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Abstract

A procedure for testing the significance of a subset of explanatory variables in
a nonparametric regression is proposed. Our test statistic uses the kernel method.
Under the null hypothesis of no effect of the variables under test, we show that our
test statistic has a nhP2/? standard normal limiting distribution, where p, is the
dimension of the complete set of regressors. Our test is one-sided, consistent against
all alternatives and detect local alternatives approaching the null at rate slower
than n~'/2h=72/4, Qur Monte-Carlo experiments indicate that it outperforms the

test proposed by Fan and Li (1996).
Keywords: Hypothesis testing, Kernel estimation, Nested models.

JEL classification: Primary C52; Secondary C14.

Résumé

Une procédure pour tester la significativité d’un sous-ensemble de régresseurs
dans un modele de régression non-paramétrique est proposée. Elle s’appuie sur la
méthode du noyau. Sous ’hypothese nulle, i.e. lorsque les variables considérées ne
sont pas pertinentes, la statistique de test a une distribution asymptotique normale
en nhP2/2_ ol py est le nombre total de régresseurs. Le test est unilatéral, conver-
gent contre toute alternative et détecte des alternatives locales qui s’approchent de
’hypothese nulle & une vitesse inférieure & n=1/2hP2/4. Pour des petits échantillons,

notre test a de meilleures performances que celui proposé par Fan et Li (1996).

Mots-Clés: Test d’hypothese, Méthode du noyau, Modeéles emboités.



Nonparametric Significance Testing

By Pascal Lavergne and Quang H. Vuong

1 Introduction

In recent years, considerable work has been devoted to testing a parametric regression
model against a semi or a nonparametric alternative. An approach that has attracted a
lot of attention relies on smoothing techniques and compares the parametric fit with a
smooth nonparametric one. Examples include Cleveland and Devlin (1988), Eubank and
Spiegelman (1990), Eubank and Hart (1993), Gozalo (1993), Héardle and Mammen (1993),
Chen (1994), Horowitz and Hardle (1994), Hong and White (1995), Zheng (1996) among
others.!

In contrast, the issue of testing a nonparametric null against a nonparametric al-
ternative has attracted less attention. A leading case where such a situation naturally
arises is testing the significance of some explanatory variables in a regression function.
Well-known procedures have been proposed in parametric settings, but their outcomes
crucially depend on the choice of the parametric specification. When it is not desirable to
adopt a finite parameterization, nonparametric regression provides a suitable alternative.
A special case that has been investigated in several previous papers is the problem of
testing for no effect. To our knowledge, the general case where the nonparametric null is
nondegenerate has been considered only in a few published studies. Gozalo (1993) consid-
ers conditional moment tests which are made consistent against all alternatives through

randomization. Yatchew (1992) considers the difference in residual sums of squares and

TAnother approach uses empirical processes based on residuals of the parametric model, see Bierens
(1982, 1990), Diebolt (1995) and Stute (1997). It seems however difficult to extend the empirical process

approach to the situation considered in this paper.



uses sample splitting to circumvent its well-known y/n-degeneracy in a nested situation,
while Lavergne and Vuong (1996) treat the nonnested case.?

Our objective is to propose a testing procedure for the significance of a subset of
explanatory continuous variables in a nonparametric regression, which circumvents the
drawbacks of previously proposed ones. Namely, our procedure does not use randomization
but is nevertheless consistent against any deviation from the null hypothesis of no effect of
the variables under test. Instead of using sample splitting or weighting, we deal with the
\/n-degeneracy issue to obtain a test statistic with a faster rate than y/n. Our test statistic
is based on the kernel method. We characterize its asymptotic distribution not only under
the null hypothesis but also under a sequence of local alternatives. Qur assumptions do
not require normality or homoscedasticity of the regression errors and are not much more
demanding on the bandwidths and on the considered functions than in nonparametric
estimation. Though our test statistic is similar in spirit to that recently proposed by
Fan and Li (1996), we require less restrictive theoretical conditions on the smoothing
parameters. As a result, our testing procedure does not require oversmoothing of the null
regression model relative to the alternative one and hence puts both models on equal
footing. In small samples, our simulation results show that our test statistic is nearly
unbiased under the null hypothesis and leads to a test that is more powerful than Fan
and Li’s one under a wide spectrum of alternatives.

The paper is organised as follows. In Section 2, we present our test statistic and we
study its asymptotic properties under a sequence of local alternatives. We also show how
our framework can accomodate the special case of testing the joint significance of all the
regressors. Section 3 studies the small sample behavior of our testing procedure by means
of Monte-Carlo experiments and compares it with the one proposed by Fan and Li (1996).
All the proofs are relegated to Section 4.

2Unpublished related work includes Ait-Sahalia, Bickel and Stoker (1994) and Gozalo (1995).



2 Theoretical Results

Suppose (Xz;,Y;), i =1,...,n, is a random sample from a (p; + 1)-variate distribution of
(X3,Y), and let Xy C X3 be a py-vector, 0 < p; < ps. Throughout we denote densities
of X1 and X5 by fi(+) and fo(+). Let E[Y|X1] = r(X1) and E[Y|X3] = r2(X3). The null
hypothesis of interest is Hy : r1(X1) = r2(X3) a.s., or equivalently, Hy : E[u1|X2] =0 a.s.,
where u; = Y — ri(Xy). Our procedure can be viewed as a test of the unconditional
moment restriction E [u1W(X,)] = 0, with W(X,) = F(uy| Xa) f2(X1) f2(X2). Indeed, this

particular choice makes the test consistent against any alternative to Hy as

B uy B | Xo) X0 fo(X2)| = B [E2(wn] Xo) fE(X0) o X2))
= kK [(Tz(X2) — Tl(Xl))sz(Xl)fz(Xz)} :

Let K and L be two kernels on IR and [RP*, respectively, and let A and ¢ be two
bandwidths. To test Hg, we consider

1 -
Vo = e DY = Vi) (Y — Y0) Lk Lji Ko (2.1)
where Y, denotes summation over the arrangements of m distinct elements {i1,...,7,,}
from {1,...,n} with n("™ = n!/(n — m)! the number of these arrangements, and where

Lm’k = g—p1L [(Xh — Xlk)/g] and [(m]‘ =h 2K I:(XQZ — XQJ)/h]
The statistic V,, is simple to compute, and in particular does no require any trimming.
It constitutes a natural basis for testing Hy, because it actually estimates F [u; W(X3))].

Indeed, assuming that wy; f1(X7;) is observed, a sample analog of the latter is
1 .
Von = e > g fi(Xai)wa f1( X)) K

Fan and Li (1996) obtain their statistic [, from Vg, by replacing uq; f1(X1;) by its leave-one
out kernel estimate. While our test statistic resembles Fan and Li’s one, it was derived

independently and differs from theirs by some important terms.? Specifically,

nWy, = nin —1)°1, — n®Vi, — 2n®V,,,

3Fan and Li (1996) also impose that the two kernels K(-) and L(-) are product kernels with the same

univariate kernel.



with

1 -
Vi, = WZ(YZ = Yi)(Y; = Yi) Lyir Lnjr K i
and
1 -
Vap = NE) DY = Vi) (Y5 = Vi) Lnij Lo K i

a

In effect, our statistic V;, removes all “diagonal” terms from [,,, thus reducing the bias of
the statistic without altering its properties as a test statistic for Hy. A similar idea has
been recently proposed by Heffernan (1997) for unbiased estimation of central moments by
U-statistics. In small samples, the bias reduction can be substantial, as our Monte-Carlo
study of Section 3 shows. In practice, one may use the above formula instead of (2.1) to
compute V.

To study the behavior of V,, under the null and some local alternative hypotheses

simultaneously, we write
Hln . TQ(XQ) = Tl(Xl) —|— (Snd(Xz), Wlth (Sn - [0, 1]

We let d(X3) = 0if 6, = 0. This general formulation allows us to include local alternatives,
whose rates of convergence to Hy are given by 4,,. We need the following definitions and

assumptions.

Definition 1 : (i) U? is the class of integrable uniformly continuous functions from IR’ to
IR. (it) D¥,  is the class of m-times differentiable functions from IR" to IR, with derivatives

of order m that are uniformly Lipschitz continuous of order q.

Definition 2 : K2, m > 2, is the class of even integrable functions K: IRP — IR with
compact support satisfying [K(s)ds =1 and
P
/5?1 5,7 K(s)ds =0 for 0 < ZOQ <m— 1.
=1
Assumption 1 : {(X2,Y)), i =1,...,n} is an i.i.d. sample from an absolutely continu-

ous (with respect to Lebesque measure) (py + 1)-variate distribution, and E[Y®] < oco.

Assumption 2 : (i) fi(X;) and r(X1)f1(Xy) belong to UP* N DE:

m1,91’

E (uf[X1) fi(Xy) belongs toUP'. (1i) fo(X2), r2(Xo) fi(X0) f2(X2), E(uf|X2) [} (X0) f2(X2)
and E (ui]X2) f{(X1) f2(X2) belong to UP>. (iii) K(-) € K5 and L(-) € KE! .

my > 2, and also

4



Theorem 1 : Under Assumptions 1-2, if h — 0, ¢ — 0, nh??> — +o00, ng” — oo,
hP> [gPt — 0 and nhP?/?g?mta) 0, then as n — oo,

(i) nhP/?V, 2 N(Cp,w?) if §2nh?2/? = ' < oo,
(17) nhe2/2y Ly 4o if 52nhp2/2 — 00,

where p = E[d(X3) fH(X1) fo(Xa)] and w? = 2B [BX(ud|X) fH(X0) fa( X)) f K*(s) ds.

Remark 1: As shown in Section 4, V,, has the same behavior as Vg,. In general, V4, is
such that v/n [Vo, — E(Vo,)] converges to a normal distribution N(0,7?), where 72 is the
semiparametric efficiency bound for estimating £ [u; W(X3)]. But under Hy, we have both
E(Vo,) = 0 and 72 = 0. This degeneracy leads us to consider higher-order terms in the
expansion of Vg,,. For this we use a central limit theorem for degenerate U-statistics, see
Hall (1984a).*

Remark 2: Assumption 2 requires smoothness conditions on the underlying functions and
kernels that are standard in nonparametric estimation. Functions of X; are assumed to be
at least as smooth as functions of X;. This is compatible with the nested situation under
consideration. Instead, Fan and Li (1996) requires similar smoothness of the constrained
and unconstrained regression functions.

Remark 3: The generalization of our test to the situation where some of the X; are
discrete with finite support is straightforward, as discrete variables neither create any
bias nor change the variance of the nonparametric estimators. Our general results are not
affected, where bandwidths only apply to continuous regressors. In particular, when all
regressors X; are discrete and all regressors under test are continuous, our assumptions
on the bandwidths reduce to the usual ones, i.e. h — 0 and nh?2/2 s +oo.

Remark 4: One of the main problems in obtaining asymptotic distributions of semi-
parametric estimators is the relative vanishing rates of the bias and variance terms from
nonparametric estimation. For instance, Samarov (1993) notes that the bias term may
dominate the variance term for his test statistic. Hall (1984a,1984b) finds that the squared
bias term of the integrated square error of kernel estimators is of order A*. In the context

of parametric specification testing, Hong (1993) and Gozalo (1995) find a bias term of

*As we consider local alternatives and a finer decomposition of V},, this prevents us to use Fan and

Li’s proofs.



order h? and proposes a statistic that balances it with the variance term. In our context,
the bias problem arises in each of the two smoothing steps: the nonparametric regression
of Y on X; and the projection of the residual u; on X,. The form of our statistic elimi-
nates the bias in the second step, so that F(Vy,) = 0 under Hy. On the other hand, the
bias from the first step is controlled through the “bias” condition nh?>/2g?(™1+a) — 0, as
in Fan and Li (1996).

Remark 5: Though the theory is developped for a generic bandwidth (g or h) in each step,
it is straighforward to extend it to a vanishing individual bandwidth for each regressor

in each step.® In this case, one should replace g** and h??> by g1gz...¢,, and hihy...h

P2y
P2 ]2(m1+q1)

respectively. The “bias” condition becomes n[];2, h3/2 [max;=1,. p i — 0.
Remark 6: Our assumptions on the bandwidths include the usual ones. The condition
on the ratio h*?/g"* means that the variance of nonparametric estimators in the model
with py regressors is smaller than the variance of nonparametric estimators in the complete
model. This seems reasonable in view of the higher sparsity of the data in high dimensional
spaces, leading to the well-known “curse of dimensionality.” In our testing framework, this
condition can be better understood by considering individual bandwidths. In this case,
it seems natural to use individual bandwidths for the regressors X; not under test that
are identical between both steps, namely ¢; = h;,7 = 1,...p;, to avoid incorrect rejection
of the null hypothesis. Then our ratio condition reduces to [T2, ,; h; — 0. This is no
longer restrictive as vanishing individual bandwidths are obviously necessary to obtain
a consistent test. Hence our “ratio” condition on the relative rates of the bandwidths
seems to be minimal for testing the significance of continuous regressors. In contrast,
when the regressors under test are discrete, [Ti2,,  h; needs not vanish, so that restricted
and nonrestricted nonparametric estimates jointly determine the limit distribution of the
test statistic, as studied by Lavergne (1997).

Fan and Li (1996) requires the stronger condition h?2/¢**'* — 0. As a result, Fan
and Li’s testing procedure excludes a large domain of bandwidths, including the optimal
bandwidth rates for estimation n~/[P+2(m+d)l when the dimension of X is close to the
dimension of X, and this for any degree of smoothness in the underlying regressions. For

instance, this arises when py = 2 and p; = 1, or po = 3 and p; = 2. In contrast, our testing

®One could also consider a more general form of kernel estimators as in Robinson (1983).



procedure allows for a broader choice, including the optimal estimation rates when the
constrained regression is sufficiently smooth, though these optimal estimation rates need
not be optimal for testing purposes, see Guerre and Lavergne (1998).

2

The asymptotic variance w” can be written as

2 [(un u(X0)PE ({1 fi(X0))21Xe] fo(Xa)] [ B3(s) s

It depends on the kernel through [ K?(s) ds. This quantity can be minimized in the class of
product nonnegative even kernels by choosing the Epanechnikov kernel, see Epanechnikov

(1969). Following (2.1), an estimator of w? is

2 .
wh = == (Vi = Vi) (Vi = Y )(Y; — YY) = Y0 ) Lk Lnis Lt L B7? K

n n(6) ~ nij

An alternative estimator, which is computationally less demanding, but more biased in

small samples, is

2
u)i = Wzalialjh]h[(zij? (22)

n
where wy; is the kernel estimator of the residual wq;. The consistency of either form of

w? is shown using similar arguments as in Theorem 1’s proof. Therefore, we can propose

nhp2/2Vn/wn as a test statistic for Hg. From Theorem 1, by letting d, = 0 or 1, this test
statistic is asymptotically N(0,1) under Hy and diverges to +o0o against any fixed alter-
native to Hg. The test is therefore a one-sided normal test. Moreover, the test has power
to detect local alternatives Hy, approaching the null at rate slower than (y/nh?2/*)~!,
This rate agrees with that found in parametric specification testing procedures that use
smoothing.®

Although Theorem 1 suggests that suitable critical values for our testing procedure
can be obtained from the standard normal distribution, results from Eubank and LaRiccia
(1993) and Hérdle and Mammen (1993) among others indicate that the normal approx-

imation may not be adequate for small sample sizes. Indeed, our test statistic behaves

like a weighted sum of chi-squares, in an asymptotic sense, and accordingly may approach

It is always possible to modify our test statistic and make it consistent against some chosen local
y/n-alternatives. This is done by adding to our test statistic a suitable M-test statistic based on the

estimated residuals and by deriving the resulting limiting distribution.



normality slowly, especially for high dimensional settings. One alternative is to use a y?
approximation, as proposed by Hall (1983) and Buckley and Fagleson (1988) and used by
Eubank and LaRiccia (1993) and Chen (1994) in the context of parametric specification
testing. While such a correction may help in high dimensions, it did not prove much useful
in our limited Monte-Carlo experiments, where the normal approximation seems to work
well. Another alternative is to use resampling techniques, such as the wild bootstrap con-
sidered by Hardle and Mammen (1993). The theoretical justification of such a technique
in our context, and specifically the conditions under which it applies, is left for further
research.

Lastly, it is possible to extend our procedure to the case where p; = 0, i.e. testing
for no effect of all the regressors Xs. In this case the null hypothesis of interest is Hj :
ra(Xs) = E(Y) a.s. To test Hy, we can readily modify (2.1) to get

b 1 e
Vi= = (Y = Y)Y = Y) Koy,

n a

As before, we consider the local alternatives ro(X2) = E(Y) + 0,d(X3), with 6, € [0,1].

Our Assumption 2 now reduces to the usual one in nonparametric estimation, namely

Assumption 3 (Z) fQ(XQ), TQ(XQ)fQ(XQ)} VGT2(Y|X2)f22(X2) and E ((Y — C)4|X2) fQ(XQ)
belong to UP2. (iit) K € K52,

Corollary 1 : Under Assumptions 1 and 3, if h — 0, nh??> — 400, then as n — oo,

(i) nhP/?V> SN N(Cp*,w*?) if §2nh?2/? = ' < oo,
(17) nhm/?\/n* Lyt if 52nhp2/2 — 00,

where 1= = B [d*(Xy) fo(X2)] and w2 = 2B [Var® (Y| X2) f2(X2)| | K3(s) ds.

2

2 a consistent estimator of w*? is

* 2 e
Wi = == SV = Y)Y = Vi) (Y = YD) (Y = Vi) P K

n a I

Similarly to w

A consistent one-sided normal test for no effect of X, in the regression of Y can thus
be based on nh?2/2V*/w*. As before, this test has power to detect local alternatives

approaching the null at rate slower than (y/nh?2/*)=1,

8



Many other tests have been previously proposed for the special case of testing for no
effect, as reviewed in Hart’s (1997) monograph. Because the null is very simple in this
case, it 1s possible to apply the empirical process approach and to derive omnibus tests,
see e.g. Buckley (1991) and Bierens (1982, 1990). Alternatively, tests based on smoothing
ideas have been considered, see e.g. Eubank and Hart (1993). In particular, it is possible to
allow for data-driven smoothing parameters in such tests, see Barry and Hartigan (1990),
or to construct a test based on the smoothing parameter itself, see Fubank and Hart
(1992). However, with the exception of Bierens (1982, 1990), all these tests have been
developed in the special case of a single regressor and homoscedastic errors. In addition,
the limiting behavior of some of these tests is nonstandard.

The statistic V.* resembles Zheng’s (1996) statistic for parametric specification testing
in the case where the parametric model reduces to the constant regression, but removes all
“diagonal” terms from the latter to make it unbiased under the null. Indeed, because the
estimation of the smallest regression model is actually parametric, there is no bias corre-
sponding to this stage. As the form of our statistic also eliminates the bias in the second
stage, a notable feature of our statistic is that it is unbiased under the null hypothesis,

ie. E(V*) =0 under Hy. This is especially valuable in small samples.

3 Monte-Carlo Study

In this section, we investigate the small sample behavior of our test and study its perfor-

mances relative to Fan and Li’s (1996) test, hereafter FL test. We generate data through
Y =aX; +bX] +d(W)+ U, (3.3)

where X; and W are independent and distributed as N(0,1) and U is independently
distributed of the regressors as N(0,c?). The null hypothesis corresponds to d(W) =
0, and we consider different forms of alternatives as specified by d(-). We impose the
restriction that £ [d(W)] = 0, so that the nonparametric regression r1(X7) remains the
same whatever the data generating process. We set the parameters a, b and o? to -1,1
and 4 respectively, so that the part of the variance of Y explained in its nonparametric

regression on X, is moderate, i.e. 71%.



We consider small (n = 100) and moderate (n = 200) sample sizes and run 2000
replications. We choose K () and L(-) as product kernels of the univariate Epanechnikov
kernel with support [—1,1], i.e. L(u) = (3/4)(1 — «?) M[Ju| < 1]. As indicated in Remark
5, we can use individual bandwidths. The bandwidth parameter for the restricted model
is chosen as g = 3x, n_1/5, where $x, is the estimated standard deviation of X;j. This
corresponds to the usual rule-of-thumb in kernel estimation, see e.g. Hardle (1991). For
the unrestricted model, we keep the same smoothing parameter as in the restricted one
for the first dimension, i.e. X1, and choose the parameter for the second dimension, i.e.

/5 where &y is the estimated standard deviation of W. Keeping the

Z,as hg =c Sy n™
same bandwidth for regressors that are common to both models, in our case Xy, seems a
natural choice in our testing framework. For the regressors under test, i.e. W, we apply
the same rule-of-thumb with an additional varying constant ¢ to investigate the sensitivity
of our results to the smoothing parameter’s choice.”

The design of the alternatives has been chosen to investigate the power of the com-
peting tests with respect to the magnitude and the frequency of d(-). For the magnitude,

we consider three linear alternatives of the form
dW) = aW,

with o = 0.5, 1 and 2 corresponding respectively to DG Py, DG P, and DG Ps. This allows
us to compare the performances of the nonparametric tests to the standard Fisher test
based on the true Model (3.3). Alternatives corresponding to varying frequencies are
defined through
d(W) =sin(d7W),
with 6 = 2,1,2/3 and 1/2 corresponding respectively to DG P;, DG Ps, DG Ps and DG P;.
These departures from the null are of special interest, as it is known that smoothing tests
of parametric specifications are sensitive to the frequency of the alternatives, see Eubank
and Hart (1993), Kuchibhatla and Hart (1996) and Hart (1997). We expect that such a
feature will hold for nonparametric significance tests.
Table 1 reports our Monte-Carlo results for the null hypothesis (DG Fy) and the linear
alternatives. For each sample size (n = 100,200), we let the constant ¢ be 0.25,0.5, 1,2, 4.

"In our setup, we have my = 2 and ¢; = 1, so that our bandwidths satisfy Theorem 1’s conditions.
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For each case, the first and second rows give the mean with standard deviation in parenthe-
ses of our test and FL test, respectively. For computational reasons, we use the simplest,
but biased, estimator of the variance (2.2). The third and fourth rows give empirical levels
of rejections for our test and FL test. The first figure corresponds to a 5% nominal level,
while the second one corresponds to a 10% nominal level. For each sample size, the last
row reports empirical rejection rates of the F-test for the same nominal levels.

The first column relates to the null hypothesis. First, the mean of our test statistic is
very close to zero, i.e our test statistic is nearly unbiased, irrespective of the smoothing
parameter, see Remark 3. This is in sharp contrast with FL test statistic, which is always
negatively biased, up to -1.15. Second, the standard deviations of both test statistics
are smaller than one. This is due partly to the fact that the simple variance estimator
(2.2) always overestimates the variance. Although both tests exhibit empirical sizes that
are smaller than the nominal ones, FL test can be considerably undersized due to its
strong negative bias. The size of our test is much closer to its nominal size, especially for
bandwidths that are somewhat smaller than the rule-of-thumb. The empirical level as a
function of the bandwidth hy displays an inverse U-shape, as for very small bandwidths
hs, our statistic is identically zero.

Regarding the linear alternatives, we find that FL test statistic is more variable than
ours. Moreover, our test statistic has a higher mean than FL one, which is due to the
negative bias of the latter. This leads to a systematic higher empirical power for our test.
As expected, power is increasing with the magnitude of the departure from the null, as
measured by a. Our test can detect small linear alternatives such as DG Py, unlike FL test
which has close to trivial power in this situation. Furthermore, the power performance
of our test can equal that of the Fisher test (see DG Ps), although the design is ideal for
the latter. Our results also indicate that the highest power is attained for our test for the
largest tried bandwidth, which is expected since the alternative is linear and the kernel
smoother is a straight line for large bandwidths. However, using an infinite bandwidth
should ultimately lead to a trivial power.

Table 2 has the same structure as Table 1 and reports results relative to the sinus
alternatives. As in Table 1, our test statistic exhibits a larger mean and a smaller variance

than FL one, and hence achieves higher power in all cases. The empirical power as a

11



function of hy displays an inverse U-shape for both tests. As shown in Figure 1, our test
uniformly dominates FL test for a large range of bandwidths. The maximum power of our
test can be up to fifty percent higher. It is achieved for a bandwidth that increases with
the smoothness of the alternative, as could be expected. Hence, our results suggest that
the bandwidth should be adapted to the frequency of the alternative, namely the higher
the frequency, the smaller the bandwidth should be.

For comparative purpose, we also provide the empirical rejection rates of the F-test
assuming a linear specification in W. The lowest frequency alternative DG P; is close to
a linear specification in the range [—1,1]. Given that W is N(0,1), the F-test therefore
performs quite well, while our test has acceptable power up to 78%. For high frequency
alternatives DG Py and DG Ps, the F-test has trivial power irrespective of sample size,
while our test can attain an empirical power of 50% or 68% respectively for a moderate
sample size of 200.

To sum up, our test has better size and power than FL test in all cases and seems to
exhibit good properties for a wide range of nonlinear alternatives. Our Monte-Carlo study
points out the importance of the bandwidth choice. There is clearly a trade-off between
size and power. A better sized test seems to be achieved by slight undersmoothing relative
to the rule-of-thumb, while better power is obtained in most cases by oversmoothing of
the variable under test. Our limited experiments suggest that the usual rule-of-thumb

(¢ = 1) leads to an acceptable compromise between size and power.

4 Proofs

Notations: In what follows, f; = f1(X1;), far = fo(Xn), i = m(X1), ra = ro(Xw),
w =Y, — 1, ug =Y, — 1oy, di = d(Xy;) and Z; stands for (Y7, Xy;), 9 = 0,1,...,n. Also
K = |K|and L = |L| and 1,75, k, 1,7, 5/, k', refer to indices that are pairwise different
unless stated otherwise. We let ﬁ =(n—1)"" > ki Lnik, and more generally for any index

set I not containing ¢ with cardinality |1|, fI = (n —1 — |I|)™! > kti kgl Lnik-
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4.1 Proof of Theorem 1

AsY; =Y, = (u; — ug) + (r; — rg), and as K is even, we have from (2.1)

1 ¢ 2 e
V., = ) Z(uz — up)(u; — ) Lpig Lnji K iy + e Z(uZ —wg)(r; — 71) Lpig Lt K i
1 e
W S (ri = ri)(ry = r) Lo Lo Kpiy = L + 205 + I,
n—21 . 2(n—2) 1 " :
wherel; = ) Zuiu]‘fifj[&m]‘ + T3 @ Zuz(ff — fiou fi Ko
n—2 1 9 7
3 n( Zul(f f )u](f f])[Xm] - —3 ZUifiuanjl[Xnij
2
- Wz:ul(fz]7 f)ul[fn]l[&nu + — 4 Zukul[/nzk[/n]l]&nz]
1 e
Wza:uiuijkLmk[&m]‘
n— 2
e n— 3 [‘/On -I_ 2[171 -I_ [172] — 2[173 — 2[174 —I— [175 — [1,67
1 1 7
[2 = (— Z uzfz - Ln]llxnlj + ( ZUz(f]l f )( — T[)Ln]‘lhm']‘
1
n(4) Z ( )ank[/n]l[&nm — [2 ,1 + [2 2 [2 3.

Propositions 1 to 11 study each of the above terms. Collecting results, it follows that

nh?? 2V, = A, + 82nhP? P, 4 5, /mhP20,(1),

nh?2 [ = Vou] = §inh™%0,(1) + 6,/nh?20,(1) + 0,(1),
nh?2/? [, = 52nhp2/20p(1) + 5n\/ﬁhp2/20p(1) + 5nnhp2/zg(m1+q1)0p(1) + 0,(1),
nh??/?15 = o,(1),
where AHLN(O,CUQ). Therefore
nh??2 [V, — Vo] = 82nh?2%0,(1) + 6,0/nh??/20, (1) + 8,nh™/* g™+ 0 (1) 4 0,(1).
In case (i), nh?2/2 [V, — Vo] = 0,(1) and nhp2/2%nl>N(C/,L,w2), as
S/mhP2/? = (§2nhpe/ )1 2ppelt = o(1),

and §,nhP2/?glmta)  — (52nhp2/2)l/z(nhm/zgz(ml"'ql))1/2 = o(1).

13



In case (ii), nh?22 [V, — Vo] = op(csinhp?/z) and nh2/2Vg, = 52nhp2/2 [tn + 0p(1)], as

hp2/4
2/2 2 2/2 _ 2 2 /2
2/2 (mi1+q1 2 2/2 (nhp2/292(m1+q1))1/2 2 2 /2
and §,nhP?/2glmta) = (§2pppe/?) (S2nhe/2yi2 o(62nhr?/?).

Q.E.D.

4.1.1 Distribution of V|,

Proposition 1 : nh?/?V,, = A, 4+ §2nh?>/?p, + 6, /nh?*/*B,,,
where (1, — W, ARLN(O,(,UQ) and BniﬂN(O,f — 8%p?), with § = lim,_., 6, and
{ = B [uid*(Xo) f{(X0) f3( X))

ProoOF: Write V4, = U0n+W0n—(9n, where Hn(ZZ, Z]) = uiu]‘fif]‘[(m]‘, (gn =L [Hn(Zl, Zo)],
Won = (2/n) 3 E [Ho(Z:, Zo)| Z:] and

Up = @ B > Hu(%:, 7;)

i<j
— (Z) h Z{Hn(ziv Zj) = E[Ho(Zi;, Z0)| 2] = E[Ho(Z0, Z5)|Zi] + 00} -
1<
(i) O = Euifou;filin;] = E[(uai + 0nds) fi(uz; + 6nd;) f; Kni]

= 2B [d; fid; [ Kpij) = 624t
with g, — u = E[d*(X2) fE(X1)f2(X2)], as 6.d(X2) f1(X1) f2(X2) € UP? and Lemma 1.
(ii) Distribution of Wj,:

E [EQ (Hn(Z27 ZO)|Z2)} E {U?fZQEQ(Uof()[X’nZdZZ)}
= 02 [u? [P B} (dofoK | Z:)] = 6%¢,

with &, — § = E[udd*(X2) fH(X1) f3(X2)], as 6,d(X2) f1(X1)f2(X2) € UP? and Lemma
. Now F | E[H.(Z,Z)|Z:]) "= E | u/frEY [uofoKniolZi] |= O(1) = o(n”/2_1) for
2<wv<4,as E|Y* |< oo. Thus, by Theorem 7.1 of Hoeffding (1948),

Vi [Won = 20,] = 20N (0,6 — 8%4%) .

14



(iii) Distribution of Up,: As F {[:[n(Zi, Zj)|Z¢} =0, by Theorem 1 of Hall (1984),

E[G?] + n ' E[HY]
E2[H2)

nh??Uq, —45 N (0, w?) if = o(1),

where G, (%, Z;) = E[H,(Zi, Zo)H,(Z;, Zo)| i, Z;] and w? = 2lim,_., h»? E(H?). By
definition of [:[n(Zi, Z;), the above condition is equivalent to

E[G?] + n ' E[H}]
E2[H]

= o(1), (4.1)

where G,.(Z;, 7Z;) = E[H(Z;, Z0)H,(Z;, Zo)| Zi, Z;], and w? = 2lim,,_., k> E(H?).
Let 0%(X3) = F (u?|X2). As 0?(X2) f7(X1) f2(X2) € UP2, by Lemma 1,

W B [HA(Z:, Z;)] = b7 B [0%(Xan)o*(Xop) AR — w2,

where w? = 2F [0 Xy) fH(X1) f2(X2)] [ K?(s) ds.
As E(uf|X2) fH(X1) f2(X2) € UP2, by Lemma 1,

E {Hﬂ = kK {U?U?ffff[(sij} =F {E(u?|X2i)ffiE(u?|X21)ffj[(3ij

| = o).
As Go(Z:, 7)) = wifiuj fE [02(Xa20) [1(X1.0) Knio Knjo| Xai, X2j], we have by Lemma 1

E[GF]
2
:/U;ffo';jff [/ U;off(XI,O)[(niOI(njofz(Xz,o) dsz] fzifzj dXQZ'dXQj

@) Fa( Xoi — hs) ds

faifa; dXo9;d Xo;

=7 o 2ot | [ (Xas = ) £ — s K () (5 4

=h7" [ o5 flo*(Xo: + ht) f{(Xai + hty)
2
[ [0 = ) FH (X0 = hs K () K s+ ) fo( X — hs) ds] Foi Fo Xoi + ht) d Xt

=h7" / {Uz(Xz)rff(Xl)f;l(Xz)dXz/ [/ K(s)K (s +1) dsr dt + o(h™"?)
=0(h™"?),

where s; and ¢; denote the first p; elements of s and ¢. Thus condition (4.1) holds as
h — 0 and nh??> — co. Collecting results, Proposition 1 follows. Q.E.D.
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4.1.2 U-Statistics

Let U, = (1/n") S, H,(Zi,, ..., Z:,) be an arbitrary U-statistic, where the Z;’s are i.i.d.

but H, is not necessarily symmetric. Then,

1 2 m n(2m—c) (e)
E(U;) = (W) > — S (AL
=0 T [Arf=e=]A|
m (e)
= 2.0m™) > I(ALAy) (4.2)

Il
=]

C

|A1[=c=|As]

where 2 denotes summation over sets Aq and A, of (ordered) positions of length ¢,

(AN =FEH(Ziyy oo  Zi VHA(Z50 000 Z50)0]

19"

and the ¢’s in position A; coincide with the j’s in position Ay and are pairwise distinct
otherwise. Note that this formula corrects equation (A.1) in Stute (1991). In what follows,
we let &, = S I(Ay, A,) and intensively use (4.2) to bound E(U?). Indeed, if Z. denotes

the vector of common Z;’s, we have by conditioning on Z.

(A Ay) = BYE[HZy,... Zi, 2B 2y, Z5,)| 2]

< B\EH(Zi,... Zi )| 2] BB (2. Z;,)| 2]

19

by Cauchy-Schwartz inequality.
Proposition 2 : nh?2/2[, 5 = §,,/nh?*/*0,(1) + 0,(1).

PROOF: [1 3 is a U-statistic with kernel H,(Z;, Z;, Z;) = u; fiwi L1 Kyij. In order to use
(4.2), we need to compute the corresponding &., ¢ =0, 1,2, 3.
(i) & = O(g~"). Indeed we have

E(H,|Z:, 7Z;) = uifilK; B (wlnj)Z;) =0,
E(H,|Z,72) = wfiwbE (LK.j|Z:, 7)),

16



Then, using K =

|K|and L =

BB (H,| %, 2)]

BE*(H,)Z,

(i) & =
Then

O(6,

). Indeed, £ (H,|7Z;) =

7)]

= F {ufffule
mE [U?ffule (Lnji K ij| Zi, 21) E (K iy | Zs, Zz)}

= O(g~

|L|, we have, by successive applications of Lemma 1,

(Lnﬂ[(m]‘ |Z27 Zl) FE (Lnj’l[(nij’ |Z“ Zl)}

= O(g_pl)E {uzfzulan]le]f‘Q(X%)} - O(g_pl)v

= 82F [u}L
:52[

2 B2 (di fiK | 2)]

Liﬂcﬁf?fz (X2)]

= 820(g7™)E [uf Loy d f13(Xa;)| = O(g7).

BB (H,|2)] =

E (Hn|Z]) = (0 and E(Hn|Zl) = 5nu1E (difi[fnjl[(nij |Zl) .

82K [usz (di fiLnji K pij |Zl)}

= OB [u} E* (Lojud; i 1251 21)] = O(32).

(iii) E[H,] = 0. Thus & = 0.
(iv) & = O(g™ P h™*2), as B [H?] equals

E {u?ulzfQLi]l[ m]} O(g™™h™7)E [ulz

Collecting results, E(nhp2/2[173)2 = §2nh?20(1)

Proposition 3 : nh?>/2[, 5 = o,(1).

uleanﬂKm]} = O(g~" h"2),

+h?2[g" O(1) + O(ng™ ).

PROOF: [} 5 is a U-statistic with kernel H,(Z;, Z;, Zy, Z1) = wptg Lpip Lnji K-

(i) & = O(g™?"*). Indeed we have

E(H,|Z:, Z;, Z
E(H,|Z:. 7;, 7,
E(H,|Z:, Zi, 7

)
)
)
E(H,|Z;, Zx, 7)

(
(

17

= U Lpir Kpij B (wiLpji|Z;) =

= wlnjyKui B (uplnik|Z) =0
= uptgLni B (LnjiKnij| Zi, Z0)
= uptgLnj B (Lnik Knij| 25, Zk) -

Q.E.D.



Then, we have, by successive applications of Lemma 1

E |:E2(Hn|Zi7 Zi, Zl)} = F [uzU%L?ﬂkE (LnjKnij| Ziy Z1) B (Lpjin K pijr| 2, Zl)}
= O(g—2p1)E {UzulanikLnﬂKniiji} — O(g—2p1)7

D) {EQ(HMZj, 2y, Zl)} = F {uiu?LileQ (Lnie Kij| 2, Zk)} = O(g™*).
(ii) & = O(¢g™). Indeed we have F(H,|Z;,7;) = FE(H,|Zi,Zx) = E(H,|Z;, 7)) =
E(Hn|Z], Zk) = E(Hn|Z], Zl) = 0 and E(Hn|Zk, Zl) = ukulE (Lm;gLnﬂKmﬂZk, Zl) 5 and
E {EQ(HHZM Zl)} = b [uzu?E (Lonite Lonjt K i) Zs Z0) B ( Loy Lo K e | 2 Zz)}
= O(g_pl)E {uiu?E (LnikLnlenij|Zk7 Zl) E (Lnj’lKnij’|Zk7 Zl)}
= O(g™)k [Uzu?LnikLnﬂKm]‘fﬂ =O0(g™").
(iii) & = 0.
(iv) F[H,] =0. Thus {& = 0.
(v) &4 = O(g7? h™*2), as E[HZ] equals

B g L2, L2 K25 = O(g7" h™") B [wu} Lo Loj K i) = O(g™ ™).
Collecting results E(nh?>/21, 5)? = (h*2/g*) [O(1) + O(ng®*)~'] + O(ng?)~2. Q.E.D.
Proposition 4 : nh?/2[, ¢ = §2nh??/%0,(1) 4 0,(1).

PROOF: (n — 3)l16 = is a U-statistic with kernel H,(Z;, Z;, Zr) = wittjLyig Lpji K i
Using a reasoning similar to the one followed in Proposition 3, it is not difficult to show
that this U-statistic is such that & = O(g™ 2 h™22), & = O(g~*h™F2) + O(g~ P h™22),
& = O(h™2) and E[H,] = O(52g7"). Hence, E(nh?2/21, ¢)? = O(82nh?2/?)?(ngr)=2% +
O(nh?2)™t 4+ O(n?gPrhP2)~t 4+ O(ng?* )~ 4+ O(ngP* )~ *(nh??)~t Q.E.D.

Proposition 5 : nh?2/2[y; = §,\/nh?*/%0,(1) + §,nhP*/2g("+1) O (1) + 0,(1).

PROOF: [1 = is a U-statistic with kernel H,(Z;, Z;, 7Z;) = wi fi(r; — ri) Lpji Kpij.
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(i) & = o(h™"2) + o(g~*"). Indeed we have

E(H,|Z;, 7Z;) = wuifilKn E((rj —ri) Lol Z5)
E(H\Zi, 7)) = wifiB ((r; — ) LnjiKui;| Zi, 7))
E(H,|Z;, 7Z1) = 6u(rj — i) Loji 0 (d; fi Knii| Z5) -

First, we use the fact that E [(r; — r))La;i|Z;] = O(g™+1)) = o(1) uniformly in Z; by a

standard Taylor expansion argument, so that

BENH,|%.2)] = B [u2fPKE B ((r; — r)Lopl Z;)]

nij

= O(h™™)E [“?fiszJ‘EQ ((rj — Tl)Lm‘z|Zj)} = o(h™"2).
Now, by successive applications of Lemma 1,

BB (H| 2. 20| = B2 f2E((rj = ) Luji Koig| Zis Z0) B (rje = 70) Lujn K| 22, 21)|
= O(g™)E [W2f2E(|rj — ri| Lo i Zis 20) E 1y — 71| K iy | 22, 20)|
= olg™),

BB H\ 2. 20)] = 838 |(r = r) Ly B (di K| 2)|
= 0@ ™)E [(r; =) Logd} f1 73] = olg™).

(ii) & = O(g¥m™+n)) 4 6(5?). Indeed, by a similar reasoning to (i),

K [EZ(HMZZ')} = L [U?J?Ez (Km'jE((rj - Tz)Lnﬂ|Zj) |Z¢)}

= OB [l f2E (K )] = O(g* ™),
BE*H,|Z)| = E[E*(uifi(r; — r)Lop K| Z))] = O(g*m ),
BENH|2)] = E|E*((r; = r) Lok (wfi Kol 2) | 2)]

= S2E[E*((r; — n) Lujid; £ £251 %) | = 0(32).

(iii) E(H,) = Ewfir; —r) LKl
~ Ol [(r; — ri) Lojid; f; f2;]
~ 06,9 TNE [d; f; 2] = O3, gtmta)),

(iv) & = o(g " h™"2), as E[H?] = B [u? f3(r; — n)* L2, K2 | = o(g™" h™"2).
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Collecting results, E(nhp2/2[271)2 = 52n2hp20(92(m1+q1)) + nhmO(gz(ml"'ql)) + 0(82nh?) +
o(1) + o(h*2 /gF') + o(ngP*) ™. Q.E.D.

Proposition 6 : nh?>/2[, 5 = o,(1).

PROOF: I, 3 is a U-statistic with kernel H,,(Z;, Z;, Zi, Zi) = wi(r; — 1) Lyik Lnji Kpij. Using
a reasoning similar to the one followed in Proposition (5), it is not difficult to show
that this U-statistic is such that & = o(h™P2¢7%1), & = o(g " h™72) 4+ o(g™ 1), & =
o(g7"), & = O(g¥m+1)) and E[H,] = 0. Hence, E(nh?*/%I,3)* = nhr>O(g*m+a)) 4
o7 /) [1+ (ng? )] + ong" )~ + o(ng" ). QED.

Proposition 7 : nh?2/2[; = nh?2/20,(g*(™+1)) 4 o,(1).

PROOF: I3 is a U-statistic with kernel H, (Z;, Z;, Zx, Z1) = (ri — ri)(rj — 11) Lt Lt K i -
Similarly to the proof of Proposition 5 for I3, we can show that & = o(h_p2g_2p1),
Es=o(h™g ")+ o(g7 ), & =o(g™™), & = 0(92(m1+q1)). On the other hand,

E[H,] = E(r; —ri)(rj — 70) Luix Loji Knij] = O(g*m ),
so that ¥ (nhp2/2[3)2 = n2hP2O(g*mta)) 4 o(1). Q.E.D.
4.1.3 The remaining terms
Proposition 8 : nh?>/2[; | = §2nh??/%0,(1) + &, /nh??/%0,(1) + 0,(1).

Proof: We denote (ﬁ] — fi) by Af!. We have L= (1/n)3, uiAfgujijmj so that

1 \2 . i . i
EU%J) = (W) [Z UiAffujfj[ij] [Z up A f uj'fj'fim'/j'] ;

where the first (respectively the second) sum is taken over all arrangements of different
indices ¢ and j (respectively different indices " and j').
Let X; be the o-algebra generated by all the Xi;’s and A\, be E {A2f5|Zi,Zj,Zi/,Zj/ ,

which is o(1) uniformly by Lemma 2. We consider three situations.
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(i) All indices are different: n™ terms.

=GB [ fi firdid;dindy Ko Kot B (A AP |22, 25, 20, 25|
:(Si)\nE |f]‘f]‘/did]‘di/d]‘/[(m]‘[(m/]‘/| = O((Si)\n)

(ii) One index is common to {i,j} and {i’,5'}: 4n®® terms.
(i = i) B [u2AFu; fi Ko A wp f Koy | =028 [AFFAF B (uldidy K Ko X ) |
=0 AE | f fuiddy Ky Kijr| = O(02 M),
(7' =3) B[ fIud [} Ky MK o |=6L 5 (A [PALLE (daddi K i K| 50 )|
=67 A b ‘ffdiufdi/[(m]‘[(m']‘ = 0(62\,),
(i' = 5) B [ud f fi K A ey Koy | =028 [AF ST f B (dividd e Koy K| X1 )
=8NE | f fdiuddy Ko K| = O(52),).

The case 3’ = ¢ is similar to ¢/ = j.

11) Two indices in common to {z. 7} and {7, 7'}: 2n erms. We have

i11) Two indi i t )] d {5} 2 (2) ¢ We h
nij nij

E [u3u§ (Af) f2K? ] — OO /W) and B 2 AFIATL K] = O(A /7).

Therefore,
E (nh#1,)" = 54507h720(A,) + 620h O(A,) + O(A,).

The proposition then follows from A, = o(1) uniformly, see Lemma 2. Q.E.D.
Proposition 9 : nh?2/2[, 5 = §2nh?2/20,(1) 4 §,/mh?*/%0,(1) + 0,(1).

Proof: The proof is very similar to the proof of Proposition 8 for 1 ; and is not reported.
Proposition 10 : nh?2/2[; 4 = §2nh?>/20,(1) + §,/nh??/%0,(1) + 0,(1).

rool: We denote il _ i e have 114 = n U; wr L, K an
Proof: We denote (/' — f;) by AfI*. We have 114 = (1/n®) T, wA [/ ui Ly ji Koij and

1 2 N - -1 gt -~
E(1,) = (W) [Z uiAff’luanﬂ[me] [Zuifﬁff/ P g L Koo |

where the first (respectively the second) sum is taken over all arrangements of pairwise

different indices i, j and [ (respectively pairwise different indices ¢/, 5/ and I'). Let X; be
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the o-algebra generated by all the X3i;’s and where A, be F {Azfg”Zi, Ziy Ly, Zisy, Zjry Ly
which is o(1) uniformly by Lemma 2. We consider four situations and employ a similar
strategy as in Proposition 8’s proof.

(i) All indices are different: n®) terms.

FE {uiAfg’luanﬂijui/Aff;/’l/ul/Lnj/l/[(m/jl}
= 1B Lo Lujwdidydidy K Koo B (A F A\ 20, 25, 20, 2 2y, 20|
— O(5'\).

(ii) One index is common to {i,j,{} and {i’,5',I'}: 9n®® terms. For case (i’ = 1),
B2 P Lt Ky AF wp Lo Koy | = 62 B |AF Ly AF L didy Koy K| =
O(62),,). Similar computations for the other cases lead to the same result.

(iii) Two indices are common to {7,7,{} and {i’, 7', I'}: 18n™ terms.

(t=1"and j=7j")

B2A fF i Log A 7w Lugn K25 = 82E (A Ly A Lojuudidy K2,

= O(&Z A /h72) = O(X, [hP?),

(t=17andl=1)

E {u? AR L Koy A "’Lm/lel} = (A/g™) B [wiuf LK Koijl] = O(X, /™),
In other cases, similar computations lead to either O(A, /g™ ) or O(A,, /h¥?).

(iv) Three indices are common to {i,j,{} and {i’,j,I'}: 6n®® terms. For instance, if
(b=4,5=j4"andl=1) FE [uf (Aff"l)Z ulzLiﬂKgij] = O(A,/(g"*h*?)). In the remaining
cases, the corresponding expectations are all O(A,, /(g hP?)).

Therefore from (4.2) we get

E[nh?L]" = 50h0(A,) + 820k O(A,) + h7 /¢ O(An) + O(An) + (ng? ) O(A,).
The proposition then follows from A, = o(1) wniformly, sce Lemma 2. Q.E.D.
Proposition 11 : nh?2/2[, , = §2nh?>/20,(1) + §,/nh??/%0,(1) + 0,(1).

Proof: The proof is very similar to the proof of Proposition 10 for I3 4 and is not reported.
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4.1.4 Lemmas

Lemma 1 For any function [(-) € U? and any integrable kernel K(-),

— 0.

sup

|10 K () ax i) [

Proovr: This result comes from the well-known Bochner lemma.

Lemma 2 : [f the density f1(X1) € U and ng™ — oo, £ {AzfﬂZi,Zj,Zi/,Zj/} = o(1)
and £ {Azfg”Zi, Zi 2y Liny Ly Zl/} = o(1) uniformly in the indices.

PROOF: From the definition of Af»j,

BN fi|Zi. 2, 2, 2] = E[(f{—E(ﬁﬂzi,zj,z,,zjl))?|Zi,Zj,ZZ»,,Zj,]
+ [E(F12. 25, 20, 2)) - 1]

K3

Because f! — E(f!|Zi, Z;, Z, Zp) = (0 — 2)7 Segpigirin (Lm'k - E(Lmk|Zi))7 whose

summands are, conditional on Z;, independent with zero mean,

B(F = B2 23 20 200) Vs 2, s 2| < (n=2)78 S0 B(LE G\ %0) = O™t g7,
kg{i,g,4.3'}

n—4 2

[E (ﬁj|Z¢, ANATR Z]‘/) - fir = [n — (Lyiir + Liijp — fi) + n—:QE(Lmk — filZ:)

< [0 )+ 0m™) +o(1)] = o(1).

The proof for the second part is similar and is therefore not reported. Q.E.D.

4.2 Proof of Corollary 1

Let u; =Y, —c. As Y; — Y = (u; — ug), and as K(-) is even, we have

% 1 7 2 e 1 7 b % %
Vn = W Zuiuj[xmj — W Zuiullxmj + W Zukullxmj = ‘/On — 2‘/171 + ‘/2717
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Each of these terms can be studied using the same techniques as in Theorem 1’s proof,

so that we have

nhP2 2V = AT 4 82kt 4 8, /nhP B
where AZ#N(O,@*Q), o — leﬂN(O,f* — &*u*?), with § = lim,_., 6, and
& =E[Y — o) d*(Xa) [ (X2)],

nh?2 2V = 8, /nh?20,(1) + 0,(1) and nh?/?Vy, = o,(1).
Collecting results, it follows that
nhP 2V = A7 4 82nh s 4 8,/nh0,(1) + 0,(1),

where AZLN(O,@*Q) and p; — p”. The end of the proof is similar to Theorem 1’s one.
Q.E.D.
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Table 1: Null and Linear Alternatives

nooo DGPO DGPI DGP2 DGP3
100 025 |-0.019 (0.876) | 0.148 (0.909) | 0.583 (0.949) | 1.683 (0.894)
-0.350  (0.959) | -0.159 (0.998) | 0.340 (1.044) | 1.620 (0.973)
33%  87% | 5.6% 11.8% | 14.3% 25.3% | 53.7%  69.4%
21%  52% | 3.7%  85% | 115% 20.0% | 51.3%  66.1%
05 |-0.007 (0.857) | 0.231 (0.922) | 0.838 (1.009) | 2.353 (0.986)
0462 (0.941) | -0.190 (1.014) | 0506 (1.112) | 2.268 (1.075)
41%  85% | T8% 14.1% | 21.5%  334% | T7.0%  85.8%
20%  48% | 51%  87% | 16.1%  24.4% | 73.1%  82.3%
1.0 | 0010 (0.800) | 0.335 (0.918) | 1.170 (1.085) | 3.241 (1.136)
-0.620 (0.877) | -0.247 (1.010) | 0.711 (1.197) | 3.120 (1.238)
3.6%  7.4% | 9.0% 15.4% | 31.3%  434% | 91.9%  96.1%
15%  33% | 48%  84% | 218% 30.3% | 88.6%  92.9%
20 | 0.018 (0.707) | 0.450 (0.895) | 1556 (1.173) | 4.279 (1.329)
0852 (0.779) | -0.358  (0.989) | 0.909 (1.299) | 4.070 (1.450)
24%  53% | 98% 16.9% | 42.6% 54.3% | 98.0%  99.0%
07%  1.6% | 41%  64% | 27.1%  351% | 954%  97.4%
40 | 0018 (0.503) | 0497 (0.755) | 1714 (1.090) | 4.686 (1.297)
1144 (0.564) | -0.598 (0.842) | 0.790 (1.215) | 4.220 (1.433)
1.2%  22% | 7.3% 13.1% | 48.2%  60.9% | 99.1%  99.8%
01%  02% | 21%  3.0% | 22.0% 31.4% | 97.0%  98.0%
Ftest | 51% 10.1% | 695% 79.2% | 99.7%  99.9% | 100.0% 100.0%
200 025 | 0.007 (0.915) | 0.301 (0.951) | 1.080 (1.015) | 3.018 (0.970)
-0.308  (0.964) | 0.010 (1.002) | 0.855 (1.071) | 2.974 (1.016)
43%  9.6% | T9% 15.6% | 28.8%  42.6% | 91.8%  95.6%
24%  56% | 7% 111% | 23.7%  34.9% | 90.3%  94.8%
05 | 0012 (0.901) | 0425 (0.974) | 1520 (1.109) | 4.227 (1.134)
0430 (0.951) | 0.017 (1.029) | 1.205 (1.174) | 4.164 (1.189)
54%  9.6% | 11.8% 185% | 44.2%  56.8% | 98.7%  99.4%
25%  55% | T1% 12.3% | 34.5%  45.8% | 98.3%  99.1%
1.0 | 0015 (0.856) | 0.596 (1.011) | 2129 (1.271)| 5898 (1.397)
-0.604 (0.905) | 0.024 (1.072) | 1.685 (1.347) | 5.804 (1.467)
45%  82% | 15.0%  23.7% | 62.4%  72.6% | 99.8%  99.9%
15%  33% | 75% 125% | 48.2%  59.2% | 99.7%  99.8%
20 | 0.016 (0.763) | 0.807 (1.057) | 2.877 (L481) | 7.944 (1.725)
-0.848 (0.809) | 0.005 (1.123) | 2.247 (1.573) | 7.780 (1.816)
29%  6.6% | 192%  27.8% | 79.5%  86.3% | 100.0% 100.0%
0.6%  1.4% | 83% 131% | 62.9%  71.9% | 100.0% 100.0%
40 | 0019 (0558) | 0.949 (0.967) | 3.364 (1.496) | 9.245 (1.830)
1153 (0.596) | -0.150 (1.030) | 2.461 (1.593) | 8.868 (1.935)
0.9%  2.5% | 20.8%  31.0% | 87.5%  93.1% | 100.0% 100.0%
01%  0.1% | 6.6%  9.9% | 69.5%  77.0% | 100.0% 100.0%
Ftest | 52% 10.6% | 93.1%  96.9% | 100.0% 100.0% | 100.0% 100.0%




Table 2: Sinus Alternatives

no e DGP4 DGP5 DGP6 DGP7
100 025 | 0563 (0.979) | 0.564 (0.982) | 0.571 (0.984) | 0.540 (0.971)
0.288 (1.068) | 0.291 (1.072) | 0.297 (1.077) | 0.265 (1.065)
15.0%  24.7% | 15.0%  25.3% | 15.4%  25.4% | 14.4%  24.3%
11.2%  19.9% | 11.7%  20.2% | 12.4%  20.4% | 11.0%  19.1%
05 | 0.705 (L.007) | 0.798 (1.041) | 0.815 (1.053) | 0.773 (1.039)
0.319 (1.100) | 0.422 (1.136) | 0.441 (1.152) | 0.397 (1.139)
182%  28.5% | 22.0%  31.7% | 22.0%  32.6% | 20.6%  31.2%
12.6%  20.1% | 16.0%  23.3% | 16.0%  23.5% | 14.6%  22.6%
1.0 | 0598 (0.914) | 1.010 (1.086) | 1.093 (1.130) | 1.055 (1.116)
0.025 (1.000) | 0.478 (1.185) | 0.571 (1.234) | 0.532 (1.222)
13.2%  22.2% | 26.6%  37.5% | 29.9%  40.8% | 28.6%  38.8%
6.6% 11.6% | 16.8%  23.8% | 18.7%  26.9% | 18.1%  26.2%
20 [-0.030 (0.705) | 0.848 (0.944) | 1232 (1.124) | 1.296 (1.155)
-0.906  (0.779) | 0.056 (1.033) | 0.479 (1.228) | 0.555 (1.265)
22%  44% | 181%  27.9% | 31.9%  44.0% | 35.2%  46.1%
0.6%  1.0% | 75% 12.5% | 16.5%  23.0% | 17.8%  26.0%
40 | 0050 (0.497) | 0.046 (0.541) | 0.713 (0.791) | 1.071 (0.922)
“1.107  (0.558) | -1.116  (0.602) | -0.384 (0.871) | 0.013 (1.018)
07%  23% | 1.3%  28% | 11.8%  20.6% | 23.4%  36.3%
02%  02% | 02%  03% | 25%  43% | 65% 10.8%
Fotest | 4.6%  99% | 55%  9.9% | 222% 32.1% | 60.8% 72.3%
200 025 | 1.068 (1.054) | 1.078 (1.058) | 1.073 (1.047) | 1.005 (1.033)
0.813 (1.109) | 0.825 (1.114) | 0.821 (1.103) | 0.750 (1.089)
29.8%  41.6% | 28.9%  42.2% | 29.4%  42.1% | 27.5%  39.8%
23.6%  33.6% | 23.1%  33.9% | 22.9%  33.9% | 21.3%  31.2%
05 | 1.361 (1.148) | 1.482 (1.172) | 1.498 (1.165) | 1.408 (1.142)
0.996 (1.209) | 1.126 (1.235) | 1.143 (1.229) | 1.051 (1.205)
38.6%  50.5% | 42.6%  54.5% | 43.6%  55.0% | 40.2%  52.6%
28.9%  39.3% | 32.3%  43.4% | 32.9%  43.5% | 29.7%  40.6%
1.0 | 1305 (1.113) | 1.911 (1.298) | 2.027 (1.339) | 1.937 (1.313)
0.759 (1.172) | 1.401 (1.367) | 1525 (1.412) | 1.433 (1.386)
36.3%  47.8% | 54.0%  66.6% | 57.8%  70.0% | 55.1%  66.2%
21.5%  31.6% | 39.5%  49.7% | 43.4%  53.2% | 41.0%  50.4%
20 | 0144 (0.798) | 1.837 (1.238) | 2418 (1.460) | 2.465 (1.482)
0.715  (0.847) | 1.076 (1.304) | 1.691 (1.540) | 1.746 (1.566)
47%  8.6% | 52.4%  64.4% | 67.8% 77.3% | 69.0% T7.7%
1.0%  21% | 30.1%  40.8% | 47.1%  56.5% | 48.2%  58.3%
40 | 0088 (0.571) | 0.362 (0.703) | 1.722 (1.136) | 2.299 (1.305)
“1.078  (0.612) | -0.792  (0.745) | 0.647 (1.200) | 1.261 (1.382)
1.5%  32% | 5.9% 10.6% | 47.4%  61.4% | 67.1%  76.8%
01%  0.2% | 04%  1.1% | 187%  26.5% | 35.2%  44.7%
Fotest | 51% 103% | 5.3% 11.2% | 34.0% 46.6% | 85.6% 91.3%
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