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a Different Perspective With New Results
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Abstract

We show in the paper that the decomposition proposed by Beveridge and
Nelson (1981) for models that are integrated of order one can be generalized to
seasonal ARIMA models by means of a partial fraction decomposition. Two equiv-
alent algorithms are proposed to optimally (in the mean squared sense) compute
the estimates of the components in the generalized decomposition. While the first
algorithm is very fast and easy to implement, the second can also provide the
standard errors of the estimated components. The properties of the implied fil-
ters are investigated and compared with those obtained using the model-based
TRAMO/SEATS software package. The alternative methods are applied to the
German unemployment series.
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Deutsche Forschungsgemeinschaft.



1 Introduction

In recent years, several model-based seasonal adjustment procedures have
been suggested to overcome the ad—hoc character of widely used procedures
based on moving average filters, like CENSUS X-11. Due to the influence
of the Box and Jenkins’ (1970) methodology, most of these model-based
approaches postulated components following ARIMA models. For example,
Box et al. (1978), Nerlove et al. (1979), Harvey and Todd (1983) and Mar-
avall and Pierce (1987) adopted an unobserved ARIMA components frame-
work with orthogonal components. Since the development of the software
packages TRAMO/SEATS (Gomez and Maravall, 1997) and STAMP (Harvey,
1984), this type of approach has become increasingly popular in practice’.

Another approach which is based on an ARIMA framework is the one
advocated by Beveridge and Nelson (1981) for nonseasonal series which are
integrated of order one. This approach has been extended to some seasonal
models by Newbold and Vougas (1995). However, to the best of our knowl-
edge, a complete solution to the Beveridge—Nelson type of decomposition for
the general case of finite nonstationary seasonal series, integrated of any or-
der, has not been given in the literature. In this paper, we give one such
general solution, together with two efficient algorithms which allow for the
computation of the estimates of the components and, if desired, also their
mean squared errors.

The proposed solution is based on a partial fraction decomposition of the
ARIMA model followed by the series, since, as we show in the paper, that is
precisely what the decomposition proposed by Beveridge and Nelson (1981)
amounts to in the case of a nonseasonal series which is integrated of order

one.

!The TRAMO/SEATS software has the potential to compete with the new CENsus X-
12 program, since it has the capabilities of automatic model identification, automatic
outlier treatment, pre—testing of Trading Day and Easter effects, etc. Besides, it can be
efficiently used for routine application to a large number of series, as is done, for example,
at EUROSTAT



The two algorithms proposed to estimate the components are, first the
Kalman filter and smoother, appropriately initialized because the series are
nonstationary, and, second a kind of G. Tunnicliffe Wilson’s algorithm like
the one proposed in Burman (1980). We show in the paper that both algo-
rithms give identical results. The first algorithm, however, is the only one
that can give the standard errors. Besides, it can also be used in the cases
in which there are fixed effects or missing observations in the model, where
the second algorithm cannot be applied.

Since the proposed Beveridge-Nelson decomposition, henceforth referred
to as BND, starts with an ARIMA model for the series at hand and from that
model constructs models for the components according to a certain rule,
the question naturally arises as to whether the results obtained with this
procedure will be similar to the results obtained with the TRAMO/SEATS
procedure. The latter procedure obtains models for the components from
the model followed by the series by imposing the so—called canonical decom-
position. See Maravall and Pierce (1987).

There is one fundamental difference, however, between both procedures.
In the TRAMO/SEATS approach, hereafter referred to as TSA, the series is
assumed to be the sum of a certain number of orthogonal components. Since
the components are unobserved, they are estimated by means of the (finite
version of the) Wiener—Kolmogorov filters or, what amounts to the same
thing, the Kalman filter and smoother. In the case of the BND, the models
for the components are not orthogonal because all the innovations of these
models coincide with the innovations of the model for the series. This implies
that, if we knew the whole past of the series, the components of the BND
would be in fact observed. Since the observed series is finite, we will have to
estimate the components of the BND by projecting the unknown past values
of the series onto the finite sample. Therefore, the relevant comparison is
between the minimum mean squared error (MMSE) estimators of the (corre-
lated) components of the BND and the MMSE estimators of the (orthogonal)
components of the TSA.



We compare in the paper the filters obtained with the BND with those
obtained by the TSA for some of the more usual models in practice. The
proposed methodology is applied to the series of German unemployment and
the results are compared with the ones obtained applying the TSA.

The paper is structured as follows. In Section 2, the decomposition orig-
inally proposed by Beveridge and Nelson (1981) is reviewed and the result
is established that this decomposition can be obtained by means of a partial
fraction decomposition. Also in this Section, and based on the previous re-
sult, a BND is proposed for general ARIMA models. The two algorithms to
estimate the components in the proposed BND are described in Section 3 and
their equivalence is proved. In Section 4, the properties of the filters for the
components obtained with the BND are studied and compared to those of the
corresponding filters obtained with the TSA. In Section 5, both approaches
are applied to the German unemployment series. Section 6 summarizes the

conclusions.

2 A General Framework for the Beveridge—
Nelson Decomposition

Beveridge and Nelson (1981) proposed a decomposition for ARIMA(p, 1, q)
models which was further investigated by Cuddington and Winters (1987),
Miller (1987) and Newbold (1990). Suppose {z;:} is an (1) process such that
V z; has the Wold decomposition Vz; = W(B)ay, where B is the backshift op-
erator, Ba; = a;_1, and V = 1—B. Then, according to Beveridge and Nelson
(1981), z; can be expressed as the sum of a permanent p, and a transitory
¢; component, where p; is defined as the sum of the current observed value
2 and all forecastable future changes in the series. It was shown by these
authors that the previous definition implies that the permanent component
follows the model Vp, = ¥(1)a; and the transitory component is given by ¢,
= U*(B)ay, where U*(B) satisfies (1 — B)U*(B) = ¥(B) — ¥(1).

It is a remarkable fact that the BND can also be obtained by means of a



partial fraction expansion of the rational lag function ¥(B). Before proving
this result, we summarize the partial fraction expansion of a rational function

in the following lemma.

Lemma 1 Let a(x) and b;(z) be polynomials of degree n > 0 and m; > 1
for 7 = 1,...,K. Then, the partial fraction expansion yields the unique
decomposition

d;(x)
bj(x)’

—il—:dm+z; W

bj(z)

—=

j=1
where c(x) and dj(x) are polynomials of degree n* = max{0,n — m} and
;f =
ifn<m.

m} = m; — 1, respectively, and m = ¥} m;. It is understood that c(x) =0

A proof of the lemma can be found, for example, in Van der Waerden
(1970). The polynomials ¢(z) and d;(z) (j = 1,..., K) can be determined
by multiplying (1) with Y b; and comparing the coefficients of the resulting
polynomials. This yields a system of linear equations which is solved for the
coefficients of ¢(x) and d;(z). Alternatively, one can successively multiply
(1) by the different factors of the b; polynomials while setting the variable x
equal to the roots of these factors. In this way, one can sequentially obtain
the unknown coefficients.

To see that the BND can be obtained by means of a partial fraction
expansion, suppose first that {z;} follows the model ¢(B)Vz; = 0(B)a;, where
the polynomial ¢(B) is of degree p and has all its roots outside the unit circle
and the polynomial §(B) is of degree ¢q. Then, write the partial fraction

expansion
() B k a(x)
soi-o T ey )

where «(z) is a polynomial of degree max{0,q —p — 1}, k is a constant and

a(x) is a polynomial of degree maxz{0,p — 1}.
Multiplying (2) by 1 — x and letting x = 1 yields & = ¥(1), where ¥(x)
= 0(z)/p(x) is, as before, the expression that gives the weights in the Wold
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decomposition of Vz;. Defining v(z) + a(z)/¢(x) = n(z)/¢(x), it is not
difficult to verify that ¥U(zx) = ¥(1) + (1 — )n(x)/¢(x), so that, with the
previous notation, V*(x) = n(z)/¢(z). Letting Vp, = ka; and ¢(B)c; =
n(B)ay, the result is proved. Note that the degree of n(B) is maz{p—1,q—1},
which coincides with the result of Newbold and Vougas (1995).

The original BND allowed for a constant in the model. This is easily
incorporated into the present context, since, in the partial fraction expansion
we would obtain the extra term p/(1 — ), which would be assigned to the
trend component. This follows from the fact that now the model for the
series is ¢(B)(Vz; — u) = 0(B)a;. The model for the trend would be Vp, =
p+ Y(1)a.

The previous result can be generalized to the multiplicative seasonal
ARIMA model of the type

¢(B)®(B") (V'V} 2 — p) = 0(B)O(B" )y, (3)

where, p is the mean of the differenced series, n is the number of seasons,
d=10,1,2, D =0,1, V =1 — B is a regular difference and V,, =1 — B"
is a seasonal difference. Instead of z;, it may be necessary to use log(z;), or
some other transformation, to stabilize the variance of the series. If p and
P are the degrees of the autoregressive polynomials ¢(B) and ®(B), and ¢
and @ those of the moving average polynomials #(B) and ©(B), model (3)
is denoted as a multiplicative (p,d, q)(P, D, @), model.

If we try to apply the original Beveridge and Nelson’s idea, which is
based on the forecast function of the series, to decompose z; in (3) into a
trend, a seasonal and an irregular component, the task seems formidable;
see, for example, the paper by Newbold and Vougas (1995). However, if we
make use of the partial fraction expansion, we immediately obtain a unique
decomposition which makes sense. To this end, first define the polynomials
¢*(B) = ¢(B)®(B"), A(B) = VIVP and 0*(B) = 6(B)O(B") and suppose
for simplicity that there is no mean in (3). Then, consider the partial fraction



decomposition

0" (x) ap () as(z) | ac(z)

G A (e L T ) W
where S(z) = 1+ 2 + - -+ 2" ! and the third term on the right of the
previous expression exists only if D > 0. Note that we have used in (4) the
fact that V,, = (1—B)S(B). The degrees of the y(z), a,(x), as(x) and a.(z)
polynomials in (4) are, respectively, maz{0, ¢* — p* — d*}, d* — 1, n — 2 and
p* — 1, where p*=p+ P, ¢* = ¢+ Q and d* =d+ D.

We could further decompose S(B) in (4) into its different seasonal fac-

tors, what would give rise in turn to subcomponents associated with the
different seasonal frequencies. However, in order to simplify matters, we will
consider in this paper a unique seasonal component, which will be given by
the decomposition (4).

The assignment of the terms in (4) to the different components is linked
with the roots of the autoregressive polynomials in (3). As for the unit
roots, it is clear that the factor (1 — x)%" should be assigned to the trend
component p;, since it corresponds to an infinite peak in the pseudospectrum
of the series at the zero frequency. On the other hand, given that all roots of
the polynomial S(z) correspond to infinite peaks in the pseudospectrum at
the seasonal frequencies, the factor S(z) should be assigned to the seasonal
component s;.

As regards the roots of the autoregressive polynomial ¢(x)®(z"), the
situation is not so clear—cut and the assignment is more subjective. For
simplicity, we will consider in what follows only a third component, which
will be referred to as “stationary component” ¢;. All roots of ¢(z)®(z™) will
be assigned to this stationary component, which, therefore, may include a
cyclical component and stationary trend and seasonal components.

Based on the previous considerations, the decomposition z; = p; + s; + ¢
is proposed where the trend p;, seasonal s; and stationary ¢, components are
given, respectively, by

vV p, = ay(B)ay, S(B)s; = as(B)ay, ¢*(B)er =n(B)ay, (5)
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where n(z) = v(x)¢* () +a.(z). We can express the trend, say, in terms of the
original series z; by replacing a; in (5) by the expression [¢*(B)A(B)/0*(B)] 2,
obtained from (3). This yields

_ ay(B)¢"(B)S(B)
SV

% (6)

Therefore, the trend p; is the result of applying the one-sided filter H,(B) =
a,(B)¢*(B)S(B)/0*(B) to the series z;. If the roots of §*(z) are all outside
the unit circle or, what is the same thing, the model (3) is invertible, we can
express (6) as an infinite sum of present and past values of the process {z;},
Pr = X520 ViZi—j, where Hy(B) = Y22, v;BI. Since in practice we only know
a finite series z = (z1,..., 2y)’, we will have to estimate the unknown z; in
the previous expression with backcasts.

Proceeding similarly, we find for the other two components of the series
that s, = Hy(B)z, and ¢, = H.(B)z;, where H, = ¢*(B)a,(B)VY /0*(B) and
H. = n(B)A(B)/0"(B).

A couple of examples will serve to clarify matters. Let the series follow
the model ¢(B)V?z, = 6(B)a,; and let, as before, ¥(B) = 0(B)/¢(B). Then,
(4) becomes @) @)

0(x ki + kaxr  ag(x

[ A A R A g

where k; and ky are constants. Letting n(z) = v(z)¢(x) + a.(x) and multi-
plying (7) by (1 — z)? yields

21(2)
U(x) =k + kor + (1 — x) o) (8)
Letting x = 1, it is obtained that ¥(1) = k; + ko. Differentiating (8) and
letting again « = 1, we get U'(1) = ko, where W'(1) is the derivative of ¥(x)
evaluated at = 1. From this, it is obtained that k; = ¥(1) —¥'(1) and ky =
U’(1). The trend p; follows the model V?p, = (k; + k2B)ay, which coincides
with the model obtained by Newbold and Vougas (1995).



As a second example, consider the model ¢(B)V, 2, = 0(B)a; and let
again ¥(B) = 0(B)/¢(B). Then, (4) becomes

() k as(z) N ()

o T T T S T o)

where k is a constant. Multiplying (9) by 1 — = and letting = 1 yields &
= ¥(1)/s. The model for the trend p; is Vp; = ka;, which again coincides
with the one obtained by Newbold and Vougas (1995).

The same argument shows that the model for the trend given by the
proposed procedure for the model ¢(B)VV,,z; = 0(B)a; also coincides with
the one obtained by Newbold and Vougas (1995). Therefore, the proposed
procedure is completely general and encompasses all models for which a BND
has been given so far.

3 Two Algorithms to Estimate the Beveridge—
Nelson Decomposition

In this section we will describe two algorithms to estimate the components
in the proposed BND. The first algorithm is very simple and is based on the
algorithm proposed by G. Tunnicliffe Wilson in Burman (1980). The second
algorithm consists of the Kalman filter plus a smoothing algorithm, with a
proper initialization for the Kalman filter because the series is nonstationary.
Both algorithms will be proved to be equivalent.

All nonstationary series considered in the proposed BND, that is, the
original series z;, the trend p; and the seasonal s; components, are assumed to
start at some finite time in the past. They are supposed to be generated like
in Bell (1984), as linear combinations of some starting values and elements
of the differenced processes. Note however that, in the present context, all
series have the same innovations.

In the rest of the section we suppose that the series follows the general
ARIMA model (3), where, for simplicity, it is assumed that g = 0.



The Backcasting Algorithm

Since all three components can be expressed as the output of one—sided filters
applied to the process {z:}, suppose that we want to estimate the filtered
series y, = H(B)z;, where H(B) is the ARMA filter H(B) = p(B)/0"(B) and
y; is any of the three components. By the results of the previous section,
p(x) is ap(x)d*(2)S(x) in the case of the trend, ay(z)¢*(x)(1 — z)¢ in the
case of the seasonal, and 7(z)(1 — z)%(1 — 2™)? in the case of the stationary
component. The proposed algorithm will avoid the computation of an infinite
number of backcasts. In fact, it will be necessary to computute only a small
number of backcasts.

Given that the series z; also follows the backward model ¢*(F)Az, =
0*(F)v;, where F' is the forward operator, Fz; = z.1, projecting onto the
finite sample z = (z1, ..., zy)" implies ¢*(F)Az, = 0, t < —¢*. Then, letting
r be the degree of p(x), the first algorithm is

Solve the system

0*(B)yy = p(B)zy t=—-¢"+1,....p"—¢"
o (F)Ay, = 0 t=-=2¢"+1,...,—q"

where ¢* + r backcasts are needed: Z_4_,41,..., 2.
For t = p* — ¢* 4+ 1,..., N, obtain y, from the recursion 6*(B)y; =

p(B)z.

In order to obtain the backcasts needed in the previous algorithm, we can
use the Kalman filter like in Gémez and Maravall (1994) with the reversed
series.

To illustrate, consider the very simple example Vyz; = a;. Then, the

partial fraction decomposition

1 C1 Co

1—x2_1—x+1+x

yields ¢; = ¢o = 1/2, so that the trend p; follows the model Vp, = (1/2)q,
and the seasonal s, follows the model S(B)s, = (1/2)a;, where S(B) = 1+ B.
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There is no stationary component in this case. It is straightforward to verify
that p; = (1/2)(1 + B)z; and s, = (1/2)(1 — B)z;. In order to estimate the
trend, only one backcast Z; is needed, which is easily seen to be Zy = z5. This
implies p1 = (21 + 22)/2.

The Kalman Filter Algorithm

This algorithm consists of an augmented Kalman filter plus an augmented
smoothing algorithm. The state space representation we will use is based
on that of Gémez and Maravall (1994), which in turn is an extension to
nonstationary models of the representation proposed by Akaike (1974) for
ARMA models.

The state space representation of the proposed BND is obtained from
the state space representation of each component. Following Gémez and
Maravall (1994), the state space representation of the trend, for example,
can be obtained as follows. Let m be the degree of () in (5), let V¥ =
1+ ¢'B+-- +¢h.B¥ | r? = maz{d*,m+ 1} and define ¢! = 0 when i > d*.
Then, the state space representation of the trend p; is

pr = Hyry (10)
wi = Fpal 4+ Gpag, (11)
where
0 1 0 0
0 0 1 0
F, = : : : " I
0 0 0 e 1
0~ —Pm ... B

xi) = (ptapt+1|t7 s th-H"P—l\t)la Hp = (17 07 SR 0),7 Gp :(17 1/}1107 s 71"71”71), and
the ¢f weights are the coefficients obtained from ¢?(B) = «,(B)/V?Y =

2, WB'. The elements of the state vector are defined as Pitilt = Pii —
Yhagi—- =Y Jag1,i=1,...,rP—1. They are the predictors of p;,; based
on the semi-infinite sample {p; : j < t}. The state space representations for
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the seasonal s; and the stationary ¢; components are defined by replacing in
(10) and (11) p with s and ¢, respectively, where the matrices Fj, F., Gy, G,
H, and H, and the vectors zj and zy are defined analogously to F},, G,, H,
and 7.

The state space representation of the proposed BND is defined by

2t = H,.'I/'t (]_2)
Ti1 — Fa:t+Gat+1, (13)

where I = diag[F}, F§, F] (a block diagonal matrix), G = (G, G}, G.)", H'
= (H),H,H!) and z, = («} , 2, 2{)".

In order to obtain initial conditions for the augmented Kalman filter, to
be applied to (12) and (13), we will proceed like in Bell (1984) with the
two nonstationary components p; and s,. That is, we will generate these
components as linear combinations of some starting values and elements of
the differenced processes, u} = V4p, and uf = S(B)s;. We will illustrate
the process with the trend component p;. Let the starting values be 67 =
(P1-g+y---,p0)". Then, following Bell (1984), the p; can be generated from
pp= AVSP 4 Py where £ > 0, 1/VY = Y2 ¢PB' and the AY =

(Af ..., AQ. ;)" can be recursively generated from
AP = (0,...,1,...,0), t=1—d...,0
Aij — _(bII)Af_I - ¢Z*A€_d*, t > 0,

where for t = 1 — d*,...,0 the one is in the (¢ + d*)-th position. Note
that we have used (p;_g+,...,po)" as starting values instead of the starting
values(py, ..., pg+)" used by Bell (1984). This is immaterial for the theoretical
development and is done to facilitate the initialization of the Kalman filter
algorithm.

Like in Gomez and Maravall (1994), p. 615, it can be shown that the
initial state vector x! in (10) and (11) verifies 2§ = AP§? + ZPUP, where
AP = [AV. .., AL]', =P is the lower triangular matrix with rows the vectors

(& -1:& -2 -+,1,0,...,0), j = L....rP, UP = (uf,ufyy, ..., upyp) and uf,

12



= E(uf|uf : t <1),4 > 1. A similar argument would lead to an initial state
vector x] = A°d° + =°U° for the seasonal component s;, where the starting
values are 0° = (s,_1,...,50)" and the matrices A°, =% and U* are defined
analogously to AP, =P and UP. Since the stationary component ¢; is, by
definition, stationary no special assumptions need to be made with respect
to its initial state vector zf.

Then, the initial state vector for (12) and (13) is given by xz; = Ad + =ZU,
where A = [A" ('), A = diag[AP, A°], 6 = (6¥',), = = diag[ZP, =, I], and
U= (U, U, 25

The augmented Kalman filter and smoothing algorithms that we will use
are based on the results of De Jong (1991). A review of De Jong’s results,
together with a detailed description of the proposed algorithms can be found
in the appendix.

Continuing with the example of this section, the state space representa-
tion is given by (12) and (13), where x;, = (py, s)', H' = (1,1), G = (1,1)/2
and Lo

b= {0 —1} '
The initial state is ; = F'§ +Gay, where 6 = (py, So)’. The initial conditions
for the augmented Kalman filter are (2o, Xuo) = (0, =F) and ¥y = GG".

We finish this section by proving that the two proposed algorithms yield
identical estimates of the components. The result is contained in the following
theorem.

Theorem 1 The two algorithms described in this section to estimate the
components of the proposed BND yield identical results.

PROOF. Suppose that we want to use the second algorithm described in this
section to estimate all components based on z = (z1, ..., 2zx)’, the observed
series. To this end, the augmented Kalman filter is first applied, followed
by the QR algorithm, to obtain the GLS estimator 6. Then, we apply the
augmented fixed point smoother. Denote this estimator by E(y,|z,6), where
y; is any of the three components.

13



Suppose now that n = (21 _g4,...,20)" is used instead of 6 to model uncer-
tainty and that the augmented Kalman filter and smoother are used again
to estimate y; based on z. Denote this estimator by E(y;|z,7). Then, by
result 1 and examples 1 and 2 of Bell and Hillmer (1991), the transformation
approach estimates of y; using § and 7 coincide. By theorem 5.2 of Ansley
and Kohn (1985), these last two estimators also coincide with the diffuse
estimators E(y|z, 0) and E(y|z,7). Note that examples 1 and 2 continue to
be valid in the present context, although the components are now correlated,
because n = Md + u, where M is nonsingular and w« is a stationary vector.
It is only the stationary vector u that changes with respect to the context
with orthogonal components.

Make assumption A of Bell (1984) and suppose that n instead of z, =
(21,.--, 2zq4)" is used to generate the series and assume that the semi-infinite
realization {..., z_1, 20, 21, ..., 2y } is known. Then, using the notation and
results of this section, the component y,; satisfies the difference equation
0*(B)y; = p(B)z;. Projecting first both sides of this equation onto the space
generated by {n, z1,...,2x}, where 7 is considered fixed, and then project-
ing again onto the space generated by {z,..., 2y}, yields 6*(B)g; = p(B)2,
where 2, = 2z, fort = 1,..., N and is a backcast based on z otherwise, and ¢,
= E(y|z,n), the estimator mentioned above. The backcasts can be obtained
using the reversed series and an appropriate state space representation for
the original series. Since E(y|z, 5) = E(y:|2,7), the proof is complete.

As mentioned earlier, the first algorithm can only give the estimates of
the components, whereas the second one also gives the standard errors and
can be used in a more general context, like, for example, when there are

missing observations.
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4 The Beveridge—Nelson Decomposition in the
Frequency Domain

From the results of the previous sections, it follows that the components of the
BND are obtained by applying certain one—sided filters to the original series.
More specifically, the trend p;, and seasonal s; components are obtained by
applying the filters H, and H, defined immediately after (6). The stationary
component ¢; can be obtained simply as ¢; = z; — p; — Sy.

To investigate the effects of these filters in the frequency domain, we first
discuss a trend model without seasonal component, as in the original work
of Beveridge and Nelson (1991). Assume, for simplicity, that the series is
generated by the model Vz; = a; + fa;_;. Then, as we saw in Section 2, the
model for the trend is Vp, = ka;, where k = 1+6. This implies p, = H,(B)z,
where Hy(B) = [(1+6)/(1 + 6B)] z. The squared gain G3(z) = |H,(e™")|?
results as )

G?)(aj): . (1+96) 5
+ 20cosx + 0
In Fig. 1a and 1b present the gain and phase delay functions for various

values of 6. It can be seen from the graphs that as 6 goes to —1 the filter
behaves better in the sense that it resembles more what one would expect
from a trend filter. However, there is a trade—off between better low—pass
gain function and greater phase delay in the frequency band around zero. The
greater the phase delay, the more the filtered series will have to be shifted to
be in phase with the original series. Note that all values in Fig. la and 1b
correspond to negative values of 6. For positive values of 6, the trend filters
behave very badly, taking values much greater than one (not shown).

Consider now the seasonal airline model for quarterly series VVyz;, =
(14+6B)(1+0B*)a,. To simplify the exposition, a value of © = —.6 has been
chosen and kept fixed while the parameter 6 takes several negative values.
The gain and phase delay functions for the different values of # can be seen
in Fig. 1c and 1d. The behaviour is analogous to that of the nonseasonal
model.

15



It is well known that the Wiener-Kolmogorov filters of the TSA corre-
sponding to an infinite realization . .., z_ 1, zg, 21, . . ., are of the form H(F)H (B),
where B and F are the backshift and forward operators and H(B) is a quo-
tient of polynomials in B. To facilitate the comparison of the BND with
the TSA, in Fig. 2a and 2b the gain functions of the H(B) filters obtained
with the TSA are presented for the same values of § than in Fig. 1c and 1d.
No phase delay functions are presented because in this case they are zero,
given that the filter H(F)H (B) is symmetric. Note that in all cases the gain
functions are always less than or equal to one and that they are more in
agreement with a gain function of a low—pass filter.

Finally, it has to be emphasized that the filters we have considered in
this section correspond to an infinite realization, in the case of the TSA, and
to a semi—infinite sample in the case of the BND. Since in practice only a
finite series is available, the finite versions of these filters will differ from the
infinite ones, especially at both ends of the series. This is an interesting topic
which has been touched upon by, for example, Baxter and King (1995), but
which we have not pursued in this paper for lack of space.

5 Application to the German Unemployment
Series

To compare the properties of the TSA with those of the proposed BND, the
German unemployment series running from 1962(I) to 1988(1V) is considered.
This series has also been analyzed in Breitung (1994) and is selected to
illustrate the main features of the two approaches. Needless to say that by
considering a single example it is not possible to draw ultimate conclusions
with respect to the merits or demerits of both approaches.

Applying the automatic model identification procedure of the software
package TRAMO to the original time series?, the following model was selected

2The series has not been logarithmically transformed or adjusted for outliers to facilitate
the comparison with the BND
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and estimated
(1-0.523B)(1 — B)(1 — Bz = (1 — 0.385B%)a,. (14)

The automatic model identification method of TRAMO proceeds in two stages.
First, using an autoregressive model AR(2)(1),, and ArRMA(1,1)(1,1), mod-
els, where n is the number of seasons in the year, the unit roots are estimated.
Then, the BIC criterion is applied to the differenced series to select among
a wide range of multiplicative seasonal models a suitable one.

The fit is acceptable, although the residuals show some departure from
normality due probably to the presence of some outlier. The components es-
timated with TSA are depicted in Fig. 3 and those estimated for the proposed
BND with the two algorithms proposed in this paper (the results obtained
with both algorithms are practically identical) in Fig. 3 b), d), f). Both
estimated trends are quite similar, although the trend estimated with the
BND is not so smooth. This is no surprise since the filters used by SEATS
are two—sided whereas the ones used by the BND are one-sided. Also, the
autoregressive factor 1 — 0.523B is assigned to the trend component in the
TSA, whereas it is assigned to the stationary component in the BND.

It turns out that the recession of 1967 led to a sharp increase of cyclical
(short-term) unemployment, while both the recession following the oil shock
of 1973 and the recession of 1982-1984 caused a sharp raise in cyclical and
long—term unemployment.

The seasonal components estimated with the BND and the TSA are very
similar. However, the irregular component from TSA and the stationary
component of the BND look quite different. This is explained, among other
things, by the fact that, as mentioned earlier, the autoregressive factor 1 —
0.523B is assigned to the trend in the TSA and to the stationary component
in the BND.
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6 Conclusions

In this paper, the decomposition originally proposed by Beveridge and Nelson
(1981) has been extended to arbitrary multiplicative seasonal ARIMA models.
The proposed decomposition is based on a partial fraction expansion of the
model followed by the series, where the regular and the seasonal unit roots
of the differencing operator are assigned, respectively, to the trend and the
seasonal component. The stationary autoregressive roots are assigned to a
so—called stationary component, which may exhibit cyclical behaviour.

Two equivalent algorithms are proposed to compute the estimates of the
components in the generalized BND. The algorithms are optimal in the mean
squared sense and one of them, the augmented Kalman filter plus augmented
smoothing, can also give the standard errors. However, the other algorithm
is much simpler to apply.

The filters obtained with the BND seem to have less desirable features
than the ones given by the TSA. First, their gain functions often take values
greater than one and, second, they present a non-negligible phase delay
effect. For the airline model with moving average factors of the form 1+ 0B,
where 6 is positive, the trend filters given by the BND are unusable because
the gain function takes values much greater than one.

Two possible advantages of the BND are that the decomposition always
exists and that there are no revisions. However, this second advantage is
more apparent than real because the lack of revisions comes at the expense
of an increase in the error with which the components are estimated.

Appendix

In the expression of section 3 for x1, § models uncertainty with respect to the
initial conditions and its distribution is unknown. Therefore, the ordinary Kalman
filter cannot be applied and some device has to be used to handle §, which can
be considered as a vector of nuisance random variables. Kalbfleisch and Sprott
(1970) proposed several methods to eliminate the dependence of the likelihood on
nuisance parameters, which are also valid in the present context. More specifically,
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the marginal likelihood, which is the likelihood of a transformation of the data to
eliminate the nuisance parameters, is the approach proposed by Ansley and Kohn
(1985). The Bayesian approach, which consists of considering ¢ diffuse, is the
approach of De Jong (1991).

For algorithmical purposes, we will use the approach of De Jong (1991) in this
paper. Using the transition equation (13), we have the following lemma, whose
proof is straightforward and is omitted.

Lemma 2 Suppose that the series z = (21,...,2n)" has been generated by the state
space model (12) and (13), where x; = Ad +EU, as described earlier, and assume

that 0 is independent of the innovations a;. Then, the following representation
holds

z=X0+e, (15)
where, partitioning X = (X1,...,Xn)" and € = (e1,...,en)" conforming to z =
(z1,...,2N)", the X] and ¢;, t =1,...,N, can be obtained from the recursions X,

= H'J; and Jivw = FJy,with the initial condition J, = A, and ¢ = H'n and
N+1 = Fny + Gayqq, with the initial condition mny = ZU. Besides, FE(e) =0, and
Cov(d,€) = 0.

Let Var(a;) = 02 and Var(e) = 02¥ in (15). Following De Jong (1991), suppose
that ¢ is independent of the {a;}, has mean 0 and covariance matrix 02C, and take
the limit C~! — 0 to make it diffuse. Assuming normality in a; and & and letting
[(z) be the log-likelihood of z in (15) it is shown in De Jong (1991) that, apart
from a constant, as C~' — 0,

1 1
l(z)+§ln|aZC|—> — 5{(N—d*)ha(ojf)+1n|z:|+1n|X’zr1X|

+ (z— X002z — Xb)/0?}, (16)

where § = (X’27'X)"1X'%!z and the mean squared error (Mse) of § is Mse(d)
= 02(X'S1X) L. The limit expression in (16) is the diffuse log-likelihood. The
parameter o2 can be concentrated out of the diffuse log-likelihood by replacing o2
in (16) with its maximum likelihood estimator 62 = (z—X§)'S 1 (z—X0) /(N —d*).

The previous result tells us that making ¢ diffuse implies that (15) can be
considered as a generalized linear regression model (GLS), where § is the vector
of regression parameters and ¢ and 62 are the GLS estimators.

In order to evaluate the diffuse log-likelihood efficiently, let ¥ = LL’, with L
lower triangular, be the Cholesky decomposition of ¥ = Var(e)/o2? and suppose
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that an efficient algorithm exists to compute L 'z, L™ !X and |L|. This algo-
rithm is a slight modification of the DKF, which will be described later. Then,
premultiplying (15) by L1, it is obtained that

L2 =L7'X06+4 L7le, (17)

where Var(L 'e) = 02Iy. Therefore, model (17) is an ordinary linear regression
model. The GLS estimators 6 and 62 can now be efficiently and accurately ob-
tained using the QR algorithm, as suggested by Kohn and Ansley (1985). This
last algorithm premultiplies both L'z and L™'X by an orthogonal matrix Q to
obtain v = QL 'z and (R',0') = QL !X, where R is a nonsingular d* x d* upper
triangular matrix. Then, § = R~'v; and 62 = vhvy/(N — d*), where v = (v}, v})’,
v1 has dimension d* and vy has dimension N — d*. |X'S'X| in (16) can be
calculated as | X'~ X| = |R'R).

To understand the meaning of the DKF of De Jong (1991), consider first that
§ is zero in (15) and 02 = 1. Then, we can apply the ordinary Kalman filter, given
by the recursions

€ = Zt— H'ft|t—1, Ug\tq = H’Zt|t—1H
Ky = th|t—1H/Ut2|t717 Typqpe = FTyq + Ky
Yppp = (F—KH Sy F' + GG,

where the initial conditions are ) = 0 and Xi;)p = EVar(U)Z" and the covariance
matrix Var(U) can be efficiently computed using the results in Jones (1980). The
sequence of standardized innovations e;/ oy4—1, t = 1,..., N is an orthogonal se-
quence with mean zero and covariance matrix equal to the identity matrix. This
implies that this sequence coincides with L'z in (17). Also, |L| = Hi\il Oflt—1-
These are standard results of the Kalman filter. Proofs can be seen in Anderson
and Moore (1979).

A consequence of these results is that the Kalman filter can be seen as an
algorithm that, applied to any vector v of data, yields L~'v. Therefore, if § is
not zero in the GLS model (15), we can apply the Kalman filter to the data z
and the columns of the X matrix to obtain L'z and L='X. The DKF is an
algorithm that allows for the automatic computation of these quantities. In this
algorithm, the recursions for e; and Z;,_; in the Kalman filter are augmented to
matrix recursions

(e, B) = (21,0) — H' (-1, Xyjp—1),
(Teg1)ts Xeg1)e) = F(Zye—1, Xej—1) + Kiler, By),
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where the additional columns correspond to new states for the columns of the
X matrix. The other recursions in the Kalman filter remain the same and the
initialization is (£1|0,X1|0) = (0,—A) and ¥)g as before. It can be shown, using
the results in De Jong (1991), that stacking the vectors (e;, Et)/oy;—1 one on top
of the other for ¢t = 1,..., N, the matrix (L 'z, L 1X) is generated.

The DKF also has the recursion Qi1 = Q¢ + (e, Ey)' (ey, Et)/o?‘tfl, initialized
with @)1 = 0. This recursion accumulates the partial squares and cross products
in such a way that

(L) 1 orav] [ ETIX
QN“_{(L*X)’ [L %L X]_ X'yl X'»lx

and from Q1 the GLS estimators 6 and 62 can be computed. We propose in this
paper a Kalman filter algorithm which is the DKF without the recursion for ¢); and
which applies instead the QR algorithm to (L 'z, L ' X), in the manner described
above. We think that this procedure is numerically more stable than solving
the normal equations to obtain the GLS estimators and is not computationally
expensive.

Note that o2 is supposed to be one in the proposed algorithm because it can
be estimated later with GLS.

Once the GLS estimators 4 and 62 in (15) have been obtained, it can be shown,
using the results in De Jong (1991), that the diffuse predictors Zy41 and &y 41 of
zn41 and X1 are

N1 =HEy v+ En10, Int1 = Enpi v — Xny1|no
Mse(2y41) = 6307, 1 + Eny1Mse(8) By,
Mse(in 1) = 6aE Ny + Xy v Mse(0) Xy v
where Mse(d) = 62(X'27'X)~! = 62R™'R'~\.

Diffuse smoothing refers to the process of obtaining the estimator #; of the
state x; based on the entire data vector z = (z1,...,2x)". The estimator #; can
be obtained by means of an augmented version of any of the existing algorithms
for smoothing, like the fixed point smoother or the fixed interval smoother. In this
paper we will use an augmented fixed point smoother because it can be simplified so
that very small storage requirements are needed, see Gémez and Maravall (1994),
and because it is well suited for revisions of the estimates as new data come in.

The augmented fixed point smoother for z,, 1 < s < N, is the set of recursions

K{=%% Hjo

t = -1 E§t1+1|t = Eﬁtfl(F — K H')

2
t|t—17
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(Es1t> Xsjt) = (Esjo—1, Xsjp—1) + K (er, By)
Es|t = 2s\t—l - Zat_lH(Kta),a

initialized with £, | = S,,_1, where o, ,, Ki, (er, By), (&4)5_ 1, Xy|s_1) and

s|s—1

Ygs—1 are produced by the proposed Kalman filter algorithm. It can be shown
that the estimator &, and its Mse are obtained from

s = &y — Xyn0, Mse(ds) = 625,y + X,y Mse(d) X -
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Fig. 1: a) Gain and b) Phase Delay Functions of Trend Filters (Nonseasonal
BND). ¢) Gain and d) Phase Delay Functions of Trend Filters (Seasonal
BND).
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Fig. 2: a) Gain Functions of Trend Filters (Nonseasonal TSA).
. b) Gain Functions of Trend Filters (Seasonal TSA).

26



Fig. 3: a) Trend, ¢) Seasonal and e) Irregular component (TSA).
b) Trend, d) Seasonal and f) Stationary component (BND).
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