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Abstract

In this paper, we consider a security market in which two investors on different infor-
mation levels maximize their expected logarithmic utility from terminal wealth. While
the ordinary investor’s portfolio decisions are based on a public information flow, the in-
sider possesses from the beginning extra information about the outcome of some random
variable G, e.g., the future price of a stock. We solve the two optimization problems
explicitly and rewrite the insider’s additional expected logarithmic utility in terms of a
relative entropy. This allows us to provide simple conditions on G for the finiteness of
this additional utility and to show that it is basically given by the entropy of G.
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1 Introduction

In the past decades, an extensive mathematical theory using martingale techniques has been de-

veloped for the problems of derivative pricing, utility maximization of investors and equilibrium

theory in security market models. One of the salient features of this theory is its assumption of

one common information flow on which the portfolio decisions of all economic agents are based.

In this paper, we attempt to widen the scope of the martingale approach by studying a utility

maximization problem in a security market with two types of investors on different information

levels.

Despite its practical importance, this question has only quite recently been addressed in the

literature. The first thorough mathematical study is a paper by Pikovsky and Karatzas (1996)

whose methods and results strongly inspired much of the developments presented here. In

particular, we follow their lead in the modelling of additional information and by considering

two investors with logarithmic utility functions. While the ordinary economic agent makes

his portfolio decisions according to the ‘public’ information flow IF = (Ft)t∈[0,T ], the insider

possesses from the beginning additional information about the outcome of some random variable

G and therefore has the enlarged filtration IG = (Gt)t∈[0,T ] with Gt =
⋂
ε>0

(
Ft+ε ∨ σ(G)

)
at his

disposal. For instance, the insider may know the price of a stock at time T , or the price range

of a stock at time T , or the price of a stock at time T distorted by some noise, etc. In this

framework, the following questions arise: How should the insider trade on the security market

to optimally exploit his extra information? What is the insider’s additional utility arising from

his extra knowledge?

In this paper, we solve the optimization problems for the two investors by adapting ideas of

Karatzas, Lehoczky, Shreve and Xu (1991) to our framework and so obtain a first expression

for the insider’s additional expected logarithmic utility. This extends results of Pikovsky and

Karatzas (1996) and Elliott, Geman and Korkie (1997) from the case of a complete model with a

Brownian filtration IF to an incomplete market. Building on results about initial enlargements

of filtrations by Jacod (1985) and Föllmer and Imkeller (1993), we then rewrite the additional

expected logarithmic utility in terms of the relative entropy of the objective probability measure

P with respect to a new probability measure P̃t that we call [0, t]-insider martingale measure or

[0, t]-martingale preserving measure under initial enlargement . In the case of a complete market

studied by Pikovsky and Karatzas (1996), this allows us to systematically analyze the additional

expected utility. We provide simple conditions on G for the finiteness of the additional utility,

show that it is basically given by the entropy of G and thereby solve a number of previously

open problems raised by Pikovsky and Karatzas (1996).

The paper is organized as follows. Section 2 is exclusively concerned with the mathemati-

cal theory of initial enlargement of filtrations. We first recall some results of Jacod (1985)

which show that a continuous local IF -martingale K remains a semimartingale for the filtration

IG◦ = (Gt)t∈[0,T ) if the regular conditional distributions of G given Ft are absolutely continuous

with respect to the law of G for all t ∈ [0, T ). Moreover, Jacod (1985) presents the canonical
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decomposition of K in IG◦ which involves the conditional density processes p�, � ∈ range(G). By

adapting arguments of Föllmer and Imkeller (1993), we prove that 1/pG is a IG◦-martingale and

thus defines a family of probability measures P̃t on (Ω,Gt) for t < T , provided that the regular

conditional distributions of G given Ft are equivalent to the law of G. Furthermore, we show

that any (local) (IF, P )-martingale is a (local) ( IG, P̃t)-martingale on [0, t] for t < T ; this justi-

fies calling P̃t the martingale preserving probability measure under initial enlargement . We give

examples for the calculation of p� and the absolute continuity and equivalence conditions, re-

spectively, and conclude section 2 by showing that the IF ◦-martingale p� and the IG◦-martingale

1/pG can be written as stochastic exponentials of a particular form. This provides the key tool

for the subsequent sections.

Section 3 introduces a general incomplete security market model with continuous prices. We

therein consider an ordinary investor who has the filtration IF as his information flow, and an

insider whose portfolio decisions are based on the larger filtration IG. The investors’ goal is to

maximize the expected logarithmic utility of terminal wealth by trading in the security mar-

ket. After solving these optimization problems, we compare the maximal expected logarithmic

utilities of the two investors. By using the theoretical results from section 2, we obtain a new

alternative expression for the insider’s additional expected utility involving the relative entropy

of the probability measure P with respect to the [0, t]-insider martingale measure P̃t.

In section 4, we consider a complete security market and calculate the terminal additional

expected logarithmic utility of an insider for a wide class of random variables G, thereby

generalizing some of the results of Pikovsky and Karatzas (1996). If G is FT -measurable, the

insider’s additional expected logarithmic utility turns out to be an expression one could call the

entropy of the initial enlargement ; see Yor (1985). If G is even of finite entropy, the additional

utility simply consists of the entropy of G, while it becomes infinite if G is of infinite entropy.

Convention: Section Assumptions are imposed throughout the respective sections.

2 Some Results on Initial Enlargements of Filtrations

This section collects some known and some new results about initial enlargements of filtrations.

Let (Ω,F , P ) be a probability space with a filtration IF = (Ft)t∈[0,T ] satisfying the usual condi-

tions of right-continuity and completeness. T ∈ (0,∞] is a fixed time horizon, and we assume

that F0 is trivial. For some F -measurable random variable G with values in a Polish space

(U,U), we define the enlarged filtration IG = (Gt)t∈[0,T ] by

Gt :=
⋂
ε>0

(
Ft+ε ∨ σ(G)

)
, t ∈ [0, T ].

We also introduce the notations IF ◦ := (Ft)t∈[0,T ) and IG◦ := (Gt)t∈[0,T ); note the distinction

between [0, T ] and [0, T ). Throughout this section, K = (Kt)t∈[0,T ] =
(
K1

t , . . . , K
d
t

)∗
t∈[0,T ]

is a d-

dimensional continuous local IF -martingale with quadratic variation 〈K〉 = (〈Ki, Kj〉)i,j=1,...,d.

3



      

2.1 A Summary of Fundamentals

Most of the general theory presented in this subsection goes back to Jacod (1985), who formu-

lated his results under the following crucial assumption:

Section Assumption 2.1 There exists a σ-finite measure η on (U,U) such that for all t ∈
[0, T ), the regular conditional distribution of G given Ft is absolutely continuous with respect

to η for P -almost all ω ∈ Ω, i.e.,

P [G ∈ ·|Ft](ω) � η(·) for P -a.a. ω ∈ Ω. (1)

Before recalling those results of Jacod (1985) used in the sequel, we need some more notation.

Let Ω̂ := Ω×U , F̂t :=
⋂

ε>0 (Ft+ε ⊗ U) and ÎF
◦

:= (F̂t)t∈[0,T ), and denote by O(ÎF
◦
) and P(ÎF

◦
)

the optional and predictable σ-fields on Ω̂× [0, T ), respectively. Note that P(ÎF
◦
) = P(IF ◦)⊗U ;

see (1.7) of Jacod (1985). The following lemma provides a ‘nice’ version of the conditional

density process q� resulting from (1).

Lemma 2.1 (Lemme 1.8 and Corollaire 1.11 of Jacod (1985))

1. There exists a nonnegative O(ÎF
◦
)-measurable function (ω, �, t) �→ q�t(ω) which is right-

continuous with left limits in t and such that

(a) for all � ∈ U , q� is an IF ◦-martingale, the processes q�, q�− are strictly positive on

[[ 0, T � [[ , and q� = 0 on [[ T �, T [[ , where

T � := inf
{
t ≥ 0

∣∣∣q�t− = 0
}
∧ T ; (2)

(b) for all t ∈ [0, T ), the measure q�t(·) η(d�) on (U,U) is a version of the conditional

distribution P [G ∈ d�|Ft].

2. TG = T P -a.s.

The conditional density process q� is the key to the study of continuous local IF -martingales in

the enlarged filtration IG◦. The following theorem shows that under Section Assumption 2.1,

every continuous local IF -martingale is a IG◦-semimartingale, and explicitly gives its canonical

decomposition.

Theorem 2.2 (Théorème 2.1 of Jacod (1985))

For i = 1, . . . , d, there exists a P(ÎF
◦
)-measurable function (ω, �, t) �→

(
k�
t(ω)

)i
such that

〈q�, Ki〉 =
∫

(k�)iq�− d〈Ki〉. (3)

For every such function ki, we have:

1.
∫ t

0

∣∣∣(kG
s )i
∣∣∣ d〈Ki〉s < ∞ P -a.s. for all t ∈ [0, T ), and
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2. Ki is a IG◦-semimartingale, and the continuous local IG◦-martingale in its canonical de-

composition is

K̃i
t := Ki

t −
t∫

0

(kG
s )i d〈Ki〉s , t ∈ [0, T ). (4)

Remark: If the absolute continuity condition (1) holds for all t ∈ [0, T ], then K̃ is even a local

IG-martingale; this will be used later.

Before we make extensive use of the preceding result, we normalize the conditional density

process q�. Since F0 is trivial, we have∫
B
P [G ∈ d�] = P [G ∈ B] = P [G ∈ B|F0] =

∫
B
q�0 η(d�)

for all B ∈ U . By choosing U smaller if necessary, we can therefore assume that q�0 > 0 for all

� ∈ U , and so we obtain for P -a.a. ω and all t ∈ [0, T )

P [G ∈ B|Ft](ω) =
∫
B
q�t(ω) η(d�) =

∫
B
p�t(ω)P [G ∈ d�],

where

p�t(ω) :=
q�t(ω)

q�0
. (5)

Clearly, we can take p as the process q appearing in Lemma 2.1 and Theorem 2.2; this corre-

sponds to choosing for η the law of G.

By Lemma 2.1, the first time pG hits 0 is P -a.s. equal to T so that we can consider the process

1/pG on [0, T ). This process will play a pivotal role in the sequel. If the regular conditional

distributions of G given Ft are equivalent to the law of G, then 1/pG turns out to be a positive

IG◦-martingale starting from 1 and thus defines a probability measure P̃t on (Ω,Gt) for all

t ∈ [0, T ). P̃t coincides with P on Ft, and the σ-algebras Ft and σ(G) become independent

under P̃t. We show these properties in the next proposition which is a variant of results on

p.578 of Föllmer and Imkeller (1993). Basically, we just have to transfer their arguments from

their Wiener space framework to our present situation.

Proposition 2.3 Suppose that the regular conditional distributions of G given Ft are equiva-

lent to the law of G for all t ∈ [0, T ), i.e., for all � ∈ U , the process (p�t)t∈[0,T ) is strictly positive

P -a.s. Then:

1.
1

pG
is a IG◦-martingale.

2. For t ∈ [0, T ), the σ-algebras Ft and σ(G) are independent under the probability measure

P̃t(A) :=
∫
A

1

pGt
dP for A ∈ Gt, (6)

i.e., for At ∈ Ft and B ∈ U ,

P̃t [At ∩ {G ∈ B}] = P [At]P [G ∈ B] = P̃t[At]P̃t[G ∈ B]. (7)
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Proof: To prove (7), fix At ∈ Ft and B ∈ U . By conditioning on Ft, we obtain

E

[
IAt∩{G∈B}

1

pGt

]
= E

[
IAtE

[
I{G∈B}

1

pGt

∣∣∣∣Ft

] ]
=
∫
At

E

[
I{G∈B}

1

pGt

∣∣∣∣Ft

]
(ω)P (dω).

The definition of p�t(ω) yields

E

[
I{G∈B}

1

pGt

∣∣∣∣Ft

]
(ω) =

∫
B

1

p�t(ω)
p�t(ω)P [G ∈ d�] = P [G ∈ B],

and so we get the first equality in (7). The second follows by choosing At = Ω or B = U .

Now fix 0 ≤ s ≤ t < T and choose A ∈ Gs of the form A = As ∩ {G ∈ B} with As ∈ Fs and

B ∈ U . Then we obtain by (7) and by reversing the above argument that

E

[
IA

1

pGt

]
= P [As]P [G ∈ B]

= E
[
IAsP [G ∈ B]

]
=

∫
As

∫
B

1

p�s(ω)
p�s(ω)P [G ∈ d�]P (dω)

= E

[
IAsE

[
I{G∈B}

1

pGs

∣∣∣∣Fs

] ]

= E

[
IA

1

pGs

]
.

By a monotone class and right-continuity argument, this extends to arbitrary sets A ∈ Gs.

Hence 1/pG is a IG◦-martingale and (6) defines indeed a probability measure on (Ω,Gt).

q.e.d.

Definition 2.4 Let t ∈ [0, T ). The probability measure P̃t on (Ω,Gt) defined by (6) is called

the [0, t]-martingale preserving measure under initial enlargement of filtration, or in the context

of financial mathematics, the [0, t]-insider martingale measure.

The above terminology is justified by the next result.

Theorem 2.5 Suppose that the regular conditional distributions of G given Ft are equivalent

to the law of G for all t ∈ [0, T ). For fixed t ∈ [0, T ), any (local) (P, IF )-martingale L on [0, t]

is then a (local) (P̃t, IG)-martingale on [0, t], hence also a (local) (P̃t, IF )-martingale on [0, t].

Proof: Because (7) implies that G is independent of Ft under P̃t and P̃t = P on Ft, it follows

easily that a (P, IF )-martingale on [0, t] is also a (P̃t, IG)-martingale on [0, t] and therefore also a

(P̃t, IF )-martingale on [0, t]. Since IF ◦-stopping times are also IG◦-stopping times, any localizing

sequence (Tn) for some L with respect to (P, IF ) on [0, t] will then also localize L with respect

to (P̃t, IG) and (P̃t, IF ) on [0, t]. q.e.d.
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2.2 Examples for the Calculation of pG

This subsection illustrates the preceding results by several examples for G that will be used

again later. These examples show that the absolute continuity assumption (1) is typically only

satisfied for t ∈ [0, T ) so that p�t is only defined on [0, T ).

Example 2.6 Let G be the endpoint WT of a one-dimensional IF -Brownian motion W . Then

we have for all t < T

P [WT ∈ d�|Ft] = P [WT −Wt + Wt ∈ d�|Ft]

= P [WT −Wt ∈ d�− y]
∣∣∣
y=Wt

=
1√

2π(T − t)
exp

(
−(�−Wt)

2

2(T − t)

)
d�

= p�t P [WT ∈ d�],

where p�t =

√
T

T − t
exp

(
−(�−Wt)

2

2(T − t)
+

�2

2T

)
, � ∈ IR, is strictly positive for all t < T . Further-

more, applying Itô’s formula to (�−Wt)
2/(T − t) gives

p�t = E
(∫ �−Ws

T − s
dWs

)
t

.

In this example, the conditional law of G given Ft is therefore not only absolutely continuous

with respect to the law of G, but even equivalent to it for all t ∈ [0, T ). On the other hand,

the conditional law of WT given FT is obviously the point mass in WT (ω) and therefore not

absolutely continuous with respect to the law of WT .

Example 2.7 Let G be a random variable with values in a countable set U such that

P [G = �] > 0 for all � ∈ U . Then every A ∈ σ(G) is of the form A =
⋃
�∈J

{G = �} for

some J ⊆ U . Therefore we have

P [G ∈ A|Ft] =
∑
�∈J

P [G = �|Ft] =
∑
�∈J

p�tP [G = �] =
∫
A

p�t P [G ∈ d�]

for all t ∈ [0, T ], where p�t =
P [G = �|Ft]

P [G = �]
, and so P [G ∈ ·|Ft] is absolutely continuous with

respect to the law of G for all t ∈ [0, T ]. Thus we obtain by Theorem 2.2 and the subsequent

remark that every local IF -martingale is a IG-semimartingale and therefore Theorem 1 of Meyer

(1978). However, the conditional laws of G given Ft are equivalent to the law of G on Ft for

t < T only if P [G = �|Ft] > 0 P -a.s. for all � ∈ U . Moreover, there is certainly no equivalence

on FT if G is FT -measurable, because in this case P [G = �|FT ] = I{G=�} is zero with positive

probability (unless G is a constant).

As a special case, consider the situation in which G describes whether the endpoint of a one-

dimensional IF -Brownian motion lies in some given interval, i.e., G := I{WT∈[a,b]} for some a < b.
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Then we have p1
t =

P [G = 1|Ft]

P [G = 1]
and p0

t =
1 − P [G = 1|Ft]

1 − P [G = 1]
, and a similar computation as in

Example 2.6 yields

P [G = 1|Ft] =
1√

2π(T − t)

b∫
a

exp

(
−(u−Wt)

2

2(T − t)

)
du , t ∈ [0, T ),

and P [G = 1] = P [G = 1|F0] = Φ
(
b/
√
T
)
− Φ

(
a/

√
T
)
, where Φ is the standard normal

distribution function. Hence, P [G ∈ ·|Ft] is absolutely continuous with respect to the law of G

for t ∈ [0, T ] and equivalent to the law of G only for all t ∈ [0, T ).

2.3 Writing 1/pG as a Stochastic Exponential

This subsection shows that under the assumptions of Proposition 2.3, the processes p� and

1/pG can be written as stochastic exponentials of a particular form. More precisely, the IF ◦-

martingale p� is the stochastic exponential of the sum of a stochastic integral with respect to

K with integrand κ� and an orthogonal local IF ◦-martingale, whereas the IG◦-martingale 1/pG

can be written as a stochastic exponential of the sum of a stochastic integral of κG with respect

to K̃ and an orthogonal local IG◦-martingale. To do this, we first prove a structure condition

on the finite variation term appearing in the canonical decomposition of K in IG◦.

Lemma 2.8 Under Section Assumption 2.1, there exists an IRd-valued, P(IF ◦)⊗U -measurable

process (κ�
t)t∈[0,T ) such that for all � ∈ U ,

t∫
0

d〈K〉s κ�
s =

⎛⎜⎜⎜⎜⎜⎜⎝

t∫
0
(k�

s)
1 d〈K1〉s
...

t∫
0
(k�

s)
d d〈Kd〉s

⎞⎟⎟⎟⎟⎟⎟⎠ , t ∈ [0, T ). (8)

Proof: Take an increasing IF ◦-predictable process B such that 〈Ki〉 � B for i = 1, . . . , d.

Then we obtain 〈Ki, Kj〉 =
∫
bijs dBs for a matrix-valued IF ◦-predictable process b, and so (8)

amounts to finding a P(IF ◦) ⊗ U -measurable solution κ to the system of equations

d∑
j=1

bijs (κ�
s)

j = (k�
s)

i biis for i = 1, . . . , d and all s ∈ [0, T ).

Since each (k�)i is P(ÎF
◦
)-measurable by Theorem 2.2 and P(ÎF

◦
) = P(IF ◦)⊗U , this is clearly

possible. q.e.d.

For the subsequent developments, we need a weak integrability condition on κ; see Delbaen

and Schachermayer (1995) for its relation to absence of arbitrage.

Section Assumption 2.2 The process κ from Lemma 2.8 satisfies

T∫
0

(κ�
s)

∗ d〈K〉s κ�
s < ∞ P -a.s. for all � ∈ U .
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Remark: A standard argument shows that the process κG is P( IG◦)-measurable, and so the

stochastic integral
∫
(κG)∗ dK̃ is well-defined under Section Assumption 2.2. For each � ∈ U ,

the process κ� is unique up to nullsets with respect to P × 〈K〉, and so the stochastic integrals∫
(κ�)∗ dK and

∫
(κG)∗ dK̃ do not depend on the choice of κ. Finally, we can now write K̃ :=(

K̃1, . . . , K̃d
)∗

more compactly as

K̃ = K −
∫

d〈K〉κG.

Proposition 2.9

1. Suppose that the regular conditional distributions of G given Ft are equivalent to the

law of G for all t ∈ [0, T ). Then there exists a local IG◦-martingale L̃ null at 0 which is

orthogonal to K̃ from (4) (i.e., 〈K̃i, L̃〉 = 0 for i = 1, . . . , d) and such that

1

pGt
= E

(
−
∫ (

κG
s

)∗
dK̃s + L̃

)
t

, t ∈ [0, T ). (9)

2. Fix � ∈ U . If pT �− > 0 P -a.s., then there exists a local IF ◦-martingale L� null at 0 which

is orthogonal to K and such that

p�t = E
(∫

(κ�
s)

∗ dKs + L�
)
t

, t ∈ [0, T ). (10)

Proof:

1. Since 1/pG is a strictly positive IG◦-martingale, there exists a local IG◦-martingale Õ

null at 0 such that 1/pG = E(Õ). Because of the continuity of K̃, we can write Õ as

Õ =
∫
h̃∗ dK̃ + L̃ with a IG◦-predictable process h̃ satisfying

∫ t
0 h̃

∗
s d〈K̃〉s h̃s < ∞ P -a.s. for

all t ∈ [0, T ) and a local IG◦-martingale L̃ null at 0 which is orthogonal to K̃; see Ansel

and Stricker (1993a). This yields

〈pG, Ki〉 =

〈
1

E(Õ)
, Ki

〉
= −

∫
pG−
(
d〈K〉 h̃

)i
by using the continuity of K̃, the orthogonality of K̃ and L̃ and Itô’s formula. On the

other hand, we can also compute 〈pG, Ki〉 with the help of Theorem 2.2, and we want to

use this to identify h̃ as −κG. Leaving aside measurability questions for the moment, we

simply replace � by G in (3) and obtain

〈pG, Ki〉 =
∫

pG−(kG)i d〈Ki〉 (11)

=
∫

pG−
(
d〈K〉κG

)i
(12)

from Lemma 2.8. Hence we conclude that
∫
d〈K〉 h̃ = − ∫ d〈K〉κG and therefore∫

h̃∗ dK̃ = − ∫ (κG)∗ dK̃ by the preceding remark. Plugging this into Õ yields (9), and so

it only remains to justify (11) and (12). Since p : (ω, �, t) �→ p�t(ω) is a measurable func-

tion, Proposition 2 of Stricker and Yor (1978) implies the existence of a version of 〈p�, Ki〉

9



   

which is measurable in �, and we denote this again by 〈p�, Ki〉. Since
∫
(k�)ip�− d〈Ki〉 is

well-defined by (3), and since k� and p� are measurable in �, Lemma 2 of Stricker and

Yor (1978) now yields the existence of a version of
∫
(k�)ip�− d〈Ki〉 which is measurable

in �. This justifies (11). Moreover, Lemma 2 of Stricker and Yor (1978) also implies the

existence of versions of
∫
(k�)i d〈Ki〉 and

∫ (
d〈K〉κ�

)i
which are measurable in � and thus

the existence of a version of
∫
p�−
(
d〈K〉κ�

)i
which is measurable in �. This justifies (12)

and completes the proof of the first assertion.

2. The properties of p� in Lemma 2.1 and the condition pT �− > 0 P -a.s. guarantee by Exercise

6.1 of Jacod (1979) the existence of a local IF ◦-martingale O such that p� = E (O). The

rest of the proof then proceeds as in the first part; it actually becomes even simpler since

there are no measurability problems for fixed �.

q.e.d.

Remark: If the regular conditional distributions of G given Ft are equivalent to the law of

G for all t ∈ [0, T ), then the condition in the second part of Proposition 2.9 is automatically

satisfied for all � ∈ U .

The next result gives an explicit expression for L̃ in (9) in terms of LG if p� is continuous for all

� ∈ U . As a consequence, we obtain then in particular that 1/pG can be written as a stochastic

exponential of a stochastic integral with respect to K̃, if we have in addition a martingale

representation theorem for the filtration IF . This happens for instance in a complete financial

market, and we shall come back to this case in section 4.

Corollary 2.10

1. If p� is continuous and strictly positive for all � ∈ U , then

1

pGt
= E

(
−
∫

(κG
s )∗ dK̃s − LG + 〈LG〉

)
t

, t ∈ [0, T ). (13)

In particular, L̃ from (9) is given by

L̃t = −LG
t + 〈LG〉t , t ∈ [0, T ). (14)

2. In particular, if p� = E
(∫

(κ�)∗ dK
)

for all � ∈ U , then

1

pGt
= E

(
−
∫

(κG)∗ dK̃
)
t

, t ∈ [0, T ).

Proof: Since p� is strictly positive, (10) implies for all � ∈ U that∫ 1

p�
dp� =

∫
(κ�)∗ dK + L� =

∫
(κ�)∗ dK̃ +

∫
(κ�)∗ d〈K̃〉κG + L�. (15)

10



      

Thus, the continuity of p� implies for all � ∈ U that L� is continuous and by (10) that

1

p�
= exp

(
−
∫

(κ�)∗ dK +
1

2

∫
(κ�)∗ d〈K〉κ� − L� +

1

2
〈L�〉

)
= exp

(
−
∫

(κ�)∗ dK̃ −
∫

(κ�)∗ d〈K〉κG +
1

2

∫
(κ�)∗ d〈K〉κ� − L� +

1

2
〈L�〉

)
. (16)

We first show the measurability on Ω × [0, T ) × U of all the terms appearing in (16). By

Lemma 2.8, κ� is P(IF ◦) ⊗ U -measurable, thus O( IG◦) ⊗ U -measurable. Since
∫
(κ�)∗ d〈K〉κ�

is locally integrable thanks to Section Assumption 2.2 and the continuity of K, Theorem 2 of

Stricker and Yor (1978) (plus the note added in proof on p.133) implies the existence of an

O( IG◦) ⊗ U -measurable version of
∫
(κ�)∗dK̃. Hence Proposition 2 of Stricker and Yor (1978)

yields that
∫
(κ�)∗dK̃ and

∫
(κ�)∗d〈K〉κG =

〈∫
(κ�)∗dK̃,

∫
(κG)∗dK̃

〉
are measurable functions

on Ω × [0, T ) × U . Since 1/p� is P(IF ◦) ⊗ U -measurable by Lemma 2.1 and continuous, hence

locally bounded, Theorem 1 of Stricker and Yor (1978) implies the existence of an O(IF ◦)⊗U -

measurable version of
∫

1/p� dp�. Hence we obtain that L� has a measurable version, since all

other terms in (15) have one. Finally, 〈L�〉 has a measurable version by Proposition 2 of Stricker

and Yor (1978).
Thanks to these measurability properties, we can now substitute G for � in (16) to obtain

1

pG
= exp

(
−
∫

(κG)∗ dK̃ − 1

2

∫
(κG)∗ d〈K〉κG − LG +

1

2
〈LG〉

)
,

hence (13). Comparing this to (9) yields (14) by the uniqueness of the stochastic exponential.
q.e.d.

3 Utility Maximization

In this section, we first explain the optimization problems faced by two investors with different

information. We then solve these problems explicitly and use the results of section 2 to rewrite

the utility gain of the better informed investor in a form that is more suitable for further

analysis.

3.1 The Model

The uncertainty of the security market is described by our given probability space (Ω,F , P )

with the filtration IF = (Ft)t∈[0,T ]. We fix a d-dimensional continuous local IF -martingale

M = (M1, . . . ,Md)∗ and a d-dimensional predictable process α = (α1, . . . , αd)∗ with

E

[∫ T

0
α∗
s d〈M〉s αs

]
< ∞. (17)

The discounted prices X = (X1, . . . , Xd)∗ of d stocks are then assumed to evolve according to

the stochastic differential equations

dX i
t = X i

t

⎛⎝dM i
t +

d∑
j=1

αj
t d〈M i,M j〉t

⎞⎠ , t ∈ [0, T ], i = 1, . . . , d,

11



     

with X i
0 > 0. In addition to the ordinary economic agent whose information flow is given

by the filtration IF , we also want to consider an insider who is better informed. His extra

information is the knowledge at time 0 of the outcome of some F -measurable random variable

G. For instance, G might be the price of a stock at time T , or the price of a stock at time T

distorted by some noise, or the value of some external source of uncertainty, etc. Technically,

G will have values in a Polish space (U,U), and the information flow of the insider is described

by the larger filtration IG = (Gt)t∈[0,T ] given as in section 2 by

Gt =
⋂
ε>0

(
Ft+ε ∨ σ(G)

)
, t ∈ [0, T ].

We shall also assume that M is a IG◦-semimartingale and that its canonical decomposition can

be constructed as in Theorem 2.2. More precisely, we make the

Section Assumption 3.1 M is a IG◦-semimartingale, and the local IG◦-martingale M̃ in its

canonical IG◦-decomposition has the form

M̃ i
t = M i

t −
t∫

0

(mG
s )i d〈M i〉s , t ∈ [0, T ), i = 1, . . . , d, (18)

where m = (m�
t) has the same measurability and integrability properties as k in Theorem 2.2.

As in Lemma 2.8, we obtain a P(IF ◦) ⊗ U -measurable process (µ�
t)t∈[0,T ) such that

t∫
0

d〈M〉s µ�
s =

⎛⎜⎜⎜⎜⎜⎜⎝

t∫
0
(m�

s)
1 d〈M1〉s
...

t∫
0
(m�

s)
d d〈Md〉s

⎞⎟⎟⎟⎟⎟⎟⎠ , t ∈ [0, T ). (19)

Thus we can write M̃ more compactly as M̃ = M − ∫
d〈M〉µG, and so the discounted stock

price evolution from the insider’s point of view is

dX i = X i

⎛⎝dM̃ i + (mG)i d〈M i〉 +
d∑

j=1

αj d〈M i,M j〉
⎞⎠

= X i
(
dM̃ i +

(
d〈M〉 (α + µG)

)i)
, i = 1, . . . , d.

We now impose

Section Assumption 3.2 E

[∫ T

0
(µG

s )∗ d〈M〉s µG
s

]
< ∞.

This allows us in particular to extend M̃ to the closed interval [0, T ] by defining M̃T := lim
t→T

M̃t.

Note here that we do not assume that M̃ is a local IG-martingale on [0, T ].

Remark: Our framework includes the classical incomplete market model studied by Karatzas,

Lehoczky, Shreve and Xu (1991) where the filtration IF is generated by an n-dimensional
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Brownian motion W . In our notation, they have M =
∫
σ dW for a d × n-matrix-valued IF -

progressively measurable process σ = (σt)t∈[0,T ] with full rank d ≤ n for every t ∈ [0, T ], and

α = (σσ∗)−1(b−r1d) for IF -progressively measurable processes b (IRd-valued) and r (IR-valued)

such that
∫ T
0 |bt| dt < ∞ and

∫ T
0 |rt| dt ≤ const. P -a.s. Furthermore, their standing assumption

5.1 imposes exactly our condition (17). As a special case of the model of Karatzas, Lehoczky,

Shreve and Xu (1991), Pikovsky and Karatzas (1996) consider in their study of insider trading

the complete market model with d = n; this is therefore included in our framework as well.

Definition 3.1 Let t ∈ [0, T ], x > 0 and denote by IH ∈ {IF, IG} a generic filtration.

1. An IH-portfolio process up to time t is an IRd-valued IH-predictable process π = (πs)s∈[0,t]

such that
t∫
0
π∗
s d〈M〉s πs < ∞ P -a.s.

2. For an IH-portfolio process π, the discounted wealth process V (x, π) is defined by

V0(x, π) = x and

dVs(x, π) =
d∑

i=1

πi
sVs(x, π)

dX i
s

X i
s

for s ∈ [0, t]. (20)

3. The class of admissible IH-portfolio processes up to time t is defined by

AIH(x, t) :=
{
π
∣∣∣π is an IH-portfolio process and E[log− Vt(x, π)] < ∞

}
. (21)

As usual, πi
t describes the proportion of total wealth at time t invested in asset i, and (20)

is the familiar self-financing condition; see for instance Pikovsky and Karatzas (1996). For a

strategy π ∈ AIH(x, t) with x > 0, the wealth process is strictly positive and explicitly given by

Vs(x, π) = xE
(∫ d∑

i=1

πi
u

dX i
u

X i
u

)
s

= xE
(∫

π∗
u dMu +

∫
π∗
u d〈M〉u αu

)
s

(22)

for s ∈ [0, t]. From the point of view of the insider, this can also be written as

Vs(x, π) = xE
(∫

π∗
u dM̃u +

∫
π∗
u d〈M〉u (αu + µG

u )
)
s

, s ∈ [0, t]. (23)

Definition 3.2 (Optimization Problems)

Let the initial wealth x > 0 and the time horizon t ∈ [0, T ] be given.

1. The ordinary economic agent’s optimization problem is to solve:

max
π∈AIF (x,t)

E[log Vt(x, π)].

2. The insider’s optimization problem is to solve:

max
π∈A IG(x,t)

E[log Vt(x, π)].

While it is not the most general case, assuming a logarithmic utility function will enable us to

exploit the exponential structure of the wealth process and to obtain fairly explicit results in

the next section.
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3.2 Solution of the Logarithmic Utility Maximization Problems

Let us first give an easy argument under more restrictive integrability assumptions to motivate

the construction of the solutions. (23) gives for π ∈ A IG(x, t)

log Vt(x, π) = log x +
∫ t

0
π∗
s dM̃s +

∫ t

0
π∗
s d〈M〉s

(
αs + µG

s − 1

2
πs

)
= log x +

∫ t

0
π∗
s dM̃s +

1

2

∫ t

0
(αs + µG

s )∗ d〈M〉s (αs + µG
s )

−1

2

∫ t

0
(αs + µG

s − πs)
∗ d〈M〉s (αs + µG

s − πs) (24)

if we add and subtract 1
2

∫ t
0(αs + µG

s )∗ d〈M〉s (αs + µG
s ). If we now had E

[∫ t
0 π

∗
s d〈M〉s πs

]
< ∞,

the local IG◦-martingale
∫
π∗
s dM̃s would be a true martingale and hence would have expectation

zero. Then πs = αs + µG
s , s ≤ t, would be an optimal strategy for the insider up to time t,

yielding a maximal expected utility up to time t of log x + 1
2
E
[∫ t

0(αs + µG
s )∗ d〈M〉s(αs + µG

s )
]
.

Setting µG ≡ 0, we could similarly get the optimal strategy and maximal expected utility of

the ordinary agent.

We now show that even in our larger class of admissible strategies, the solution of the opti-

mization problems is of the above form. Our argument exploits the close connection between

logarithmic optimization problems and the minimal martingale density processes.

Definition 3.3 The process ẐIF = (ẐIF
s )s∈[0,T ] defined by

ẐIF
s := E

(
−
∫

α∗
u dMu

)
s

, s ∈ [0, T ] (25)

is called the IF -minimal martingale density , and the process Ẑ IG = (Ẑ IG
s )s∈[0,T ] defined by

Ẑ IG
s := E

(
−
∫

(αu + µG
u )∗ dM̃u

)
s

, s ∈ [0, T ] (26)

is called the IG-minimal martingale density .

Note that (17) and Section Assumption 3.2 imply that
∫
(αs + µG

s )∗ dM̃s is well-defined and a

local IG-martingale on [0, T ], and that both minimal martingale densities are strictly positive.

Proposition 3.4

1. For t ∈ [0, T ], the processes ẐIFX i, i = 1, . . . , d, and ẐIFV (x, π) with π ∈ AIF (x, t) are

local IF -martingales on [0, t].

2. For t ∈ [0, T ), the processes Ẑ IGX i, i = 1, . . . , d, and Ẑ IGV (x, π) with π ∈ A IG(x, t) are

local IG-martingales on [0, t]. If M̃ is a local IG-martingale, this even holds for t ∈ [0, T ].

Proof: The first part is well known and can be found in Ansel and Stricker (1992), (1993b) or

Schweizer (1995). The second claim is similarly obtained by applying Itô’s formula to get

d(Ẑ IGX i) = X i dẐ IG + Ẑ IG dX i + d〈Ẑ IG, X i〉
= X i dẐ IG + Ẑ IGX i dM̃ i

+Ẑ IGX i

⎛⎝(mG)i d〈M i〉 +
d∑

j=1

αj d〈M i,M j〉 − d
〈∫

(α + µG)∗ dM̃,M i
〉⎞⎠ .
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Since

d
〈∫

(µG)∗ dM̃,M i
〉

=
d∑

j=1

(µG)j d〈M j,M i〉 =
(
d〈M〉µG

)i
= (mG)i d〈M i〉

by (19), we have

d(Ẑ IGX i) = X i dẐ IG + Ẑ IGX i dM̃ i,

and this shows that Ẑ IGX i is a local IG◦-martingale, and even a local IG-martingale if M̃ i is.

The remaining assertions are proved in a similar way. q.e.d.

The next result gives explicit solutions for the two investors’ optimization problems.

Theorem 3.5

1. Fix a time horizon t ∈ [0, T ]. An optimal strategy up to time t for the ordinary economic

agent is then given by

πord
s := αs , 0 ≤ s ≤ t, (27)

and the corresponding maximal expected logarithmic utility up to time t is

E
[
log Vt(x, π

ord)
]

= log x +
1

2
E

⎡⎣ t∫
0

α∗
s d〈M〉s αs

⎤⎦ . (28)

2. Fix a time horizon t ∈ [0, T ). An optimal strategy up to time t for the insider is then

given by

πopt
s := αs + µG

s , 0 ≤ s ≤ t, (29)

and the corresponding maximal expected logarithmic utility up to time t is

E[log Vt(x, π
opt)] = log x +

1

2
E

⎡⎣ t∫
0

α∗
s d〈M〉s αs

⎤⎦+
1

2
E

⎡⎣ t∫
0

(µG
s )∗ d〈M〉s µG

s

⎤⎦ . (30)

3. The insider’s maximal expected logarithmic utility up to the terminal time T is at least

log x +
1

2
E

⎡⎣ T∫
0

α∗
s d〈M〉s αs

⎤⎦+
1

2
E

⎡⎣ T∫
0

(
µG
s

)∗
d〈M〉s µG

s

⎤⎦ . (31)

4. If M̃ is a local IG-martingale, then an optimal strategy up to the terminal time T for the

insider is given by

πopt
s := αs + µG

s , 0 ≤ s ≤ T, (32)

and the corresponding maximal expected logarithmic utility up to time T is

log x +
1

2
E

⎡⎣ T∫
0

α∗
s d〈M〉s αs

⎤⎦+
1

2
E

⎡⎣ T∫
0

(
µG
s

)∗
d〈M〉s µG

s

⎤⎦ . (33)

Proof: We omit the proof for the ‘ordinary agent part’ because it is a copy of the other parts

with µG ≡ 0 and ẐIF instead of Ẑ IG.
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1. For concave C1-functions u such that u′ has an inverse I, we recall the inequality

u(a) ≤ u
(
I(b)

)
− b

(
I(b) − a

)
for all a, b.

If we fix t ∈ [0, T ) and π ∈ A IG(x, t), we thus obtain with u = log, a = Vt(x, π) and

b = yẐ IG
t for some constant y > 0 that

log Vt(x, π) ≤ log
1

yẐ IG
t

− yẐ IG
t

(
1

yẐ IG
t

− Vt(x, π)

)
= − log y − log Ẑ IG

t − 1 + yẐ IG
t Vt(x, π).

Since V (x, π) is nonnegative and Ẑ IGV (x, π) is by Proposition 3.4 a local IG◦-martingale,

hence a IG◦-supermartingale starting in x, we get

E[log Vt(x, π)] ≤ −1 − log y − E[log Ẑ IG
t ] + yx (34)

for all π ∈ A IG(x, t) and y > 0. To find an optimal portfolio, it is therefore enough to find

π ∈ A IG(x, t) and y > 0 such that equality holds in (34). We claim that πopt defined by

(29) and y = 1/x will do. Indeed, (24) yields

log Vt(x, π
opt) = log x +

∫ t

0
(αs + µG

s )∗ dM̃s +
1

2

∫ t

0
(αs + µG

s )∗ d〈M〉s (αs + µG
s )

= − log y − log Ẑ IG
t

by (26), and so we get equality in (34). Moreover, πopt is in A IG(x, t) due to (17), Section

Assumption 3.2, and the fact that Ẑ IG
t > 0 P -a.s. so that log−(Ẑ IG

t ) = 0 P -a.s.

2. (17) and Doob’s inequality imply that sup0≤s≤t |
∫ s
0 α∗

u dMu| and sup0≤s≤t

∣∣∣∫ s0 α∗
u dM̃u

∣∣∣ are

both integrable so that
∫
α∗
u dMu and

∫
α∗
u dM̃u are martingales (with respect to IF and

IG, respectively) on [0, t]. By the definitions of M̃ and µG, we therefore obtain

0 = E
[∫ t

0
α∗
u dMu −

∫ t

0
α∗
u dM̃u

]
= E

[∫ t

0
α∗
u d〈M〉u µG

u

]
,

and (30) follows by squaring out (α + µG)∗ d〈M〉 (α + µG).

3. We now show (31). Up to time t < T , let the insider choose the portfolio πopt = α + µG

as in (29). At time t, he then invests his wealth in the riskless asset and keeps it there

up to time T so that his strategy is given by

π̂s := πopt
s I{s≤t} , s ∈ [0, T ].

This implies that π̂ ∈ A IG(x, T ) and VT (x, π̂) = Vt(x, π
opt) for every t < T . Therefore the

insider’s maximal expected utility is at least

sup
t<T

E[log Vt(x, π
opt)] = log x +

1

2
E

⎡⎣ T∫
0

α∗
s d〈M〉s αs

⎤⎦+
1

2
E

⎡⎣ T∫
0

(µG
s )∗ d〈M〉s µG

s

⎤⎦
by (30) and monotone convergence, and this proves (31).

4. If M̃ is a local IG-martingale, then Ẑ IGV (x, π) is by Proposition 3.4 a local IG-martingale,

hence a IG-supermartingale. Thus we can repeat steps 1 and 2 with t = T to complete

the proof. q.e.d.
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Definition 3.6

1. The insider’s additional expected logarithmic utility up to time t ∈ [0, T ] is defined by

sup
π∈A IG(x,t)

E[log Vt(x, π)] − sup
π∈AIF (x,t)

E[log Vt(x, π)] , t ∈ [0, T ].

2. The insider’s utility gain up to time t ∈ [0, T ] is defined by

E[at] with at :=
1

2

t∫
0

(µG
s )∗ d〈M〉s µG

s . (35)

Before we proceed to rewrite the utility gain, let us comment on the above terminology. Un-

der Section Assumption 3.2, E[at] coincides with the insider’s additional expected logarithmic

utility up to any time t < T . A look at the above proofs reveals that this remains true even

if we only have E[at] < ∞ for all t < T and E[aT ] = ∞. Examples in Pikovsky and Karatzas

(1996) and section 4 show the latter situation to be typical. Even under this weakened assump-

tion, the same argument as for (31) gives E[aT ] as a lower bound for the insider’s additional

expected utility up to time T , and thus the two quantities also coincide for E[aT ] = ∞. If

E[aT ] < ∞, they agree again by (33) if M̃ is a local IG-martingale; we shall see examples of

this in subsections 4.1 and 4.3. The only case where a discrepancy between the two quantities

could arise is if E[aT ] < ∞ and M̃ is a local IG◦-martingale, but not a local IG-martingale. It

would be interesting to see an example of this type analyzed in more detail.

3.3 pG-Representation of the Insider’s Utility Gain

Although (35) provides an explicit expression for the insider’s utility gain in terms of µG, it is

not really useful in that form. Even in fairly simple examples, (35) is rather hard to evaluate;

this is illustrated by the results of Pikovsky and Karatzas (1996) where closed-form solutions

or upper bounds for (35) are obtained only in some special cases and after sometimes rather

cumbersome calculations. In this section, we therefore derive an alternative expression for the

utility gain which can be evaluated simply and explicitly for a large class of examples for G.

By applying the results of section 2 to the continuous local IF -martingale M , we compute the

utility gain E[at] for all t < T and then let t increase to T . This requires

Section Assumption 3.3 The regular conditional distributions of G given Ft are P -a.s.

equivalent to the law of G for all t ∈ [0, T ), and the process of Radon-Nikodym derivatives

is P -a.s. continuous in t. More precisely, we assume that there exists a strictly positive, con-

tinuous P(IF ◦) ⊗ U -measurable process (p�t)t∈[0,T ), � ∈ U , such that for all B ∈ U , we have

P [G ∈ B|Ft](ω) =
∫
B

p�t(ω)P [G ∈ d�] for P -a.a. ω and all t ∈ [0, T ).
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Note that by Theorem 2.2, Section Assumption 3.3 implies Section Assumption 3.1.

Remark: Intuitively, the assumption that the conditional laws of G given Ft are equivalent

to the law of G for t < T means that at all times prior to T , the insider has an informational

advantage over the ordinary agent since the latter sees all outcomes of G as possible before

time T . More vaguely, the outcome of G is not revealed to the public before T .

Applying Proposition 2.9 to M gives the existence of a continuous local IG◦-martingale Ñ null

at 0 and orthogonal to M such that

1

pGt
= E

(
−
∫

(µG
s )∗ dM̃s + Ñ

)
t

, t ∈ [0, T ). (36)

Continuity and orthogonality of M̃ and Ñ therefore yield for t ∈ [0, T )

− log pGt = −
t∫

0

(µG
s )∗ dM̃s + Ñt −

1

2

t∫
0

(µG
s )∗ d〈M〉s µG

s − 1

2
〈Ñ〉t. (37)

If the expectations of all terms were finite and if Ñ was not only a local IG◦-martingale, but a

true IG◦-martingale, the utility gain could obviously be written as

E[at] =
1

2
E

⎡⎣ t∫
0

(µG
s )∗ d〈M〉s µG

s

⎤⎦ = E[log pGt ] − 1

2
E[〈Ñ〉t].

The next result will provide such a relation even without the assumption that
∫
(µG

s )∗ dM̃s and

Ñ are IG◦-martingales. For its formulation, we recall that for two probabilities P and Q on

(Ω,A), the relative entropy of P with respect to Q on A is defined as

HA(P |Q) :=

⎧⎪⎪⎨⎪⎪⎩
EP

[
log

dP

dQ

∣∣∣∣
A

]
, if P � Q on A

+∞ , otherwise.

It is well known that HA(P |Q) is always nonnegative, equal to 0 if and only if P = Q on A,

and increasing in A.

Theorem 3.7

1. The insider’s utility gain up to time t ∈ [0, T ) satisfies the relation

E[at] +
1

2
E[〈Ñ〉t] = E[log pGt ] = HGt(P |P̃t) , t ∈ [0, T ), (38)

where P̃t is the [0, t]-insider martingale measure defined in Proposition 2.3.

2. The insider’s utility gain up to the terminal time T satisfies the relation

E[aT ] +
1

2
E[〈Ñ〉T ] = lim

t→T
E[log pGt ] = lim

t→T
HGt(P |P̃t). (39)
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Proof: Let (Tn) be an increasing sequence of IG◦-stopping times such that all terms in (37) are

bounded when stopped at Tn and such that
(∫

(µG
s )∗ dM̃s

)Tn

and ÑTn are IG◦-martingales. For

each t ∈ [0, T ), we then have

E
[
log pGTn∧t

]
=

1

2
E

⎡⎣ Tn∧t∫
0

(µG
s )∗ d〈M〉s µG

s

⎤⎦+
1

2
E
[
〈Ñ〉Tn∧t

]
,

and as n → ∞, the right-hand side increases to 1
2
E
[∫ t

0(µ
G
s )∗ d〈M〉s µG

s

]
+ 1

2
E[〈Ñ〉t] by monotone

convergence. Thus it only remains to show that

E
[
log pGTn∧t

]
−→ E[log pGt ] as n → ∞.

Since 1/pG is a IG◦-martingale by Proposition 2.3, the optional stopping theorem implies that

E
[
1/pGTn∧t

∣∣∣GTn−1∧t
]

= 1/pGTn−1∧t, and so (1/pGTn∧t)n∈IN is a sequence of probability densities on

(GTn∧t)n∈IN with limit 1/pGt . Hence we can apply Lemma 2 of Barron (1985) to the sequence

pGTn∧t = dP

dP̃t

∣∣∣
GTn∧t

, n ∈ IN , to conclude that

lim
n→∞

E
[
log pGTn∧t

]
= E[log pGt ] = HGt(P |P̃t)

by (6). This proves the first assertion, and the second follows by monotone convergence.

q.e.d.

In the special case where Ñ vanishes, the insider’s utility gain is just the relative entropy of P

with respect to the [0, t]-insider martingale measure. This happens for instance if we have a

martingale representation theorem for the filtration IF .

Corollary 3.8 If p� = E
(∫

(µ�)∗ dM
)

for each � ∈ U , the insider’s utility gain

1. up to time t ∈ [0, T ) is given by

E[at] = E[log pGt ] = HGt(P |P̃t) , t ∈ [0, T ). (40)

2. up to the terminal time T is given by

E[aT ] = lim
t→T

E[log pGt ] = lim
t→T

HGt(P |P̃t). (41)

Proof: By Corollary 2.10, we have 1/pG = E
(
− ∫ (µG)∗ dM̃

)
. This means in particular that

Ñ ≡ 0, and so the assertions follow from (38) and (39). q.e.d.
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4 Explicit Calculations of the Insider’s Additional Ex-

pected Logarithmic Utility

In this section, we systematically analyze the insider’s additional expected logarithmic utility.

For simplicity, we consider the case where the insider’s utility gain up to time t ∈ [0, T ) is given

by

E[at] = E

⎡⎣ t∫
0

(µG
s )∗ d〈M〉s µG

s

⎤⎦ = E[log pGt ] = HGt(P |P̃t) (42)

and up to the terminal time T by

E[aT ] = E

⎡⎣ T∫
0

(µG
s )∗ d〈M〉s µG

s

⎤⎦ = lim
t→T

E[log pGt ] = lim
t→T

HGt(P |P̃t). (43)

We can then obtain results which only depend on the structure of the additional information

G and not on the decomposition of M in IG◦. This is the key point which allows us to simplify

and generalize results obtained by Pikovsky and Karatzas (1996).

Let us now summarize the assumptions needed in chapter 3 to establish (42) and (43).

Section Assumption 4.1

1. M is a d-dimensional continuous local IF -martingale.

2. E

[∫ T

0
α∗
s d〈M〉s αs

]
< ∞.

3. M̃ = M − ∫
d〈M〉µG is a d-dimensional continuous local IG◦-martingale.

4. E
[∫ t

0
(µG

s )∗ d〈M〉s µG
s

]
< ∞ for all t ∈ [0, T ). (44)

(compare Section Assumption 3.2 and the remark at the end of section 3.2)

5.
1

pGt
= E

(
−
∫

(µG
s )∗ dM̃s

)
t

, t ∈ [0, T ). (45)

Remarks:

1. Assumption (45) means that the orthogonal martingale Ñ in (36) should vanish. This is

clearly hard to check in a general incomplete market, but our results provide by Theorem

3.7 at least upper bounds for the insider’s utility gain. In the classical complete market

model with IF generated by the underlying Brownian motion W , (45) follows from Corol-

lary 2.10 by applying the martingale representation theorem to each p�. In particular, all

examples in Pikovsky and Karatzas (1996) without constraints on the insider’s strategies

are special cases of our subsequent results.

2. In all subsequent explicit examples (Example 4.2 and subsection 4.3), Section Assumption

4.1 is satisfied. This can easily be shown by direct, but lengthy calculations.
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4.1 The Distribution of G is Atomic

Suppose first that G takes values in a countable set U so that

Gt =
⋂
ε>0

(
Ft+ε ∨ σ({G = �}, � ∈ U)

)
, t ∈ [0, T ].

Recall that the entropy of G is defined by

H(G) := −
∑
�∈U

P [G = �] logP [G = �]. (46)

Theorem 4.1 Suppose that G is a discrete random variable such that H(G) < ∞ and Section

Assumption 4.1 holds. Then:

1. The insider’s additional expected logarithmic utility up to time t ∈ [0, T ] is given by

E[at] = H(G) −H(G|Ft) (47)

with

H(G|Ft) := −E

⎡⎣∑
�∈U

P [G = �|Ft] logP [G = �|Ft]

⎤⎦ , t ∈ [0, T ] (48)

being the conditional entropy of G given Ft.

2. In particular, if G is FT -measurable, then the insider’s terminal additional expected

logarithmic utility is given by

E[aT ] = H(G). (49)

Proof: Without loss of generality, we may assume that U = IN .

1. By Example 2.7 and the remark after Theorem 2.2, M̃ is a local IG-martingale. For any

t ∈ [0, T ], part 4 of Theorem 3.5 therefore implies that the utility gain E[at] gives indeed

the insider’s additional expected logarithmic utility up to time t.

2. Since the nonnegative process (−P [G = i|Ft] logP [G = i|Ft])t∈[0,T ] is an IF -supermartin-

gale, the conditional entropy is nonnegative and decreasing in its second argument, and

therefore

0 ≤ −E

[ ∞∑
i=1

P [G = i|Ft] logP [G = i|Ft]

]
≤ H(G) < ∞ for t ∈ [0, T ]. (50)

Fix t ∈ [0, T ). By Example 2.7, we have for i ∈ IN that

pit =
P [G = i|Ft]

P [G = i]
,

and therefore Theorem 3.7, Section Assumption 4.1 and conditioning on Ft yield

E[at] = E[log pGt ]

= E

[ ∞∑
i=1

log pit P [G = i|Ft]

]

= E

[ ∞∑
i=1

P [G = i|Ft] logP [G = i|Ft]

]
−

∞∑
i=1

P [G = i] logP [G = i],
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which is well-defined according to (50) and yields (47) for t < T . For each i ∈ IN ,

P [G = i|Ft] → P [G = i|FT ] as t → T by martingale convergence and therefore

lim
t→T

E
[
P [G = i|Ft] logP [G = i|Ft]

]
= E

[
P [G = i|FT ] logP [G = i|FT ]

]
(51)

by dominated convergence, since x �→ x log x is bounded on [0, 1]. Moreover, (50) implies

by Fubini’s theorem that the series −
∞∑
i=1

E
[
P [G = i|Ft] logP [G = i|Ft]

]
is absolutely

convergent for each t ∈ [0, T ], and so (51) implies that

lim
t→T

H(G|Ft) = H(G|FT ).

This completes the proof of (47).

3. If G is FT -measurable, then P [G = i|FT ] = I{G=i}, and so the right-hand side in (51)

becomes zero, since 0 log 0 = 1 log 1 = 0. Thus, H(G|FT ) = 0, completing the proof by

(47). q.e.d.

Remark: Since H(G|Ft) measures the amount of uncertainty about the outcome of G if one

has the information Ft, we can interpret (47) as follows: for each t ∈ [0, T ], the utility gain

of an insider up to time t equals the amount of uncertainty of the ordinary investor about G

at time 0 minus the amount of uncertainty of the ordinary investor about G at time t and is

therefore just the amount of certainty that the ordinary investor has gained about G by time t.

Note also that the utility gain in (47) becomes zero if G is independent of Ft for all t ∈ [0, T ].

Example 4.2 Suppose that the insider’s additional information in the classical complete mar-

ket model consists of an interval-type information about the outcome of the external noise W ,

i.e., G := I{WT∈(a1,b1)×···×(ad,bd)} with ai, bi ∈ IR ∪ {−∞,∞} and ai < bi for i = 1, . . . , d. The

insider’s additional expected logarithmic utility is then by (49)

E[aT ] = −p log p− (1 − p) log(1 − p),

where p =
d∏

i=1
pi with pi := P [W i

T ∈ (ai, bi)] = Φ
(
bi/

√
T
)
− Φ

(
ai/

√
T
)

for i = 1, . . . , d.

In particular, if the insider has information about the outcome of only one noise term, i.e.,

G := I{W i
T∈(ai,bi)}, his additional expected logarithmic utility is given by

E[aT ] = −pi log pi − (1 − pi) log(1 − pi).

This closed-form solution in particular answers a question by Pikovsky and Karatzas (1996)

who conjectured that the additional expected utility is finite in this example.

We next consider the case when G has infinite entropy.

Theorem 4.3 Suppose that G is a discrete random variable such that H(G) = ∞ and Section

Assumption 4.1 holds. If G is FT -measurable, then E[aT ] = ∞, and thus the insider’s additional

expected logarithmic utility up to the terminal time T becomes infinite.
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Proof: Without loss of generality, assume that U = IN . For n ∈ IN , consider the random

variable Gn :=
n∑

i=1
i I{G=i} and define the filtration IGn := (Gn

t )t∈[0,T ] by Gn
t :=

⋂
ε>0

(
Ft+ε∨σ(Gn)

)
.

If E[anT ] denotes the terminal utility gain corresponding to IGn, then IG ⊇ IGn implies that

expected additional utility in IG ≥ expected additional utility in IGn ≥ E[anT ] (52)

by part 3 of Theorem 3.5. According to Theorem 4.1, we obtain for n ∈ IN

E[anT ] = H(Gn) = −
n∑

i=1

P [G = i] logP [G = i].

But since H(G) = ∞, the right-hand side above diverges to ∞ as n → ∞, and so the assertion

follows from (52). q.e.d.

4.2 The Distribution of G is not Purely Atomic

Theorem 4.4 Suppose G is FT -measurable with values in the Polish space (U,U) and has a

distribution which is not purely atomic and such that Section Assumption 4.1 holds. Then

E[aT ] = ∞, and thus the insider’s additional expected logarithmic utility up to the terminal

time T becomes infinite.

Proof: Choose B ∈ U such that B does not contain any atoms of G and such that P [G ∈ B] =

c > 0. Then for each n ∈ IN , we can find a partition (Bn
i )i=1,...,n of B such that P [G ∈ Bn

i ] = c
n

for i = 1, . . . , n. For each n ∈ IN , the random variable Gn :=
n∑

i=1
i I{G∈Bn

i } has entropy

H(Gn) = −
n∑

i=1

P [G ∈ Bn
i ] logP [G ∈ Bn

i ] = c log n− c log c,

and since this goes to ∞ as n → ∞, the same argument as for Theorem 4.3 completes the

proof. q.e.d.

4.3 Terminal Information Distorted by Noise

In this subsection, we consider the classical complete market model as described after Section

Assumption 3.2. Suppose that the insider’s information about the outcome of WT is distorted

by some independent noise so that he knows the value of

G :=
(
λ1W

1
T + (1 − λ1)ε1, . . . , λdW

d
T + (1 − λd)εd

)∗
,

where for i = 1, . . . , d, the random variables εi are independent, independent of FT and normally

distributed with mean 0 and variance σ2
i > 0, and λi are numbers in [0, 1] not all equal to 1.

For each t ∈ [0, T ], the conditional distribution of G given Ft is then multivariate normal with

mean mt = (λ1W
1
t , . . . , λdW

d
t )∗ and variance Vt = diag

(
λ2
i (T − t) + (1 − λi)

2σ2
i

)
i=1,...,d

, and its

Radon-Nikodym derivative with respect to Lebesgue measure is given by

q�t =
d∏

i=1

1√
2π(λ2

i (T − t) + (1 − λi)2σ2
i )

exp

(
− (�i − λiW

i
t )

2

2(λ2
i (T − t) + (1 − λi)2σ2

i )

)
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for � ∈ IRd. By the remark following Theorem 2.2, M̃ is therefore a local IG-martingale, and

so part 4 of Theorem 3.7, combined with Section Assumption 4.1 and the comment following

Definition 3.6, implies that the insider’s additional expected logarithmic utility up to time t < T

is given by

E[at] = E[log pGt ] = E

[
log

qGt
qG0

]
=

1

2

d∑
i=1

log
λ2
iT + (1 − λi)

2σ2
i

λ2
i (T − t) + (1 − λi)2σ2

i

and up to the terminal time T by

E[aT ] = lim
t→T

E[log pGt ]

=

⎧⎪⎨⎪⎩
1
2

d∑
i=1

log
λ2
i T+(1−λi)

2σ2
i

(1−λi)2σ2
i

, if λi ∈ [0, 1) for all i = 1, . . . , d

∞ , if λi = 1 for at least one i.

(53)

This extends Theorem 3.3 of Pikovsky and Karatzas (1996) by giving a closed-form solution

instead of bounds only. Furthermore, the quantity in (53) is decreasing in each σi and tends to

∞ if σi goes to 0 for at least one i, which is exactly what intuition suggests should happen.
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