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1 Introduction

Consider two independent Brownian motions (Wy)¢>o and (Wt)tzo- We study
solutions X of stochastic differential equations

dX, = dW, + Y,dt (1)

driven by W, where the drift Y depends linearly on X and W. Our purpose
is to derive the canonical decomposition of X as a semimartingale in its own
filtration (F;¥) and to characterize those cases where X is again a Brownian
motion.

As a simple example consider the Brownian bridge from 0 to W, defined
by (1), where the drift is given by

W, — X
y, = L
1—+

(2)
The process X is a new Brownian motion such that X; = W;. This example
plays a crucial role in the Kyle-Back model of “insider trading” (see Kyle [14]
and Back [2]). The “insider” knows in advance the final value W;. He applies
the drift (2) in order to modify the original Brownian motion W in such a way
that (i) the resulting process X ends up in Wi, and (ii) the distribution of the
process remains unchanged, i.e., X is again a Brownian motion. Condition
(i) guarantees that the strategy maximizes the insider’s expected gain; cf.
Back [2]. Condition (ii) corresponds to the notion of equilibrium as defined
in Back [2].

Let us now modify the example as follows. Suppose that the “insider”
cannot anticipate the final value Wy from the beginning. Instead, his “insider
information” consists in observing the second Brownian motion W. This
suggests to replace the anticipating drift (2) by the adapted drift

v Wi X
1—1

(3)
The resulting process X converges again to Wi. But its distribution has

changed: X is no longer a Brownian motion. In section 2 we determine
explicitly its canonical decomposition as a semimartingale in its own filtration

(F7)-
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This example suggests to study a more general class of processes of the
form (1) where the drift is given as a time-dependent linear function in X
and W, i.e., .

Yo = f(O)Wi + h(1) X, (4)

for functions f and h in C*(0,1) satisfying some mild integrability condi-
tions. In section 3, we derive the canonical decomposition of X in its own
filtration. To this end, we consider the Radon-Nikodym density D of the
law of X with respect to that of W. We express D in terms of (W, W), and
we compute in closed form E[D|W], its conditional expectation with respect
to W. Applying one more time the Girsanov transformation we obtain the
canonical decomposition of X. In order to formulate the result, we introduce
the fundamental solution W(t) of the Sturm-Liouville equation

(L) = f2(1)0(1), (5)
with boundary conditions ¥(0) = 0 and ¥/'(04+) = 1. The canonical decom-
position of X is given by

X, = Bt—l—/ ko (Xos v < ) + h(u)X,) du,

where (B;) is an (F;%)-Brownian motion and the functional k, is given by

bu(Xyis < u) = ﬁ [ W@ @AX, ~ Fh() Xode)

An alternative method consists in applying the stochastic filtering theory
for Gaussian processes. This is explained in section 4. There we consider
stochastic differential equations (1) where the drift is given by an adapted

linear transformation of X and W, i.e.,
t . t
dX, = dW, + (/ F(t,u)dW, +/ H(t,u)dX,)dt, (6)
0 0
with some square-integrable Volterra kernels ' and H; see the definition in

section 3.2. Theorem 4.1 shows that the canonical decomposition of X is of
the form

X, = Bt—|—//GFsudB—|—/ (s,u)dX,) (7)
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where (B;) is a standard Brownian motion with respect to (.EX) and Gg 1s
the square-integrable Volterra kernel determined by the equation

/05 F(s,0)F(t,u)du = Gp(t, s) + /0 G5, 0) G (t, u)du. (8)

In the special cases considered in section 3, the kernel Gy can be identified
in terms of the solution of a Sturm-Liouville equation.

In section 5.1 we return to the discussion of properties (i) and (ii) which
appeared in our initial example (2). In the general context of equation (6)
where the drift Y is a linear functional of the past of X and W, we charac-
terize those cases which satisfy condition (ii), i.e., the resulting process X is
again a Brownian motion. The criterion is that

H(t,u) = —=Gp(t,u),

where G is given by (8). But it is not possible to obtain at the same
time condition (i), i.e., to tie such a Brownian motion X to the endpoint of
the Brownian motion W. In fact, the simple argument of Proposition 5.1
shows that there is no adapted drift (V) such that the solution X of (1) is a
Brownian motion with endpoint X; = W;.

In section 5.2 we point out the following connection to an enlargement of
filtration. First we note that a Brownian motion X, given as the solution of
equation (7) with i = —GF, can be expressed directly in terms of W and

W

dX, = dW, + {/Ot Li(t, w)dW, + /Ot(F(t, w) + /: Li(t, v) F(o, u)dv)dm} dt,
(9)

where Ly denotes the resolvent kernel of Gp; see (67). In the special case

F(t,u) = f(t), this can be reduced to

W= X, —/Ot é:((“u))(/o W(o)d IV, — [ ()W ()aw.)du,

where W(¢) is the solution of the Sturm-Liouville equation (5). This rep-
resentation of W in terms of the Brownian motion X can be viewed, after
time reversal, as the decomposition of a Brownian motion in some enlarged
Gaussian filtration.
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2 A bridge between two Brownian motions

Let (2, F, IP) be a probability space and (W¢)o<i<1 be a standard Brownian
motion with respect to its canonical filtration (ftw)ogtg- Now let (Wt)0§t§1
be another standard Brownian motion on the same probability space which
is independent of (Wy)o<i<1 , and denote by (F)o<i<1 the filtration generated
by these two Brownian motions.
We know that the solution ()N(t)0<t<1 of the stochastic differential equation
dX, = dW, + %dt, (10)
with initial value X, = 0, is a standard Brownian motion which converges
to the final value W, (cf., for example, Jeulin-Yor [8]). Now we look at
the process (Xy)o<¢<1 starting in Xo = 0 which is defined by the stochastic
differential equation

W, — X
dX, = dW, + #dt. (11)
Clearly, for any ¢ € [0,1], X; is normally distributed, and (X), = . The
following Lemma shows that X, approaches W; as t — 1. However, we will

see that (Xy)o<i<1 18 no longer a Brownian motion.
Lemma 2.1 X; — Wl as 1t — 1.

Proof. The explicit solution of (11) is given by

Xt:(1—t)/0t(1V_V71)2d5+(1—t)/ot(lis)dws. (12)

The first term approaches W, and the second goes to 0 as ¢ — 1, and this
. . . 1 ~

implies the result. Alternatively, we could note that the process 272 (X — W)
satisfies the equation of a Brownian bridge tied down to the final value 0. O

Lemma 2.2 For (0 < s <t<1, we have
EIX W] =t+(1—1t)log(l —1), (13)
and the covariance function of X is given by

EX:Xi]=s+2s(1 —1)+ (2 —5—1)log(l — s). (14)
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Proof. Applying the integration by parts formula in the first formula in
(12), the solution of (11) is given by

tdW, —dW, -

Xt:(l—t)/o Sl

Since (W;) and (Wt) are independent, we establish

tWtdW )
1—s

E[X.W,] = E/
_ t—|—( )log(1 — 1),

(/5 dW,, — qu)2]

0 1—u

n (1—5)Eth/ W]Hutwlw/owl
= s+2s(1 —t)+(2—s—1t)log(l — s).

and

E[X,X,] = EWW]+ (1 -t)(1-s)E

O

This Lemma shows that (X;)o<i<1 is not a Brownian motion, since its

covariance function differs from ¢ A s. But from (11) we see that it is a

semimartingale with respect to (F;)o<¢<i, and therefore it is obviously a

semimartingale relative to its natural filtration. A natural question is: what

is the explicit form of its canonical decomposition? That is the problem we
want to discuss in this section.

Lemma 2.3 Suppose that the process (Xi)i>o is given by
¢
X, =W, + / Y, du,
0

with a Brownian motion (W;)i>o adapted to a filtration (Fy)i>0 and an (F)-
adapted process (Yy)i>o satisfying [5 E|Y,|du < oo for all t.
(1) The canonical decomposition of X in its natural filtration (FX) is given
by
t
Xi = B ‘|‘/ E[Yu|.7:§]du, (15)
0
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where the process B defined by (15) is an (FX)-Brownian motion, which is
often called the innovation process of X. In particular, (X;) is a Brownian
motion if and only if

ElY.|FX] =0, dIP X du — a.s..

(2) Furthermore, if the function s — Y; is L'-continuous on (0,00) and if
(X¢)i>0 s a Gaussian process, then (Xi)i>o is a Brownian motion if and only
o

E(X,Y;) =0, (16)
forall0 < s < t.

Proof of Lemma 2.3. (1) The first part of the first assertion is the
Innovation Theorem by Shiryaev and Kailath, the proof of which can be found
in Hida-Hitsuda [5] or Liptser-Shiryaev [15]. The second part is immediate
from the uniqueness of the canonical decomposition of X in (F).

(2) As to the second assertion, suppose (X;) is a Brownian motion. Then

E(X,W,) = E(X,W,) = s + / E(Y,W,)du.
0
Therefore,
13 s
/ E(Y, X,)du = s — B(X,W,) = —/ E(Y,W,)du.
0 0

Taking derivatives with respect to ¢ on both sides, we obtain (16). Con-
versely, from Stricker [18] we know that if X is a Gaussian semimartingale,
then its canonical decomposition is Gaussian, i.e., (X¢, fy E[Y,|FX]du)iso is
a Gaussian process. Since s — Y, is L'-continuous, (Xt,E[ELEX])tZO is
Gaussian. From (16) we have E[Y;|FX] =0, and so X is a Brownian motion
due to (15). O

Corollary 2.1 Let the process (Xi)o<i<1 satisfy (11). Then the process B,
defined as .
tEWLFY] - X,

Bt::Xt—/ du?
0 1 —wu

is a Brownian motion relative to (.7:5()0<t<1.
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Proof. Set .
w, — X,
Yo=—/—,

1 —u

then from the first assertion in Lemma 2.3, we obtain the required result. O

Therefore, we have only to compute the conditional expectation of W,
relative to F;X, the goal we want to reach in this section.

Lemma 2.4 Set A:=21(14+/5) and B := (1 —+/5). Then for 0 <t <1,

x] (1= —u)™ ' —AQ = t)(1 —u) P!
BIWIF) / A(T= 0% = B(1 =97 Kudu

A(l t) 3(1 — )8

Proof. Let us assume the conditional expectation of W, with respect to
FX is of the form

N t
E[W,|FX] = / a(u, 1) Xodu + b(1) X,
0

Apply the projection property of the conditional expectation: E[XS(Wt —
E[WFX])] =0forall 0 < s <t <1, as well as the martingale property to
obtain

B(X,W,) = (1) E(X,X,) = /Ota(u,t)E(Xqu)du.

Using (13), (14) and computing explicitly the left hand side (LHS) and the
right hand side (RHS) in this equation, we get

LHS =s[1 —(3=2t)b(t)] +log(l — s)[1 — (2 —1)b(t)] + slog(1 — s)[b(¢) — 1].
RHS = /05 a(u,t)(u+2u(l —s)4+(2—s—u)log(l —u))du
+ /: a(u,t)(s+2s(1 —u) 4+ (2 —s—u)log(l — s))du.

Taking the second derivatives with respect to s on both sides implies

1 b(t)(t—s) (u—s)
1—s (1 —s)2 N St—l_/ 1—3 .
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Multiplication of both sides with (1 — s)? leads to:

L s = b0t = ) = —als,1)(1 =)+ [ alu, 1)(u— s)du.
Taking two further derivatives with respect to s on both sides we get
(1 —35)%a"(s,t) —4(1 — s)a'(s,t) + a(s,t) = 0.
The solution of this differential equation is given by
a(s,t) = e (t)(1 — 3)(_’4_1) + () (1 — 3)(_B_1).

Substituting this equation in RHS and comparing the coefficients of s, log(1—
s) and slog(l — s) in LHS and RHS, we derive the desired result. O

Using [t6’s product rule, we can rewrite the conditional expectation in

(17) as

BA1)(1—s)4 — (A+1)(1—s)F
Al — 1B _B(1—t)4

E[W,|F] :/Ot( dX, + X..  (18)

Therefore, Corollary 2.1 allows us to conclude:

Proposition 2.1 The canonical decomposition of X is given by

e [ M,

for0 <t<1.

Remark 2.1 Using Ité’s product rule, the representation (19) can be rewrit-
ten in the form:
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Remark 2.2 Let (X;)o<i<1, a centered Gaussian semimartingale, be of the
form

t
X, = Wt+/ Y.ds.
0

A result of Hitsuda [7) states that the conditional expectation E[Y,|FX] is
equal to the (orthogonal) projection of Ys to the space Hi(X), which is the
L*-closure of the set that consists of all stochastic integrals of the form:
IS flw)dX, with bounded Borel function f. In our situation (11), the ex-
plicit form of this projection is given by (19).

3 Canonical decompositions, Sturm-Liouville
equations, and Volterra representations

Now we consider the case where the process (X¢)o<¢<1 satisfies the stochastic
differential equation:

dX, = dW, + (f(O)W; + k(1) X,)dt, (20)

with initial value Xy, = 0. The functions f and & are assumed to belong
to C'*(0,1) N A(0,1), where the space A(0,1) is defined as the set of all
measurable functions ¢ with [ s¢?(s)ds < oo, for all ¢ < 1.

From Girsanov’s transformation, the law of (X,;s < t), for any ¢ < 1,
may be written in terms of that of (W, W) via the following formula:

E[F(Xs;s <t)] = E[F(Wg s <t) &, (21)

where F' is a measurable functional and
11 .
£ = exp(/ (F(u) W + h(w)W,)dW, — —/ W)W, + h(u)W,)2du).
0

Since (& )o<t<t 1Is a martmgale with respect to (F;), the natural filtration
generated by (W;)o<i<1 and (Wt)0<t<1, we know A; := E(&|F)) is also a
martingale with respect to (ftw)ogtd Once we have obtained in the next
section a closed form of A;, we shall apply again Girsanov’s transformation
to get the canonical decomposition of (X¢)o<i<1-
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3.1 Computation of A,

Obviously, & may be decomposed as: & = &M E? | where

gt —exp{/ )Wy, dW, — 2/ B2 (w)W 2du}

and

t = exp{/ W dw, — / )WuWudu — %/Ot fQ(U)Wfdu},

so that

At - gt(l)E[gt(2)|ftW]
Thus, in order to compute A;, it will suffice to obtain a "robust” formula for
1,.,(1), the expectation of:

Eult) = exp | Words) = 5 [ Wilas)),

with the measure u(ds) := f*(s)ds, and v(ds) a generic signed measure.
Later, we shall justify the replacement of v(ds) by the Gaussian “measure”:

w(ds) = f(s)dWs — f(s)h(s)Wds.

In order to present the next “explicit” formula for I, ,(t), we need to
introduce two fundamental solutions ®(u) and W(u) of the Sturm-Liouville
equation:

¢ (du) = p(du)g(u),
relative to a measure p, which are characterized by:
(i) ®(u) is decreasing, and satisfies ®(0) = 1;
(ii) W(u) satisfies ¥(0) = 0 and \III(O—I—) = 1.
An important relation between ®(u) and W(u) is

v) o P2(v) (22)

Therefore, we get the important Wronskian relation between ® and W:

! !

O(u)U (u) — V()P (u) = 1. (23)
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Throughout this paper, we discuss the case u(ds) = f*(s)ds. Therefore, the
corresponding Sturm-Liouville equation is given by

1

¢ (u) = [*(u)o(u). (24)

Proposition 3.1 The expression for I,,(t) is equal to

\/\Ill’i(t) exp{% /Ot(/ut igz))l/(ds))zdu — H(t)(/ot W(s)v(ds))?}, (25)

where

(1) == @' (1)/ (2 (1)). (26)

Proof. The proof simply consists in pushing the computation made in
Pitman-Yor [16] a little further. Precisely, changing the Wiener measure with
the Radon-Nikodym density:

2t = exp{ (B OWE = Fylt) = 5 [ 2u(ds )}
with FL(1) = '(£)/®(t) and F,(1) = [! F,(s)ds = log ®(1), it follows that:
ualt) = B* [exp{ = S(FLOWE = (i) + [ Wan(ds)}]
where, under the new probability measure P¥, the process (W;)o<i<i satisfies:
M:&+£ﬁ@MQ

with a P*—Brownian motion (B;)o<i<i. Consequently, (Wt)0§t§1 is a cen-
tered Gaussian process under P*. Now we write

(1) = exp(G E0) B exp( | Wow(ds) + /= F(ONTH)],

where N is a centered reduced Gaussian random variable, independent of
(Ws; s < t). Conditioning with respect to N, we are now facing the compu-
tation of

wamAHuyu@+ch:quémﬂAmeu@+mw®ﬂy
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It remains to develop the right-hand side as a second order polynomial with

respect to ¢, and to integrate in ¢, relatively to the law of (¢ =)4/—FL(¢)N.
A little algebra which hinges in particular upon the elementary formula:

); (27)

expl

E[GXP(%NZ FNI= =gy

then yields formulas (25) and (26). We use formula (27) to calculate:

T (1) = expl (1)) Blexp S (N*(—F(0)ut) + 2N~ F(0o(1) + w(1)],
hence, a = —F(t)u(t), b = 4/—F(t)v(t))with the following values for u, v, w:

Corollary 3.1 With the notation:
VW(dS) = f(S)dWs - f(S)h(S)Wsd57

formula (25) with v changed into vy is the conditional expectation of €, .,
given W.

Proof. Note that f! W,uy(ds) is approximated by
t . .
[ o) = W F0 W — W)~ WD 101 — )],

where (0,),>0 is a sequence of subdivisions of [0,¢], whose mesh goes to 0
as n — oo, and this approximation holds in the following sense: the limit
occurs both in probability, and exp( [l Wi, (ds)) converges in any L? towards
exp( [y Wsyw(ds)). This ensures that formula (25) also holds for vy . a
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We now go back to our main object, that is, to compute the conditional
expectation A( = E[&P|FV]. 1t follows from (22), (23), 1t6’s product rule
and Fubini theorem that

5 [ gmwtds) - o) Wepmetas)]

¢ 1

- / W) / <I>< o () = (@) = o) [ W) (ds)

0

W(w)vw (du))ds

2
_ / Flu )k (Ws,s < u)dW, — —/ P RE(Was s < u)du
_/ k(Wi s < u)du,
where
(Wais <) = —— [ W0y (dv)

Therefore, we derive
A = exp{ / Fd(Woio < u) + h(u)W,)dW,

—3 (f( Veu(Wosv < u) + h(u)Wo)*du.} (29)

From (21), the definition of A; and Girsanov’s transformation, we can get
the main result in this section, i.e., the canonical decomposition of X as a
semimartingale in its own filtration (F).

Theorem 3.1 The canonical decomposition of (X¢)o<i<1 is given by
¢
X, = B, +/ (F(u)k(Xosv < ) + h(u) X, )du, (30)
0

where (Byi)o<i<1 is a standard Brownian motion with respect to (‘EX)ogtgh

and the functional (k(Xy;v < 1))o<i<1 is of the form (28).
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Remark 3.1 (1) Comparing (20) and (30) and recalling the first assertion
of Lemma 2.3, we see that

EW,|FX] = k(X,;8 < 1). (31)

In particular, we have obtained the explicit form of the projection appearing
in Remark 2.2.

(2) We have obtained that the identification of the conditional expectation in
(31) holds for f,h € A(0,1). In fact, it is enough to assume that f and h

belong to the set

t ot

A0,1):={p: fis measurable,/ (/ ©(s)ds)?du < oo for all 0 <t < 1}.
0 U

Note that A(0,1) C A(0,1), since

t gt t
/(/ o(s)ds)?du < t/ sp?(s)ds
0 U 0
by the Cauchy-Schwarz inequality. It is not difficult to show that for all s <1,

~ 1

ELXWe = s [ W)X, = Fluph(u) X)) = 0,

where U(t) satisfies Sturm-Liouville equation (24). This implies (31).

3.2 Volterra representation and canonical decompo-
sition
Hitsuda [6] shows that the law of a Gaussian process (X;)o<i<1 with E(X;) =

0 is equivalent to the Wiener measure if and only if X; can be represented in
the form:

t ps
X, = B, + / / (s, u)dB.ds, (32)
0 JO0

where B is a Brownian motion and [(s,u) is a square-integrable Volterra

U
kernel, i.e., a measurable function on (0,1) x (0, 1) such that
t ps
(i) / / *(s,u)duds < oo, for all t < 1.
0 Jo

(i) /(s,u) =0,for 0 <s <wu < 1.
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This representation is unique in the sense that if X has another representation
~ tops . ~
X, = B, —I—// I(s,u)dB,ds,
0 Jo

then B = B and I(s,u) = ZN(S, u) for almost all s,u € (0,1); see Hida-Hitsuda
[5]. We shall call the representation (32) the Volterra representation of X.

Proposition 3.2 The Volterra representation (32) is the canonical decom-
position of X as a semimartingale in its own filtration (F;X). Moreover, we

have (.EX) = (ftB).

Proof. Given a square-integrable Volterra kernel [, there is a unique
square-integrable Volterra kernel R; which satisfies the equations

(1, )+ Ri(t,s) + /: (1, w) Ry, s)du = 0,

" (33)
I(t,5) + Ri(t, s) + / Ri(t, w)i(u, s)du = 0;

for almost all s < #; We call R; the resolvent kernel of [; see Yosida [21]
Chapter 4 or Hida-Hitsuda [5]. As in Hida-Hitsuda [5] p.136-137, we can

now use the kernel R, in order to reconstruct B in terms of X:
ax, +/Ot Rilt,u)d X, dt
_ dBt—|—/OtB(t,u)dBudt—|—/0tRl(t,u) [dBqu/Ou I, 0)d Bydu| di
_ dBt—I-/t(l(t,u)—I—Rl(t,u)—l—/tRl(t,v)l(v,u)dv)dBudt
_ap, '

i.e., we have
t ps
X, = B, + / / (s, u)dB.ds, (34)
0 Jo
and

t ps
Bt:Xt—l—// Ri(s,u)d X ds. (35)
0 JO0

Thus, X and B have the same filtration. Hence (32) is the canonical decom-

position of X in its own filtration. a
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Remark 3.2 Let us make explicit the square-integrable Volterra kernel cor-
responding to our situation (20) in the special case where h(t) =0, i.e.,

t .
X, = Wt—l—/ Flu)Wedu.
0

We have shown that the canonical decomposition of X is given by

f(s)
v'(s)

X = B + /Ot /0 F()(w)d X, ds. (36)

Integrating f(t)WU(t) on both sides and using Ité’s product rule, we obtain

‘ tf(w)¥(v)
U(u)dX, = W't / dB,.
[ fpwax, = wi [ 1O
Thus, the representation (36) takes the form

X, :Bt+/0tf(5)/05 %d&ds. (37)

This shows that the corresponding square-integrable Volterra kernel is given
by

and we read from (36) that

)= g et 39

Ri(s,u
One can verify from (38) that R; satisfies indeed the two characteristic equa-
tions in (33).

Remark 3.3 The study of the general equation (20) for the pair (f,h) can be
reduced to that of (f,0). Suppose a process (X;) satisfies (20) and introduce
the Gaussian process

t ~
=Wt [ Jl)Wadu.
Remark that (X)) and (&) have the same filtration, since

£ =X, — /Oth(u)Xudu, (39)
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and

t
/exp/h

Using the canonical decomposition for (&) given by (37) we obtain the canon-
ical decomposition

Xt:Bt—l—/Ot / fqﬂ LiB, + h(s)X,)ds (40)

for X. The pathwise solution of this equation leads us to the alternative
representation

X; = /t exp(/t h(u)du)dB; + /t M /t f(v) exp(/t h(w)dw)dvdB,
0 5 0 \I}/(U) U v

(41)
as a functional of the Brownian motion B, in analogy to (37). From Allinger-
Mitter (1], Davis [4] we know that the o —algebra FX coincides with FP for all
t, up to some P null sets. Thus, ff = FB = FX. In the terminology of Hida-
Hitsuda [5], the representation (41) is called “the canonical representation
relative to B”, and B is the innovation process for X.

3.3 A class of path dependent transformations

Using the same method as above, we can extend our result in Theorem 3.1
as follows. Consider a process (X;)o<i<1 satisfying the stochastic functional
differential equation

X, = dW, + (J()W, + /Oth(t,s)dXs)dt, (42)

for some deterministic function f € C*'(0,1)N.A(0,1), a function b € C*((0,1)x
(0,1)) with fy fi h?(s,u)duds < oo for all t < 1.

Theorem 3.2 The canonical decomposition of (Xi)o<i<1 45
¢
dX, = dB, + (f()k(Xyi5 < 1) +/ h(t,s)dX,)dt,
0

where (By)o<i<1 is an (FX)-Brownian motion, and k,(X,;s < u) is of the
form

0 /Ou\I/(v)f(v)(dXU—/Ovh(v,r)dXTdv). (43)
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Proof. We set
v (ds) := f(s)dW, — f(s) /05 h(u, s)dW,ds.

The rest of the proof is similar to the proof in section 3.1. O

3.4 Some examples

In the first two examples we look at some processes whose canonical decom-
positions take a simple form. And in Example 3 we will discuss a special
case of the filtration.

Example 1. Consider a process (X;)o<i<1 satisfying the stochastic differen-
tial equation:

dXt - th —|— %(Wt - Xt)dt,

that is, f(t) = —h(t) = a/(1 —1t), with a nonzero constant a. Then the
corresponding Sturm-Liouville equation is

¥ (1) = ) (44)

which, arguably perhaps, is one of the simplest cases where the Sturm-
Liouville equation has elementary solutions. Indeed, it is immediate to check
that a function (1 — u)* solves (44) if and only if A(A — 1) = @2, an equation
which admits the two solutions: Ay (a) and A_(a), given by

1 1
At(a) := 5:!: \/a? + T

Clearly, A_(a) < 0 < Ay(a). Thus, the decreasing solution of (44) is
D(u) = (1 — )+,

And from the definition and the boundary condition of W(u) we can get

(1 — u)/\—(a) — (1 — u)/\+(a)

V() = N EVE



Canonical Decomposition 19

From (28), the conditional expectation of W, relative to FX is given by

o

W(Xsis Sw)

1 U a?

- ,(u)/o W(o)(dX, ot o)
v (Ao(a) £ (1 = o)™ — (A (a) + 1)(1 = 0)7-)

= Xt T (e e

S5

In particular, if @ = 1, then A4 (1) = A and A_(1) = B, defined as in Lemma
2.4, and we are led to the same result as in section 2. a

Example 2. Consider the simple example:
dXt == th + G(Wt — Xt)dt,

with a nonzero constant a. The desired solution of the corresponding Sturm-
Liouville equation is

W(t) = —

and the conditional expectation of W, with respect to FX is given by

9 ¢
ki(Xs;8 <t)=X; — 7/ e~ "dX,.
0

eat _I_ e—at

Therefore, the canonical decomposition of X; has the form

t 2 U
X, = B, —/0 7@_(/0 e "dX,)du,

eau _I_ e au

where (By)o<¢<1 is a Brownian motion relative to (-EX)ogtgl- O

Example 3. Let (W;);>0 and (Wt)tzo be two independent Brownian motions,
starting from 0. The process (X;);>o satisfies the stochastic differential equa-
tion (20) with f(t) = —k/t with a constant k£ and h = 0. In section 3.2 we
have already discussed a few results about the case with A = 0. First, we
have to solve

w(s) = o,

S
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and then single out a solution with ¥(0) = 0. It is easy to check that
U(s) = s with A = % + 4/ k2 + i is the wanted solution. Now formula (37)
gives
k* rt B,
Xt = Bt + — —du, (45)

AJo ou

with a Brownian motion (B;). In Jeulin-Yor ([12], Theorem 9) it has been
shown that

tB
X/ = Bt—,u/ —2ds (46)
0o s

has a strictly smaller filtration than the filtration of B iff p >
back to formula (45), and comparing with (46), we find

b [ =

. Coming

—_

1

Thus, in our study,  is always negative, hence (X;);>0 has the same filtration

as (By). O

4 Application of stochastic filtering theory
for Gaussian processes

In section 3 we have computed the canonical representation of our transfor-
mations (20) of two Brownian motions by direct methods. As an alternative,
we can derive them as corollaries of the stochastic filtering theory for Gaus-
sian processes. At the same time, this allows us to extend our results to
a general class of transformations where the drift ¥ in (1) is given as an
adapted linear functional of X and W.

Suppose that the process X satisfies a stochastic differential equation of

the form
¢

. t

dX, = dW, + (/ F(t,u)dW, + / H(t,u)dX,)dt, (47)
0 0

with Xy = 0, where (Wt)0§t§17 (Wi)o<e<1 are two independent Brownian mo-

tions, and F', H are square-integrable Volterra kernels on (0,1) x (0,1), i.e.,

they satisfy the conditions in section 3.2. Note that the processes considered

in (20) belong to this class.
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Lemma 4.1 There is a unique Brownian motion B and a unique square-
integrable Volterra kernel Gy such that

Wi + /Ot/os F(S,u)qudS =B, + /Ot/os Gr(s,u)dB,ds.
The kernel Gg ts determined by the equation

/OSF(t,v)F(s,v)dv = Gt s) + /0 Gp(t,0)Gp(s,v)dv.  (48)
Moreover the natural filtration of B is identical to that of the left-hand side.

Proof. (1) Let us denote by Z the “signal process”
7, = /OtF(t,u)dVNVu,
and by ¢ the “observation process”
& = Wt—l—/ot Zyds = Wt—l—/ot/os F(S,u)qudS. (49)
From Lemma 2.3 we know that & can be written as
& =B+ /OtE[Zsl}"f]ds,

where (B;) is an (F?)-Brownian motion. Since E[Z;|F}](w) can be chosen
(t,w)-measurable and (ff)—adapted, we can write

E[Z|Ff] = ~(t,€(w)),

where v is a non-anticipative functional in the sense of Kallianpur [13], Def-
inition 5.1.1. Furthermore, it follows from

U 13 t ps
E1\2 ]y, < 27, _ 2
E/O (E[Z4|FE)2du < E/O Z2du /0/0 (F(s,u))2duds < oo

that .
/ 72 (5,&(w))ds < oo, P — as.,
0
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for all ¢ < 1. By Kallianpur [13], Theorem 9.4.1 and section 3.2, there is a
unique square-integrable Volterra kernel Gy such that the Gaussian process
¢ has the representation

¢ =B+ /Ot/o G (s, u)dByds. (50)

Moreover we have (ff) = (FPB), due to Proposition 3.2.

(2) Since W and W are two independent Brownian motions, we get from
(49), for s <,

Bleg) = B+ B [P rdibdu /Ot/o F(o, q)dW,dv]
= s —|—Z/OS/Ou/OUF(u,r)F(v,r)drdvdu
+ /:/OS /OU F(u,r)F(v,r)drdvdu. (51)

We can also compute the covariance of ¢ from (50):

ples) = BB+ [ [ Gp(u,r)dBTdu)(Bt—l—/ot/ov G (v, q)dB,dv))
— 3+2/05/0“ GF(u,v)dvdu—l—/:/os Gr(u, v)dodu
42 /0/0/0 Gp(u,r)Gr(v, r)drdodu
+/:/05 [ Grlu.)Gr(o,r)drdvdu (52)

Since the right hand sides of these two equations must coincide, differentiat-
ing first with respect to ¢ then with respect to s yields (48) for almost every
s < 1. O

Remark 4.1 In the notation of Kallianpur [13] p.235, equation (48) can be
viewed as the factorization S = (I + G)(I + G*) of the integral operator S
defined by [ 4+ F F*, where F', GG are integral operators with square-integrable
Volterra kernels F(t,s) and Gp(t,s), respectively, i.e. for all f,g € L*(0,1),

(I +FF)[,9) = ((I+ G +G)],9).



Canonical Decomposition 23

In order to see this, let f(u) = Iz (u) and g(u) = Top(u) with 0 < s <1 <
1. Using the properties of Volterra kernels, we have

<(1+FF*)f7 )= (fr9) + ("], Frg)

- / W)du +/ / )dv)(/OlF(r,u)g(r)dr)du
- 3+/ / (v, u dv)(/u F(r,u)dr)du,
which equals to the vight-hand side of (51). On the other hand,
(I+G)I+G)f,9)=(U+ G*)fv (1 +G")g)
= [+ [ Gl f)d)gw) + [ Grlv u)g(o)do)du
_ /05(1+/: GF(v,u)dv)(l—l—/u Gr(v, u)dv)dy,
which is cxactly the right-hand side of (52).

Now, we look at the canonical decomposition of the process X given by

(47).

Theorem 4.1 The canonical decomposition of X as a semimartingale in its
own filtration (F7X) is given by

X, = dB, + (/Ot Gt u)dB, + /Ot H(t,u)d X, )dt. (53)
Moreover we have (FX) = (FB).
Proof. From (49) and (53) , we have
aX, = do+ | CH(t )X dt. (54)

As in (33), let R_p denote the resolvent kernel of the square-integrable
Volterra kernel —H. Due to equations (34) and (35), we have

=X, — // (s,u)dX,ds,
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and

X, =&+ /Ot/o Rest(s,u)deuds.

These two equations together with Lemma 4.1 imply FX = Ff = FEB, for all
t. Hence, (B;) is also an (F7)-Brownian motion. Substituting the represen-
tation (50) in the equation (54), we obtain (53). O

Remark 4.2 Comparing (47), (53) and Lemma 2.3, we see that

E[/OtF(t,u)quU-"f(] - /Ot Gr(t,u)dB,.

Let us now consider the special case when F' admits a factorization
F(t,s) = f(t)g(s) for some functions f,g € C'*(0,1) which satisfy

/Ot/ou A (u)g* (v)dvdu < oo, (55)

for all t < 1.

Corollary 4.1 Suppose the process (Xi)o<i<1 satisfies

t

aX, = AW+ (70) [ gty + | CH(t ) dX, ), (56)

0
with f,g € CY0,1) satisfying (55), f # 0 a.s., and a square-integrable

Volterra kernel H(t,s). Then the canonical decomposition of X is of the

form
t

AX, = B+ (7(1) [ a(wdB. + | CH(t ) dX, ), (57)

0

where the function a(t) is the solution of the differential equation

@/ Ql() = o2
(G + o =) (5%)

with boundary condition a(0) = 0.
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Proof. We have only to prove that Gg(t,s) = f(t)a(s), where « satisfies
(58) and «(0) = 0, is the solution of (48). In fact, the right-hand side of (48)

is equal to
GpﬁﬁﬂﬁiésGF@,uﬂ%{SJQdu
= J(hals) + 1) [ a?(u)du
= f(0a(s) + ST e~ O

)
= f(t)f(s)/o gz(u)du:/ F(t,u)F(s,u)du,

0

which is exactly the left-hand side of (48). O

In order to see the connection with our discussion in the preceding sec-
tions, let us set ¢ = 1 and H(¢,u) = h(t). Then equation (58) can be written
as

f(t)
with a(0) = 0. The corresponding solution is given by
f()v(t)
=L
ati) = L0210 (59

where W(t) is the solution of the Sturm-Liouville equation (24). Substituting
this result in (57), we see that the result coincides with (40).

Remark 4.3 The discussion of equation (56) can be reduced to the case
g = 1. All we need is to consider H = 0. Then, we have

g@i&:g@ﬂ%+f®ﬂﬂAEwMWﬂt

A
A 2

Let us introduce the (time-changed) processes (Xu), (W) and (W) defined

as: .
| gtwdx, = X,

where

G(r) = [ ()
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ete. We obtain X
dX, =dW, + c,o(u)Wudu,

where

Consequently, we obtain the canonical decomposition ofX.'

A

n n 1
X= B+ ww/@ &(u)d By,

where

and;/z is our usual notation for the solution of u" = p*u. It now remains to
undo the time-change, and relate & to «, as given in (58).

5 How to get again a Brownian motion

In our initial stochastic differential equation (10), where the final value W,
was known in advance, the solution (X;)o<i<1 was again a Brownian motion,
and it was tied to the final value W;. Is it also possible to satisfy both
conditions in our modified situation when at time ¢ we only know the past

of W7

5.1 Characterization of Brownian motions

Consider a process (X¢)o<i<1 with Xo = 0 which satisfies the stochastic
functional differential equation

¢ . ¢
dX, = dW, + (/ F(t,u)dW, +/ H(t,u)dX,)dt, (60)
0 0
with square-integrable Volterra kernels I and H.

Theorem 5.1 A process X satisfying (60) is a Wiener process with respect
to its own filtration (FX) if and only if H(t,s) = —Gp(t,s), where G is the
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square-integrable Volterra kernel defined by (48). In other words, X is of the
form

X, = Wt—|—/0t(/OSF(s,u)qu—/os (s, u)dX, )ds. (61)

Proof. (1) Suppose X is a Wiener process with respect to its own filtra-
tion (F7). By uniqueness of the Doob-Meyer decomposition in (F;¥), our
representation (53) implies B = X and

¢
/ [Gr(t,u) + H(t,u)]dX, =0, (62)
0
IP- a.s. for almost all ¢. But (62) implies
Gr(t,u)+ H(t,u) =0,

for almost all u < ¢, since X is a Brownian motion.
(2) Conversely, assume that X has the form (61). The canonical representa-
tion (53) implies

1 s s
X, :Bt+/0 (/0 GF(S,u)dBu—/O Gp(s,u)dX,)ds,

le.
t ps t ps

Xt—l—// GF(S,u)qudS:Bt—I-// Gr(s,u)dB,ds.
0 Jo 0 Jo

We can now apply the reconstruction argument in section 3.2 in order to
conclude X = B. In other words, X is a Brownian motion. a

Remark 5.1 The last argument shall be taken up again in Lemma 5.1.

Let us look at the special case considered in Corollary 4.1, where F' is of
the form F(t,s) = f(t)g(s) for some continuously differentiable functions f
and ¢ satisfying (55).

Corollary 5.1 A process (Xy)o<i<1 satisfying (56) is a Brownian motion if
and only if

H{t,u) = — f(t)a(u),
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where a(t) is the solution of (58) with boundary condition a(0) = 0. In other
words, if (X¢)o<i<1 is a Brownian motion with respect to its own filtration, i
must be of the form

aX, = W+ (1) | g(u)dW, — / Ca(u)dX,)dt. (63)
In particular, if g =1, then (63) can be written as
dX; = dW; + f(t)(W; — /Ot %d}g)dt, (64)

where W(t) is the solution of the Sturm-Liouville equation

(L) = f)(), (65)

with ¥(0) =0 and V'(0+) = 1.
Proof. In order to get the characterization for this class of Brownian
motions from Theorem 5.1, we have only to compute G (t,u). From the
proof in Corollary 4.1, we know that G'p(t,u) = f(t)a(u). Substituting this

result in Theorem 5.1, we get the first assertion. As to the case ¢ = 1, simply

substitute (59) in (63). O

Corollary 5.2 Let X be a process satisfying the stochastic differential equa-
tion (20) with f,h € C1(0,1)NA(0,1). If one of the functions f(t) and h(t)

is not equal to 0, then X cannot be a Brownian motion.

Proof. If X satisfying (20) is a Brownian motion, then it follows from
Corollary 5.1 that f must be of the form

FO)W(t) = c¥'(1), (66)
for some non-zero constant ¢. Substituting (66) in (65), we get
W(t) = cf(1)W'(1).

Hence, the corresponding solution of the Sturm-Liouville equation is given

by t
U(t) :/0 exp(c/ou f(v)dv)du.
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Substituting this solution again in (66), and taking derivatives on both sides
with respect to ¢, we have

ef/(1)+ (1= A1) = 0

This implies

which does not belong to A(0, 1). O

In the class of adapted linear drift of the form (60), Theorem 5.1 charac-
terizes those cases where the resulting process X in (61) is a new Brownian
motion. Let us now return to the question whether such a Brownian motion
can be tied to the endpoint Wj of the Brownian motion W. This turns out
to be impossible as long as we insist on an adapted drift, even if we drop
linearity.

Proposition 5.1 Consider any drift (Y:)o<i<1 adapted to (F;) such that
t
X =W, + / Y,ds,
0

is a Brownian motion. If 7 is any (F:)-Brownian motion such that X; =
71, P-a.s., then we have Z; = X; = W,, and in particular, Y; = 0, dt x dIP-

a.s..
Proof. If X; = 7, then
X, = E[X\|FX] = E[2,|FX] = E[2|F)].

This implies
BE[X:Z)] = E[X]] =1,

hence

E[(X, — Z,)}] = E[X?] + E[Z%] — 2E[X,Z,] = 0.

Hence, Z; = X; is an (F;)-Brownian motion, and so: X; = W;. O

In our situation the Brownian motion Z = W is independent of W, and
so the proposition shows that it is impossible to obtain X; = Wj.
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Remark 5.2 (i) Consider a square-integrable (F;)-adapted process (Xi)i<1
which is a martingale in its own filtration (FX). Let (M;) be a square-
integrable (F;)-martingale such that Xy = My and E[X}?] = E[M}] for every
t < 1. The proof of Proposition 5.1 shows that this implies X, = M, for
every t < 1.

(i1) As a special case of (i), assume that (Xy) is a Brownian motion in its
own filtration (FX). Then (X;) is an (F;)-Brownian motion if and only if
E[X1|F] is a Brownian motion.

(iii) As an example of (ii), consider a Brownian motion (By) with respect to

(F:). We know that

tB
Xt ::Bt—/ —SdS
0o S

defines a new Brownian motion (Xi);<1 which is not a Brownian motion
with respect to (Fy); cf., e.g., Yor [19]. It follows from (ii) that (E[X1|F])e<

cannot be a Brownian motion. In fact, a direct computation shows that

' B, 1 BB,
E[X\|F] = B.— —ds—/t wds

0 S

t B t
= Bt(l—l—logt)—/ ?SdSZ/O(l—I—logs)st.

0

5.2 [Enlargement of a Brownian filtration

Consider a Brownian motion X arising as the solution of the linear functional
stochastic differential equation (61). Let us represent X directly in terms of

the two Wiener processes W and W. To this end, we introduce the resolvent
kernel Ly of G, i.e., GF and Ly satisfy the following relations:

t
Gr(ts) + Le(t,s) + [ Le(t0)Gr(u, s)du =0,

t (67)
Gp(t,s) + Lp(t, s) +/5 G (t,u) Lp(u, s)du = 0.

Lemma 5.1 The solution of (61) is given by

X = Wt—l—/ot {/05 Lyp(s,u)dW, + /OS(F(S, u)+ /us Lyp(s,v)F (v, u)dv)qu} ds.
(68)
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Proof. By (61), the process ¢ defined in (49) has the form
¢
dé, = dXt—l—/ G (1, u)d X dt.
0

Using the same argument as in the proof in section 3.2, we obtain the repre-
sentation

¢
dX, = dé, + / Li(1, u)dé, dt, (69)

0
Substituting (49) in (69), we obtain (68). O

In the special case F(t,u) = f(t)g(u), we have Gp(t,s) = f(t)a(s), and
the solution Ly of (67) is given by

Le(t,5) = ~f(t)a(s)exp(~ [ F(v)a(o)do)
Thus, the solution of (63) can be written as
iX, = 4w, + f(t)(/ot (u) exp(— /: F(0)a(v)dv)dV,
—/ u) exp(— /tf(v)oz(v)dv)qu)dt.

In particular, the solution of (64) is given by

dX, = dW, + é:(( ))( / w)dW, — / W)dt.  (70)

We are now going to show that the decomposition (70) of W as the sum

£ s s
W, = X, +/ /() (/ FO) W (w)dW, — / W (u)dW, )ds
o W(s) Jo 0
can be viewed, after time reversal, as the expression of a Brownian motion
in an enlarged Gaussian filtration (see, Jeulin-Chaleyat-Yor [10] or Yor [20]).
We consider an n-dimensional Brownian motion B; = (Blfl), Bt(n)), and

we enlarge its filtration with B(\) = dlef Jo7(Mu),dB,). With respect to the

enlarged filtration, the canonical decomposition of B is given by

B - Bﬁ/M fa(?()) st)d%

(71)



32 Canonical Decomposition

where B is again a Brownian motion and o) is defined as

n

o) = [T NP = [T D)

=1

see Jeulin-Chaleyat-Yor [10] or Yor [20]. In order to make sure that formula
(71) is meaningful (as a semimartingale decomposition), it is necessary and

sufficient that
EA(u)]

o oxu)

On the other hand, (70) yields

———du < oo

_ 1

/ = 11 _1; / W'(1—v)dB® —/u F(1—0)W(1 = 0)dBY)du,

(72)

with BY = W, — Wi_,, BY = X; — X1, and B = W, — Wi_,. We want
to view the representation (72) as an enlargement formula (71) for a suitable
choice of A. Thus, we would like to find a pair of functions (Ay, A3) such that

M(whi(s) (L= u)f(1—s)¥(1 - s)

o} (u) (1 —wu)
(73)
Ap(u)A2(s) _ _f(l —u)P'(1 — 3)‘
o} (u) (1 —wu)

The problem is now to retrieve Ay and Ay from the system (73). The solution

{ AM(s) =cf(l —s)¥(l —s)

Aa(s) = —c¥'(1 —s),

is given by

with some nonzero constant c.
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