past values of the process fztg�

pt �
P�

j�� �jzt�j� where Hp�B� �
P�

j�� �jB
j� Since in practice we only know

a 	nite series z � �z�� � � � � zN �
�� we will have to estimate the unknown zt in

the previous expression with backcasts�

Proceeding similarly� we 	nd for the other two components of the series

that st � Hs�B�zt and ct � Hc�B�zt� where Hs � ���B��s�B�r
d�����B� and

Hc � ��B� �B�����B��

A couple of examples will serve to clarify matters� Let the series follow

the model ��B�r�zt � ��B�at and let� as before� ��B� � ��B����B�� Then�

��� becomes
��x�

��x���� x��
� ��x� �

k� � k�x

��� x��
�
�c�x�

��x�
� ���

where k� and k� are constants� Letting ��x� � ��x���x� � �c�x� and multi


plying ��� by ��� x�� yields

��x� � k� � k�x� ��� x��
��x�

��x�
� ���

Letting x � �� it is obtained that ���� � k� � k�� Di�erentiating ��� and

letting again x � �� we get ����� � k�� where �
���� is the derivative of ��x�

evaluated at x � �� From this� it is obtained that k� � ������
���� and k� �

������ The trend pt follows the model r
�pt � �k� � k�B�at� which coincides

with the model obtained by Newbold and Vougas �������

�



As a second example� consider the model ��B�rnzt � ��B�at and let

again ��B� � ��B����B�� Then� ��� becomes

��x�

��x���� xn�
� ��x� �

k

�� x
�
�s�x�

S�x�
�
�c�x�

��x�
� ���

where k is a constant� Multiplying ��� by � � x and letting x � � yields k

� �����s� The model for the trend pt is rpt � kat� which again coincides

with the one obtained by Newbold and Vougas �������

The same argument shows that the model for the trend given by the

proposed procedure for the model ��B�rrnzt � ��B�at also coincides with

the one obtained by Newbold and Vougas ������� Therefore� the proposed

procedure is completely general and encompasses all models for which a BND

has been given so far�

� Two Algorithms to Estimate the Beveridge�

Nelson Decomposition

In this section we will describe two algorithms to estimate the components

in the proposed BND� The 	rst algorithm is very simple and is based on the

algorithm proposed by G� Tunnicli�e Wilson in Burman ������� The second

algorithm consists of the Kalman 	lter plus a smoothing algorithm� with a

proper initialization for the Kalman 	lter because the series is nonstationary�

Both algorithms will be proved to be equivalent�

All nonstationary series considered in the proposed BND� that is� the

original series zt� the trend pt and the seasonal st components� are assumed to

start at some 	nite time in the past� They are supposed to be generated like

in Bell ������� as linear combinations of some starting values and elements

of the di�erenced processes� Note however that� in the present context� all

series have the same innovations�

In the rest of the section we suppose that the series follows the general

Arima model ���� where� for simplicity� it is assumed that 	 � ��

�



The Backcasting Algorithm

Since all three components can be expressed as the output of one�sided 	lters

applied to the process fztg� suppose that we want to estimate the 	ltered

series yt � H�B�zt� where H�B� is the Arma 	lter H�B� � ��B�����B� and

yt is any of the three components� By the results of the previous section�

��x� is �p�x��
��x�S�x� in the case of the trend� �s�x��

��x��� � x�d
�

in the

case of the seasonal� and ��x���� x�d��� xn�D in the case of the stationary

component� The proposed algorithmwill avoid the computation of an in	nite

number of backcasts� In fact� it will be necessary to computute only a small

number of backcasts�

Given that the series zt also follows the backward model �
��F � zt �

���F �vt� where F is the forward operator� Fzt � zt��� projecting onto the

	nite sample z � �z�� � � � � zN�
� implies ���F � zt � �� t � �q�� Then� letting

r be the degree of ��x�� the 	rst algorithm is

Solve the system

���B�yt � ��B�zt t � �q� � �� � � � � p� � q�

���F � yt � � t � ��q� � �� � � � ��q�

where q� � r backcasts are needed% &z�q��r��� � � � � &z��

For t � p� � q� � �� � � � � N � obtain yt from the recursion ���B�yt �

��B�zt�

In order to obtain the backcasts needed in the previous algorithm� we can

use the Kalman 	lter like in G�omez and Maravall ������ with the reversed

series�

To illustrate� consider the very simple example r�zt � at� Then� the

partial fraction decomposition

�

�� x�
�

c�
�� x

�
c�
� � x

yields c� � c� � ���� so that the trend pt follows the model rpt � �����at

and the seasonal st follows the model S�B�st � �����at� where S�B� � ��B�

��



There is no stationary component in this case� It is straightforward to verify

that pt � ������� � B�zt and st � �������� B�zt� In order to estimate the

trend� only one backcast &z� is needed� which is easily seen to be &z� � z�� This

implies &p� � �z� � z�����

The Kalman Filter Algorithm

This algorithm consists of an augmented Kalman 	lter plus an augmented

smoothing algorithm� The state space representation we will use is based

on that of G�omez and Maravall ������� which in turn is an extension to

nonstationary models of the representation proposed by Akaike ������ for

Arma models�

The state space representation of the proposed BND is obtained from

the state space representation of each component� Following G�omez and

Maravall ������� the state space representation of the trend� for example�

can be obtained as follows� Let m be the degree of �p�x� in ���� let r
d� �

���p�B� � � ���pd�B
d� � rp � maxfd�� m��g and de	ne �pi � � when i 
 d��

Then� the state space representation of the trend pt is

pt � H �
px

p
t ����

xpt�� � Fpx
p
t �Gpat��� ����

where

Fp �

�
�������

� � � � � � �
� � � � � � �
���

���
���

� � �
���

� � � � � � �
��prp ��prp�� ��prp�� � � � ��p�

�
�������
�

xpt � �pt� pt��jt� � � � � pt�rp��jt�
�� Hp � ��� �� � � � � ��

�� Gp ���� 

p
�� � � � 


p
rp���

� and

the 
p
i weights are the coe�cients obtained from 
p�B� � �p�B��r

d� �P�
i�� 


p
iB

i� The elements of the state vector are de	ned as pt�ijt � pt�i �


p
�at�i�� � ��
p

i��at��� i � �� � � � � r
p��� They are the predictors of pt�i based

on the semi
in	nite sample fpj % j � tg� The state space representations for

��



the seasonal st and the stationary ct components are de	ned by replacing in

���� and ���� p with s and c� respectively� where the matrices Fs� Fc� Gs� Gc�

Hs and Hc and the vectors x
s
t and x

c
t are de	ned analogously to Fp� Gp� Hp

and xpt �

The state space representation of the proposed BND is de	ned by

zt � H �xt ����

xt�� � Fxt �Gat��� ����

where F � diag#Fp� Fs� Fc$ �a block diagonal matrix�� G � �G
�
p� G

�
s� G

�
c�
�� H �

� �H �
p� H

�
s� H

�
c� and xt � �x

p�

t � x
s�

t � x
c�

t �
��

In order to obtain initial conditions for the augmented Kalman 	lter� to

be applied to ���� and ����� we will proceed like in Bell ������ with the

two nonstationary components pt and st� That is� we will generate these

components as linear combinations of some starting values and elements of

the di�erenced processes� upt � rd�pt and ust � S�B�st� We will illustrate

the process with the trend component pt� Let the starting values be �
p �

�p��d�� � � � � p��
�� Then� following Bell ������� the pt can be generated from

pt � Ap�

t �
p �

Pt��
i�� �

p
i u

p
t�i� where t 
 �� ��rd� �

P�
i�� �

p
iB

i and the Ap
t �

�Ap
��t� � � � � A

p
d��t�

� can be recursively generated from

Ap
t � ��� � � � � �� � � � � ��� t � �� d�� � � � � �

Ap
t � ��p�A

p
t�� � � � � � �pd�A

p
t�d� � t 
 ��

where for t � � � d�� � � � � � the one is in the �t � d���th position� Note

that we have used �p��d�� � � � � p��
� as starting values instead of the starting

values�p�� � � � � pd��
� used by Bell ������� This is immaterial for the theoretical

development and is done to facilitate the initialization of the Kalman 	lter

algorithm�

Like in G�omez and Maravall ������� p� ���� it can be shown that the

initial state vector xp� in ���� and ���� veri	es x
p
� � Ap�p � 'pUp� where

Ap � #Ap
��� � � � A

p
rp$

�� 'p is the lower triangular matrix with rows the vectors

��pj��� �
p
j��� � � � � �� �� � � � � ��� j � �� � � � � r

p� Up � �up�� u
p

�j�� � � � � u
p

rpj��
� and upij�

��



� E�upi ju
p
t % t � ��� i 
 �� A similar argument would lead to an initial state

vector xs� � As�s � 'sU s for the seasonal component st� where the starting

values are �s � �sn��� � � � � s��
� and the matrices As� 's and U s are de	ned

analogously to Ap� 'p and Up� Since the stationary component ct is� by

de	nition� stationary no special assumptions need to be made with respect

to its initial state vector xc��

Then� the initial state vector for ���� and ���� is given by x� � A��'U �

where A � # �A�� ��$�� �A � diag#Ap� As$� � � ��p
�

� �s
�

��� ' � diag#'p�'s� I$� and

U � �Up�� U s� � xc
�

� �
��

The augmented Kalman 	lter and smoothing algorithms that we will use

are based on the results of De Jong ������� A review of De Jong
s results�

together with a detailed description of the proposed algorithms can be found

in the appendix�

Continuing with the example of this section� the state space representa


tion is given by ���� and ����� where xt � �pt� st�
�� H � � ��� ��� G � ��� ����

and

F �
�
� �
� ��

�
�

The initial state is x� � F��Ga�� where � � �p�� s��
�� The initial conditions

for the augmented Kalman 	lter are �&x�j�� &X�j�� � ����F � and (�j� � GG��

We 	nish this section by proving that the two proposed algorithms yield

identical estimates of the components� The result is contained in the following

theorem�

Theorem � The two algorithms described in this section to estimate the

components of the proposed BND yield identical results�

PROOF� Suppose that we want to use the second algorithm described in this

section to estimate all components based on z � �z�� � � � � zN�
�� the observed

series� To this end� the augmented Kalman 	lter is 	rst applied� followed

by the QR algorithm� to obtain the GLS estimator &�� Then� we apply the

augmented 	xed point smoother� Denote this estimator by E�ytjz� &��� where

yt is any of the three components�

��



Suppose now that � � �z��d� � � � � z��
� is used instead of � to model uncer


tainty and that the augmented Kalman 	lter and smoother are used again

to estimate yt based on z� Denote this estimator by E�ytjz� &��� Then� by

result � and examples � and � of Bell and Hillmer ������� the transformation

approach estimates of yt using � and � coincide� By theorem ��� of Ansley

and Kohn ������� these last two estimators also coincide with the di�use

estimators E�ytjz� &�� and E�ytjz� &��� Note that examples � and � continue to

be valid in the present context� although the components are now correlated�

because � � M� � u� where M is nonsingular and u is a stationary vector�

It is only the stationary vector u that changes with respect to the context

with orthogonal components�

Make assumption A of Bell ������ and suppose that � instead of z� �

�z�� � � � � zd�
� is used to generate the series and assume that the semi�in	nite

realization f� � � � z��� z�� z�� � � � � zNg is known� Then� using the notation and

results of this section� the component yt satis	es the di�erence equation

���B�yt � ��B�zt� Projecting 	rst both sides of this equation onto the space

generated by f�� z�� � � � � zNg� where � is considered 	xed� and then project


ing again onto the space generated by fz�� � � � � zNg� yields �
��B�&yt � ��B�&zt�

where &zt � zt for t � �� � � � � N and is a backcast based on z otherwise� and &yt

� E�ytjz� &��� the estimator mentioned above� The backcasts can be obtained

using the reversed series and an appropriate state space representation for

the original series� Since E�ytjz� &�� � E�ytjz� &��� the proof is complete�

As mentioned earlier� the 	rst algorithm can only give the estimates of

the components� whereas the second one also gives the standard errors and

can be used in a more general context� like� for example� when there are

missing observations�

��



� The Beveridge�Nelson Decomposition in the

Frequency Domain

From the results of the previous sections� it follows that the components of the

BND are obtained by applying certain one�sided 	lters to the original series�

More speci	cally� the trend pt and seasonal st components are obtained by

applying the 	lters Hp and Hs de	ned immediately after ���� The stationary

component ct can be obtained simply as ct � zt � pt � st�

To investigate the e�ects of these 	lters in the frequency domain� we 	rst

discuss a trend model without seasonal component� as in the original work

of Beveridge and Nelson ������� Assume� for simplicity� that the series is

generated by the model rzt � at � �at��� Then� as we saw in Section �� the

model for the trend is rpt � kat� where k � ���� This implies pt � Hp�B�zt�

where Hp�B� � #�� � ����� � �B�$ zt� The squared gain G
�
p�x� � jHp�e

�ix�j�

results as

G�
p�x� �

�� � ���

� � ��cosx� ��
�

In Fig� �a and �b present the gain and phase delay functions for various

values of �� It can be seen from the graphs that as � goes to �� the 	lter

behaves better in the sense that it resembles more what one would expect

from a trend 	lter� However� there is a trade�o� between better low�pass

gain function and greater phase delay in the frequency band around zero� The

greater the phase delay� the more the 	ltered series will have to be shifted to

be in phase with the original series� Note that all values in Fig� �a and �b

correspond to negative values of �� For positive values of �� the trend 	lters

behave very badly� taking values much greater than one �not shown��

Consider now the seasonal airline model for quarterly series rr�zt �

����B�����B��at� To simplify the exposition� a value of � � ��� has been

chosen and kept 	xed while the parameter � takes several negative values�

The gain and phase delay functions for the di�erent values of � can be seen

in Fig� �c and �d� The behaviour is analogous to that of the nonseasonal

model�

��



It is well known that the Wiener�Kolmogorov 	lters of the TSA corre


sponding to an in	nite realization � � � � z��� z�� z�� � � �� are of the formH�F �H�B��

where B and F are the backshift and forward operators and H�B� is a quo


tient of polynomials in B� To facilitate the comparison of the BND with

the TSA� in Fig� �a and �b the gain functions of the H�B� 	lters obtained

with the TSA are presented for the same values of � than in Fig� �c and �d�

No phase delay functions are presented because in this case they are zero�

given that the 	lter H�F �H�B� is symmetric� Note that in all cases the gain

functions are always less than or equal to one and that they are more in

agreement with a gain function of a low�pass 	lter�

Finally� it has to be emphasized that the 	lters we have considered in

this section correspond to an in	nite realization� in the case of the TSA� and

to a semi�in	nite sample in the case of the BND� Since in practice only a

	nite series is available� the 	nite versions of these 	lters will di�er from the

in	nite ones� especially at both ends of the series� This is an interesting topic

which has been touched upon by� for example� Baxter and King ������� but

which we have not pursued in this paper for lack of space�

� Application to the German Unemployment

Series

To compare the properties of the TSA with those of the proposed BND� the

German unemployment series running from �����I� to �����IV� is considered�

This series has also been analyzed in Breitung ������ and is selected to

illustrate the main features of the two approaches� Needless to say that by

considering a single example it is not possible to draw ultimate conclusions

with respect to the merits or demerits of both approaches�

Applying the automatic model identi	cation procedure of the software

package Tramo to the original time series�� the following model was selected

�The series has not been logarithmically transformed or adjusted for outliers to facilitate
the comparison with the BND

��



and estimated

��� �����B����B���� B��zt � ��� �����B
��at� ����

The automatic model identi	cation method ofTramo proceeds in two stages�

First� using an autoregressive model AR������n and Arma��� ����� ��n mod


els� where n is the number of seasons in the year� the unit roots are estimated�

Then� the BIC criterion is applied to the di�erenced series to select among

a wide range of multiplicative seasonal models a suitable one�

The 	t is acceptable� although the residuals show some departure from

normality due probably to the presence of some outlier� The components es


timated with TSA are depicted in Fig� � and those estimated for the proposed

BND with the two algorithms proposed in this paper �the results obtained

with both algorithms are practically identical� in Fig� � b�� d�� f�� Both

estimated trends are quite similar� although the trend estimated with the

BND is not so smooth� This is no surprise since the 	lters used by Seats

are two�sided whereas the ones used by the BND are one�sided� Also� the

autoregressive factor � � �����B is assigned to the trend component in the

TSA� whereas it is assigned to the stationary component in the BND�

It turns out that the recession of ���� led to a sharp increase of cyclical

�short�term� unemployment� while both the recession following the oil shock

of ���� and the recession of ��������� caused a sharp raise in cyclical and

long�term unemployment�

The seasonal components estimated with the BND and the TSA are very

similar� However� the irregular component from TSA and the stationary

component of the BND look quite di�erent� This is explained� among other

things� by the fact that� as mentioned earlier� the autoregressive factor � �

�����B is assigned to the trend in the TSA and to the stationary component

in the BND�

��



� Conclusions

In this paper� the decomposition originally proposed by Beveridge and Nelson

������ has been extended to arbitrary multiplicative seasonalArima models�

The proposed decomposition is based on a partial fraction expansion of the

model followed by the series� where the regular and the seasonal unit roots

of the di�erencing operator are assigned� respectively� to the trend and the

seasonal component� The stationary autoregressive roots are assigned to a

so�called stationary component� which may exhibit cyclical behaviour�

Two equivalent algorithms are proposed to compute the estimates of the

components in the generalized BND� The algorithms are optimal in the mean

squared sense and one of them� the augmented Kalman 	lter plus augmented

smoothing� can also give the standard errors� However� the other algorithm

is much simpler to apply�

The 	lters obtained with the BND seem to have less desirable features

than the ones given by the TSA� First� their gain functions often take values

greater than one and� second� they present a non�negligible phase delay

e�ect� For the airline model with moving average factors of the form �� �B�

where � is positive� the trend 	lters given by the BND are unusable because

the gain function takes values much greater than one�

Two possible advantages of the BND are that the decomposition always

exists and that there are no revisions� However� this second advantage is

more apparent than real because the lack of revisions comes at the expense

of an increase in the error with which the components are estimated�

Appendix

In the expression of section � for x�� � models uncertainty with respect to the
initial conditions and its distribution is unknown� Therefore� the ordinary Kalman
�lter cannot be applied and some device has to be used to handle �� which can
be considered as a vector of nuisance random variables� Kalb�eisch and Sprott
���
�� proposed several methods to eliminate the dependence of the likelihood on
nuisance parameters� which are also valid in the present context� More speci�cally�

��



the marginal likelihood� which is the likelihood of a transformation of the data to
eliminate the nuisance parameters� is the approach proposed by Ansley and Kohn
������� The Bayesian approach� which consists of considering � di�use� is the
approach of De Jong �������

For algorithmical purposes� we will use the approach of De Jong ������ in this
paper� Using the transition equation ����� we have the following lemma� whose
proof is straightforward and is omitted�

Lemma � Suppose that the series z � �z�� � � � � zN �
� has been generated by the state

space model ���� and ����� where x� � A���U � as described earlier� and assume

that � is independent of the innovations at� Then� the following representation

holds

z � X� � �� ����

where� partitioning X � �X�� � � � �XN �
� and � � ���� � � � � �N �

� conforming to z �
�z�� � � � � zN �

�� the X �
t and �t� t � �� � � � � N � can be obtained from the recursions X �

t

� H �Jt and Jt�� � FJt�with the initial condition J� � A� and �t � H ��t and

�t�� � F�t �Gat��� with the initial condition �� � �U � Besides� E��� � �� and
Cov��� �� � ��

Let Var�at� � ��a and Var��� � ��a� in ����� Following De Jong ������� suppose
that � is independent of the fatg� has mean � and covariance matrix �

�
aC� and take

the limit C�� � � to make it di�use� Assuming normality in at and � and letting
l�z� be the log	likelihood of z in ���� it is shown in De Jong ������ that� apart
from a constant� as C�� � ��

l�z� �
�

�
ln j��aCj � �

�

�
f�N � d�� ln���a� � ln j�j� ln jX ����Xj

� �z �X��������z �X������ag� ����

where �� � �X ����X���X ����z and the mean squared error �Mse� of �� is Mse����
� ��a�X

����X���� The limit expression in ���� is the di�use log	likelihood� The
parameter ��a can be concentrated out of the di�use log	likelihood by replacing ��a
in ���� with its maximum likelihood estimator ���a � �z�X��������z�X�����N�d���

The previous result tells us that making � di�use implies that ���� can be
considered as a generalized linear regression model �GLS�� where � is the vector
of regression parameters and �� and ���a are the GLS estimators�

In order to evaluate the di�use log	likelihood e�ciently� let � � LL�� with L
lower triangular� be the Cholesky decomposition of � � Var������a and suppose

��



that an e�cient algorithm exists to compute L��z� L��X and jLj� This algo�
rithm is a slight modi�cation of the DKF� which will be described later� Then�
premultiplying ���� by L��� it is obtained that

L��z � L��X� � L���� ��
�

where Var�L���� � ��aIN � Therefore� model ��
� is an ordinary linear regression
model� The GLS estimators �� and ���a can now be e�ciently and accurately ob�
tained using the QR algorithm� as suggested by Kohn and Ansley ������� This
last algorithm premultiplies both L��z and L��X by an orthogonal matrix Q to
obtain v � QL��z and �R�� ���� � QL��X� where R is a nonsingular d��d� upper
triangular matrix� Then� �� � R��v� and ���a � v��v���N � d��� where v � �v��� v

�
��
��

v� has dimension d� and v� has dimension N � d�� jX ����Xj in ���� can be
calculated as jX ����Xj � jR�Rj�

To understand the meaning of the DKF of De Jong ������� consider �rst that
� is zero in ���� and ��a � �� Then� we can apply the ordinary Kalman �lter� given
by the recursions

et � zt �H ��xtjt��� ��tjt�� � H ��tjt��H

Kt � F�tjt��H��
�
tjt��� �xt��jt � F �xtjt�� �Ktet

�t��jt � �F �KtH
���tjt��F

� �GG��

where the initial conditions are �x�j� � � and ��j� � �Var�U��� and the covariance
matrix Var�U� can be e�ciently computed using the results in Jones ������� The
sequence of standardized innovations et��tjt��� t � �� � � � � N is an orthogonal se�
quence with mean zero and covariance matrix equal to the identity matrix� This
implies that this sequence coincides with L��z in ��
�� Also� jLj �

QN
t�� �tjt���

These are standard results of the Kalman �lter� Proofs can be seen in Anderson
and Moore ���
���

A consequence of these results is that the Kalman �lter can be seen as an
algorithm that� applied to any vector v of data� yields L��v� Therefore� if � is
not zero in the GLS model ����� we can apply the Kalman �lter to the data z
and the columns of the X matrix to obtain L��z and L��X� The DKF is an
algorithm that allows for the automatic computation of these quantities� In this
algorithm� the recursions for et and �xtjt�� in the Kalman �lter are augmented to
matrix recursions

�et� Et� � �zt� �� �H ���xtjt��� �Xtjt����

��xt��jt� �Xt��jt� � F ��xtjt��� �Xtjt��� �Kt�et� Et��

��



where the additional columns correspond to new states for the columns of the
X matrix� The other recursions in the Kalman �lter remain the same and the
initialization is ��x�j�� �X�j�� � ����A� and ��j� as before� It can be shown� using
the results in De Jong ������� that stacking the vectors �et� Et���tjt�� one on top
of the other for t � �� � � � � N � the matrix �L��z� L��X� is generated�

The DKF also has the recursion Qt�� � Qt��et� Et�
��et� Et���

�
tjt��� initialized

with Q� � �� This recursion accumulates the partial squares and cross products
in such a way that

QN�� �

�
�L��z��

�L��X��

� h
L��z� L��X

i
�

�
z����z z����X
X ����z X ����X

�

and from QN�� the GLS estimators �� and ���a can be computed� We propose in this
paper a Kalman �lter algorithm which is the DKF without the recursion for Qt and
which applies instead the QR algorithm to �L��z� L��X�� in the manner described
above� We think that this procedure is numerically more stable than solving
the normal equations to obtain the GLS estimators and is not computationally
expensive�

Note that ��a is supposed to be one in the proposed algorithm because it can
be estimated later with GLS�

Once the GLS estimators �� and ���a in ���� have been obtained� it can be shown�
using the results in De Jong ������� that the di�use predictors �zN�� and �xN�� of
zN�� and XN�� are

�zN�� � H ��xN��jN �EN��
��� �xN�� � �xN��jN � �XN��jN

��

Mse��zN��� � ���a�
�
tjt�� �EN��Mse����E�

N��

Mse��xN��� � ���a�N��jN � �XN��jNMse���� �X �
N��jN �

where Mse���� � ���a�X
����X��� � ���aR

��R
����

Di�use smoothing refers to the process of obtaining the estimator �xt of the
state xt based on the entire data vector z � �z�� � � � � zN �

�� The estimator �xt can
be obtained by means of an augmented version of any of the existing algorithms
for smoothing� like the �xed point smoother or the �xed interval smoother� In this
paper we will use an augmented �xed point smoother because it can be simpli�ed so
that very small storage requirements are needed� see G�omez and Maravall �������
and because it is well suited for revisions of the estimates as new data come in�

The augmented �xed point smoother for xs� � � s � N � is the set of recursions

Ka
t � �a

tjt��H��
�
tjt��� �a

t��jt � �a
tjt���F �KtH

���

��



��xsjt� �Xsjt� � ��xsjt��� �Xsjt��� �Ka
t �et� Et�

�sjt � �sjt�� � �a
tjt��H�Ka

t �
��

initialized with �a
sjs�� � �sjs��� where ��tjt��� Kt� �et� Et�� ��xsjs��� �Xsjs��� and

�sjs�� are produced by the proposed Kalman �lter algorithm� It can be shown
that the estimator �xs and its Mse are obtained from

�xs � �xsjN � �XsjN
��� Mse��xs� � ���a�sjN � �XsjNMse���� �X �

sjN �

References

#�$ Akaike� H�� ������� !Markovian Representation of Stochastic Processes
and its Applications to the Analysis of Autoregressive Moving Average
Processes"� Annals of the Institute of Statistical Mathematics� ��� ����
����

#�$ Anderson� B�D�O�� and Moore� J�B�� ������� Optimal Filtering� Engle

wood Cli�s% Prentice Hall�

#�$ Ansley� C�F� and Kohn� R�� ������ !Estimation� Filtering and Smooth

ing in State Space Models with Incompletely Speci	ed Initial Condi

tions"� Annals of Statistics� ��� ����������

#�$ Baxter� M� and King� R�G�� ������ !Measuring Business Cycles% Ap

proximate Band�pass Filters for Economic Time Series"� National Bu

reau of Economic Research� working paper N� �����

#�$ Bell� W�� ������� !Signal Extraction for Nonstationary Series"� The An�
nals of Statistics� ��� ���
����

#�$ Bell� W�� and Hillmer� S�� ������� !Initializing the Kalman Filter for
Nonstationary Time Series Models"� Journal of Time Series Analysis�
��� ��������

#�$ Beveridge� S� and Nelson� C�R�� ������� !A new Approach to Decompo

sition of Economic Time Series Into Permanent and Transitory Compo

nents With Particular Attention to Measurement of the Business Cycle"�
Journal of Monetary Economics� �� ��������

��



#�$ Box� G�E�P�� Hillmer� S�C�� and Tiao� G�C�� ������� !Analysis and Mod

eling of Seasonal Time Series"� in Zellner� A� �ed��� Seasonal Analysis
of Economic Time Series� Washington� D�C�% U�S� Dept� of Commerce�
Bureau of the Census� ��������

#�$ Box� G�E�P�� and Jenkins� G�M�� ������� Time Series Analysis� Fore�

casting and Control� Holden
Day� San Francisco�

#��$ Breitung� J�� ������� A Model Based Seasonal Adjustment Method
Using the Beveridge�Nelson Decomposition"� Allgemeines Statistisches

Archiv� ��� ��������

#��$ Burman� J�P�� ������� !Seasonal Adjustment by Signal Extraction"�
Journal of the Royal Statistical Society A� ���� ��������

#��$ Cuddington� J�T� and Winters� L�A�� ������� !The Beveridge�Nelson
Decomposition of Economic Time Series% A Quick Computational
Method"� Journal of Monetary Economics� ��� ��������

#��$ De Jong� P�� ������� !The Di�use Kalman Filter"� The Annals of Statis�
tics� ��� ����
�����

#��$ G�omez� V�� and Maravall� A�� ������� !Estimation� Prediction and In

terpolation for Nonstationary Series With the Kalman Filter"� Journal
of the American Statistical Association� ��� ���
����

#��$ Gmez� V�� and Maravall� A�� ������� !Programs Tramo and Seats"�
Instructions for the User �Beta Version% June ������ Working Paper
N� ������ Direccin General de Anlisis y P�P�� Ministry of Economy and
Finance�

#��$ Harvey� A�C� and Todd� P�H�J�� ������� !Forecasting Economic Time Se

ries With Structural and Box�Jenkins Models% A Case Study"� Journal
of Business and Economic Statistics� �� ��������

#��$ Jones� R�� ������� !Maximum Likelihood Fitting of Arma Models to
Time Series With Missing Observations"� Technometrics� ��� ���
����

#��$ Kalb�eisch� J� D�� and Sprott� D� A�� ������� !Application of Likelihood
Methods to Models Involving Large Numbers of Parameters" �with dis

cussion�� Journal of the Royal Statistical Society� Ser� B� ��� ���
����

��



#��$ Kohn� R�� and Ansley� C�F�� ������� !E�cient Estimation and Prediction
in Time Series Regression Models"� Biometrika� ��� ��������

#��$ Maravall� A�� and Pierce� D�A�� ������� !A Prototypical Seasonal Ad

justment Model"� Journal of Time Series Analysis� �� ��������

#��$ Miller� S�M�� ������� !The Beveridge�Nelson Decomposition of Eco

nomic Time Series% Another Economical Computational Method"� Jour�
nal of Monetary Economics� ��� ��������

#��$ Nerlove� M�� Grether� D�� and Carvalho� J�L�� ������� Analysis of Eco�
nomic Time Series� a Synthesis� Academic Press� New York�

#��$ Newbold� P�� ������� !Precise and E�cient Computation of the
Beveridge�Nelson Decomposition of Economic Time Series"� Journal of
Monetary Economomics� ��� ��������

#��$ Newbold� P�� and Vougas� D�� ������� !Beveridge�Nelson Type Trends
for I��� and Some Seasonal Models"� Journal of Time Series Analysis�
��� ��������

#��$ Van Der Waerden� B�L�� ������� Algebra �translation of Moderne Alge�

bra�� Ungar� New York�

��



Fig� �% a� Gain and b� Phase Delay Functions of Trend Filters �Nonseasonal
BND�� c� Gain and d� Phase Delay Functions of Trend Filters �Seasonal
BND��

��



Fig� �% a� Gain Functions of Trend Filters �Nonseasonal TSA��
� b� Gain Functions of Trend Filters �Seasonal TSA��

��



Fig� �% a� Trend� c� Seasonal and e� Irregular component �TSA��
b� Trend� d� Seasonal and f� Stationary component �BND��

��



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /PoorRichard-Regular
    /Pristina-Regular
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


